Асинхронный электродвигатель строение

Асинхронный двигатель. Устройство и принцип действия однофазного и трехфазного асинхронного электродвигателя.

Асинхронные электродвигатели (АД) находят в народном хозяйстве широкое применение. По разным данным до 70% всей электрической энергии, преобразуемой в механическую энергию вращательного или поступательного движения, потребляется асинхронным двигателем. Электрическую энергию в механическую энергию поступательного движения преобразуют линейные асинхронные электродвигатели, которые широко используются в электрической тяге, для выполнения технологических операций. Широкое применение АД связано с рядом их достоинств. Асинхронные двигатели — это самые простые в конструктивном отношении и в изготовлении, надежные и самые дешевые из всех типов электрических двигателей. Они не имеют щеточноколлекторного узла либо узла скользящего токосъема, что помимо высокой надежности обеспечивает минимальные эксплуатационные расходы. В зависимости от числа питающих фаз различают трехфазные и однофазные асинхронные двигатели. Трехфазный асинхронный двигатель при определенных условиях может успешно выполнять свои функции и при питании от однофазной сети. АД широко применяются не только в промышленности, строительстве, сельском хозяйстве, но и в частном секторе, в быту, в домашних мастерских, на садовых участках. Однофазные асинхронные двигатели приводят во вращение стиральные машины, вентиляторы, небольшие деревообрабатывающие станки, электрические инструменты, насосы для подачи воды. Чаще всего для ремонта или создания механизмов и устройств промышленного изготовления или собственной конструкции применяют трехфазные АД. Причем в распоряжении конструктора может быть как трехфазная, так и однофазная сеть. Возникают проблемы расчета мощности и выбора двигателя для того или другого случая, выбора наиболее рациональной схемы управления асинхронным двигателем, расчета конденсаторов, обеспечивающих работу трехфазного асинхронного двигателя в однофазном режиме, выбора сечения и типа проводов, аппаратов управления и защиты. Такого рода практическим проблемам посвящена предлагаемая вниманию читателя книга. В книге приводится также описание устройства и принципа действия асинхронного двигателя, основные расчетные соотношения для двигателей в трехфазном и однофазном режимах.

Устройство и принцип действия асинхронных электродвигателей

1. Устройство трехфазных асинхронных двигателей

Трехфазный асинхронный двигатель (АД) традиционного исполнения, обеспечивающий вращательное движение, представляет собой электрическую машину, состоящую из двух основных частей: неподвижного статора и ротора, вращающегося на валу двигателя. Статор двигателя состоит из станины, в которую впрессовывают так называемое электромагнитное ядро статора, включающее магнитопровод и трехфазную распределенную обмотку статора. Назначение ядра — намагничивание машины или создание вращающегося магнитного поля. Магнитопровод статора состоит из тонких (от 0,28 до 1 Мм) изолированных друг от друга листов, штампованных из специальной электротехнической стали. В листах различают зубцовую зону и ярмо (рис. 1.а). Листы собирают и скрепляют таким образом, что в магнитопроводе формируются зубцы и пазы статора (рис. 1.б). Магнитопровод представляет собой малое магнитное сопротивление для магнитного потока, создаваемого обмоткой статора, и благодаря явлению намагничивания этот поток усиливает.

Рис. 1 Магнитопровод статора

В пазы магнитопровода укладывается распределенная трехфазная обмотка статора. Обмотка в простейшем случае состоит из трех фазных катушек, оси которых сдвинуты в пространстве по отношению друг к другу на 120°. Фазные катушки соединяют между собой по схемам звезда, либо треугольник (рис. 2).

Рис 2. Схемы соединения фазных обмоток трехфазного асинхронного двигателя в звезду и в треугольник

Более подробные сведения о схемах соединения и условных обозначениях начал и концов обмоток представлены ниже. Ротор двигателя состоит из магнитопровода, также набранного из штампованных листов стали, с выполненными в нем пазами, в которых располагается обмотка ротора. Различают два вида обмоток ротора: фазную и короткозамкнутую. Фазная обмотка аналогична обмотке статора, соединенной в звезду. Концы обмотки ротора соединяют вместе и изолируют, а начала присоединяют к контактным кольцам, располагающимся на валу двигателя. На контактные кольца, изолированные друг от друга и от вала двигателя и вращающиеся вместе с ротором, накладываются неподвижные щетки, к которым присоединяют внешние цепи. Это позволяет, изменяя сопротивление ротора, регулировать скорость вращения двигателя и ограничивать пусковые токи. Наибольшее применение получила короткозамкнутая обмотка типа «беличьей клетки». Обмотка ротора крупных двигателей включает латунные или медные стержни, которые вбивают в пазы, а по торцам устанавливают короткозамыкающие кольца, к которым припаивают или приваривают стержни. Для серийных АД малой и средней мощности обмотку ротора изготавливают путем литья под давлением алюминиевого сплава. При этом в пакете ротора 1 заодно отливаются стержни 2 и короткозамыкающие кольца 4 с крылышками вентиляторов для улучшения условий охлаждения двигателя, затем пакет напрессовывается на вал 3. (рис. 3). На разрезе, выполненном на этом рисунке, видны профили пазов, зубцов и стержней ротора.

Рис. 3. Ротор аснхронного двигателя с короткозамкнутой обмоткой

Общий вид асинхронного двигателя серии 4А представлен на рис. 4 [2]. Ротор 5 напрессовывается на вал 2 и устанавливается на подшипниках 1 и 11 в расточке статора в подшипниковых щитах 3 и 9, которые прикрепляются к торцам статора 6 с двух сторон. К свободному концу вала 2 присоединяют нагрузку. На другом конце вала укрепляют вентилятор 10 (двигатель закрытого обдуваемого исполнения), который закрывается колпаком 12. Вентилятор обеспечивает более интенсивное отведение тепла от двигателя для достижения соответствующей нагрузочной способности. Для лучшей теплоотдачи станину отливают с ребрами 13 практически по всей поверхности станины. Статор и ротор разделены воздушным зазором, который для машин небольшой мощности находится в пределах от 0,2 до 0,5 мм. Для прикрепления двигателя к фундаменту, раме или непосредственно к приводимому в движение механизму на станине предусмотрены лапы 14 с отверстиями для крепления. Выпускаются также двигатели фланцевого исполнения. У таких машин на одном из подшипниковых щитов (обычно со стороны вала) выполняют фланец, обеспечивающий присоединение двигателя к рабочему механизму.

Рис. 4. Общий вид асинхронного двигателя серии 4А

Выпускаются также двигатели, имеющие и лапы, и фланец. Установочные размеры двигателей (расстояние между отверстиями на лапах или фланцах), а также их высоты оси вращения нормируются. Высота оси вращения — это расстояние от плоскости, на которой расположен двигатель, до оси вращения вала ротора. Высоты осей вращения двигателей небольшой мощности: 50, 56, 63, 71, 80, 90, 100 мм.

2. Принцип действия трехфазных асинхронных двигателей

Выше отмечалось, что трехфазная обмотка статора служит для намагничивания машины или создания так называемого вращающегося магнитного поля двигателя. В основе принципа действия асинхронного двигателя лежит закон электромагнитной индукции. Вращающееся магнитное поле статора пересекает проводники короткозамкнутой обмотки ротора, отчего в последних наводится электродвижущая сила, вызывающая в обмотке ротора протекание переменного тока. Ток ротора создает собственное магнитное поле, взаимодействие его с вращающимся магнитным полем статора приводит к вращению ротора вслед за полями. Наиболее наглядно идею работы асинхронного двигателя иллюстрирует простой опыт, который еще в XVIII веке демонстрировал французский академик Араго (рис. 5). Если подковообразный магнит вращать с постоянной скоростью вблизи металлического диска, свободно расположенного на оси, то диск начнет вращаться вслед за магнитом с некоторой скоростью, меньшей скорости вращения магнита.

Рис. 5. Опыт Араго, объясняющий принцип работы асинхронного двигателя

Это явление объясняется на основе закона электромагнитной индукции. При движении полюсов магнита около поверхности диска в контурах под полюсом наводится электродвижущая сила и появляются токи, которые создают магнитное поле диска. Читатель, которому трудно представить проводящие контуры в сплошном диске, может изобразить диск в виде колеса со множеством проводящих ток спиц, соединенных ободом и втулкой. Две спицы, а также соединяющие их сегменты обода и втулки и представляют собой элементарный контур. Поле диска сцепляется с полем полюсов вращающегося постоянного магнита, и диск увлекается собственным магнитным полем. Очевидно, наибольшая электродвижущая сила будет наводиться в контурах диска тогда, когда диск неподвижен, и напротив, наименьшая, когда близка к скорости вращения диска. Перейдя к реальному асинхронному двигателю отметим, что короткозамкнутую обмотку ротора можно уподобить диску, а обмотку статора с магнитопроводом — вращающемуся магниту. Однако вращение магнитного поля в неподвижном статоре а осуществляется благодаря трехфазной системе токов, которые протекают в трехфазной обмотке с пространственным сдвигом фаз.

Двигатель мостового крана

Для того чтобы приводить механизм мостовых кранов в действие на них устанавливают электродвигатели. Наиболее часто на мостовые кран балки устанавливают асинхронные трехфазные электродвигатели.
sliq essays writing companies
По типу исполнения обмотки ротора асинхронный двигатель может быть с фазовым или короткозамкнутым ротором.

Строение трехфазного асинхронного электродвигателя

Как и все двигатели, асинхронный электродвигатель кран балки имеет вращающийся статор и неподвижный ротор.

Особенности строения статора

Корпус статора производят по технологии литья. Внутри корпуса устанавливают сердечник, который состоит из листов электротехнической стали. Для набора сердечника используют листы стали, толщина которых варьируется от 0,3 до 0,5 мм. Статорная обмотка представляет собой три независимых обмотки, которые укладываются в специальные пазы на внутренней поверхности сердечника.

Каждая обмотка и является одной из фаз двигателя, следовательно, раз их три, то и двигатель называется трехфазным. Для изготовления обмоток используют изолированный медный провод, имеющий квадратное или круглое сечение. При укладке провода сдвигают на 120 градусов относительно друг друга. Начальные и концевые зажимы каждой обмотки соответственно маркируют С1, С2, С3, С4, С5 и С6.

Зажимы обмоток оснащены специальными перемычками, при помощи которых можно варьировать соединение фаз, что дает возможность подключать электродвигатель как к сети с напряжением 220В, так и к сети 380 В. Напряжения, на работу с которыми рассчитан электродвигатель, указывается в его паспорте.

Следовательно, если в паспорте указано напряжение 380/220В, то это значит, что при соответствующем соединении зажимов обмоток (звездой для 380 В и треугольником для 220 В) двигатель может работать от электросетей с напряжением 380 и 220 В.

Смотрите так же:  Однофазные автоматы в трехфазной сети

Особенности строения ротора

Ротор для асинхронного двигателя мостового крана может быть фазовым или короткозамкнутым. Его сердечник также состоит из изолированных листов тонкостенной электротехнической стали. Ротор крепится на вращающийся вал, опирающийся на подшипники. При помощи подшипниковых щитов вал, з закрепленном на нем роторе, болтовым соединением крепится к станине статора.

Для короткозамкнутого ротора обмотку изготавливают с использованием алюминиевых, медных или латунных стержней, которые по торцам сердечника соединяют при помощи соединительных колец, изготовленных из того же материала, что и обмотка. Таким образом, получают обмотку ротора, которая называется «беличья клетка», то есть является короткозамкнутой.

Если ротор выполнен фазовым, то и его обмотка состоит из трех независимых обмоток, которые укладываются под углом 120 градусов относительно друг друга и называются фазами ротора. Фазовая обмотка ротора может быть соединена только звездой и подключена к пускорегулировочному или пусковому резистору.

Пусковой резистор подключается к ротору для того, чтобы можно было ограничить силу пускового тока. Такой резистор обладает активным сопротивлением, что позволяет создать значительный пусковой момент.

Принцип действия электродвигателя

Действие асинхронного электродвигателя, имеющего три фазы, основано на взаимодействии проводника и вращающегося магнитного поля. Магнитное поле создается обмоткой статора, а обмотка ротора является проводником, помещенным в магнитное поле. Вращающийся момент двигателя уменьшается при увеличении частоты вращения ротора и, соответственно, наоборот, когда частота вращения ротора уменьшается, вращающий момент двигателя увеличивается.

Что касается числа пар полюсов магнитного поля, то оно определяется количеством обмоток каждой из фаз статора, к примеру, если фазы статора состоят из двух обмоток, то и число пар полюсов будет равно двум.

При короткозамкнутом роторе частота вращения двигателя регулируется либо изменением числа пар полюсов статора, либо при помощи изменения частоты тока. Для того чтобы изменить частоту питающего тока используют специальные преобразователи или источники переменного тока. Если регулировка частоты осуществляется путем изменения пар полюсов статора, то его фазы укладывают таким образом, чтобы каждая имела несколько обмоток с различным числом пар полюсов. Из-за сложности регулировки частоты короткозамкнутые двигатели на мостовых кранах практически не используются.

Асинхронные двигатели, имеющие фазовый ротор – это двигатели, которые чаще всего используются для электропривода мостовых кранов, так как изменение частоты вращение достигается наиболее простым путем – введением в цепь ротора резистора.

Асинхронный двигатель

Асинхронные двигатели представляют собой наиболее надежный и дешевый электрический двигатель по себестоимости, в сравнении с остальными электрическими машинами, в том числе и с машинами переменного тока.

Устройство асинхронного двигателя

Конструкция АД включает две главных основные части, это: неподвижный статор и вращающийся в нем – ротор. Между ними существует, разделяющий их воздушный зазор. И ротор, и статор имеют обмотку. Обмотка статора двигателя подключается к электрической сети переменного напряжения и считается первичной. Обмотка ротора считается вторичной, так получает электроэнергию от статора за счет создаваемого магнитного потока.

Корпус статора, который является одновременно корпусом всего электродвигателя, состоит из запрессованного в него сердечника, в его пазы укладываются, изолированные друг от друга электротехническим лаком, проводники обмотки. Его обмотка подразделяется на секции, соединяемые в катушки, составляющих фазы двигателя к которым подключены фазы электросети.

Конструкция ротора АД включает вал и сердечник, набранный из пластин электротехнической стали, с симметрично расположенными пазами для укладки проводников обмотки. Вал предназначен для передачи крутящего момента от вала двигателя к приводному механизму.

По конструктивным особенностям ротора, электродвигатели подразделяются на двигатель с короткозамкнутым или фазным ротором.

Короткозамкнутый ротор состоит из алюминиевых стержней, которые расположены в сердечнике и замкнуты на торцах кольцами так называемое беличье колесо. В двигателях высокой мощности, до 400 кВт, пазы между пластинами ротора и шихтованным сердечником залиты алюминием под высоким давлением, благодаря чему создается повышенная прочность.

Фазный ротор АД включает некоторое число катушек от 3, 6, 9 и т. д., в зависимости от количества пар полюсов. Катушки сдвинуты на угол 120о, 60о и т. д. по отношению друг к другу. Количество пар полюсов ротора должны соответствовать количеству пар полюсов статора. Обмотки фазного ротора соединены в «звезду», концы, которой выводят к контактным токосъемным кольцам, соединенным с помощью щеточного механизма пусковым реостатом.

Принцип работы

При подаче на трехобмоточный статор двигателя трехфазного напряжения от электрической сети переменного тока, происходит возбуждение магнитного поля, оно вращается со скоростью большей, чем скорость, с которой вращается ротор, в (n2

На основании вышеприведенных признаков подразумеваются следующие режимы работы, всего их 9:

  • Продолжительный или длительный режим с постоянной нагрузкой– S1;
  • Кратковременный, с полной нагрузкой – в течение заданного времени – S2;
  • Периодический кратковременный – в течение определенного по времени чередующимися периодами с полной нагрузкой – S3;
  • Режим с длительным периодом пуска, с определенными циклами работы в течение заданного периода времени– S4;
  • С быстрым торможением при помощи электрического способа – S5;
  • С кратковременной полной величиной нагрузки, режим включает циклы с полной токовой нагрузкой и холостым ходом – S6;
  • Режим с торможением электрическим способом, в течение длительного непрерывного периода работы – S7;
  • С изменением величины токовой нагрузки и значения скорости вращения, происходящими одновременно, с различными по протяженности периодами и с разной частотой вращения двигателя – S8;
  • Изменение скорости вращения нагрузки, происходящее в неопределенные периоды времени, изменение величины токовой нагрузки и скорости вращения соответственно рабочему диапазону – S9.

Основные параметры – это: напряжение по номинальному пределу, частота, ток номинальный, мощность на валу двигателя, количество оборотов вращения вала, КПД (коэффициент полезного действия), коэффициент мощности. При соединении обмоток электродвигателя в треугольник или звезду дается параметр их напряжения и тока при обоих этих соединениях.

При пуске АД на полное значение напряжения создается высокий пусковой ток, в это время значение пускового момента невелико, для его увеличения применяется повышение активного сопротивления вторичной цепи.

Режимы торможения

Асинхронный двигатель имеет три режима торможения.

  • Во время торможения происходит отдача электрической энергии в сеть, характеризуется тем, что скорость вращения ротора выше скорости магнитного поля;
  • Противовключение, этот режим возникает за счет увеличения статического момента или при переключении обмоток статора для другого направления вращения;
  • Динамическое торможение, наведенная ЭДС создает ток, который взаимодействуя с полем, создает тормозной момент.

Основные типы асинхронных двигателей

Кроме подразделения по признаку, разделяющему двигатели в зависимости от устройства ротора на короткозамкнутый или фазный, электродвигатели делятся по конструктивным признакам, базового и модифицированного изготовления.

В базовое исполнение входят электродвигатели монтажного IM1001 (1081) или климатического УЗ, для работы в режиме S1 исполнения, с требуемыми стандартами по ГОСТ.

В модифицированном исполнении присутствуют некоторые конструктивные отличия, соответствующие особенностям монтажа, усиленной степени защиты, характерному климатическому исполнению, предназначенные для использования в определенном регионе.

Асинхронные двигатели высокой мощности со степенью защиты, характерной для закрытого электродвигателя от попадания влаги и брызг, IP23 — 4 А, 5 А.

Взрывозащищенные двигатели, используемые для предприятий первой категории по электробезопасности.

АД специального предназначения используются в узкоспециализированном профиле, например, для лифтов, подъемных механизмов, транспорта.

Энергоэффективные асинхронные электродвигатели

Изготовление двигателей для специальных и строго определенных условий эксплуатации положительно сказывается на энергосбережении, это позволяет адаптировать электродвигатель к определенному электроприводу, что позволяет достичь наибольшего коэффициента экономической эффективности при эксплуатации. Проектирование асинхронного электродвигателя к регулируемому электроприводу обеспечивает эффективное энергосбережение.

Энергоэффективность достигается за счет увеличения длины сердечника статора без изменения величины и геометрии поперечного сечения, а также за счет уменьшения количества витков статорной обмотки для электропривода с возможностью регулирования. В результате получается значительное энергосбережение.

Пишите комментарии, дополнения к статье, может я что-то пропустил. Загляните на карту сайта, буду рад, если вы найдете на моем сайте еще что-нибудь полезное. Всего доброго.

Асинхронный двигатель с короткозамкнутым ротором

Во многих отраслях промышленности используются асинхронные двигатели, потому что они надежны и эффективны. Множество электромеханизмов, применяемых в промышленности и быту, включаются при помощи электроприводов. Асинхронные двигатели различаются по конструктивному устройству. Отдельно выделяют электродвигатель с фазным ротором и асинхронный двигатель с короткозамкнутым ротором.

Строение асинхронного электродвигателя

В асинхронном двигателе имеется две части, одна из них является неподвижной, выполнена в виде статора. Он состоит из обмотки и сердечника, а другая часть подвижная, представлена в виде вращающегося ротора, который тоже состоит из обмотки и сердечника. Эти две части двигателя разделяются воздушным зазором между собой. Но имеется отличие у ротора и статора, у ротора – вторичная обмотка, а у статора – первичная, которая к тому же, подключается к сети.

Статор выполнен из специального корпуса со станиной, корпус изготавливается из чугуна или алюминиевого сплава, а из электротехнической стали изготовлен шихтованный сердечник. Листы стали уменьшают вихревые токи, что положительно сказывается на работе сердечника, они образуются под воздействием магнитного поля в сердечнике.

Обмотка бывает многослойной и однослойной, она укладывается в продольные пазы, которые расположены с внутренней стороны сердечника. Ротор состоит из сердечника и вала, а его обмотка выполнена из алюминиевых или медных стержней. Стержни замыкаются замыкающимися кольцами с обеих сторон. Шихтованный сердечник ротора покрывается пленкой окисла, что делает его еще более долговечным. Роторный вал вращается в подшипниках качения, они располагаются в подшипниковых щитах.

Листы ротора и статора обладают пазами закрытой, полузакрытой или открытой формы, в них установлены проводники обмоток. В статоре в основном используют полузакрытые пазы овальной и прямоугольной формы, а в устройствах большой мощности применяются пазы прямоугольной формы.

Двигатель с короткозамкнутым ротором долговечен и надежен, но у него имеется один недостаток. Его пусковой момент ограничен из-за короткозамкнутых стержней ротора.

Иногда асинхронные двигателя обладают статорным сердечником, который запрессовывается в литой остов и укреплен стопорными винтами. При этом воздушный зазор невелик, что вполне допускается с точки зрения механического строения конструкции. В двигателях средней и малой мощности воздушный зазор исчисляется в десятых миллиметра. Благодаря этому обеспечивается снижение магнитного сопротивления цепи, что хорошо отражается на его работе.

Смотрите так же:  При заземлении выбивает узо

Охлаждение двигателя и его применение

Асинхронные двигатели часто склонны к перегреву, чтобы этого избежать применяются вентиляторы, которые устанавливаются на двигателе и надежно закрываются специальным кожухом. Для двигателя мощностью до 15 кВт данный способ вполне подходит. У двигателей большой мощности предусмотрена дополнительно внутренняя вентиляция, иногда в мощных асинхронных двигателях в виде ребер выполняется поверхность, ребра увеличивают общую площадь охлаждения.

Применение асинхронного двигателя нашло огромную сферу использования, у них очень высокое КПД. Эти электромоторы используются в транспортерах, сверлильных станках, компрессорах, вентиляторах, электромясорубках и в других устройствах.

Асинхронный двигатель бывает иногда сложно отрегулировать, потому, что хорошая настройка требует опыта и знаний. Если вы не в курсе как это сделать, то обратитесь к специалистам за помощью.

Асинхронный двигатель с фазным ротором

Надёжность электродвигателя это одно из важнейших качеств его. Обычно она связана с простотой конструкции. Чем проще конструкция, тем надёжнее движок. Эта зависимость подтверждается асинхронными электродвигателями. Они получили самое широкое распространение из всех электродвигателей именно по причине простоты устройства и надёжности. В них реализован самый простой способ получения крутящего момента на валу движка. Максимум магнитного поля статора перемещается вокруг вала, вызывая его ответную реакцию.

Причины появления фазного ротора в асинхронном двигателе

Реакция ротора вызвана током, который возникает в нём. Ведь по своей сути статор является первичной обмоткой трансформатора. А ротор – его вторичная обмотка. При неподвижном роторе величина тока в нём максимальна. Это объясняется тем, что скорость перемещения максимума магнитного поля статора относительно вала получается максимальной. Такой режим асинхронного движка аналогичен включению трансформатора с вторичной обмоткой замкнутой накоротко.

А поскольку обмотки взаимосвязаны магнитопроводом, который в асинхронном двигателе разделён на железо вращающейся части его и сердечник статора, в обмотке статора тоже получается максимум величины тока. Если мощность электросети недостаточна для того, чтобы при пуске асинхронных движков поддержать напряжение в пределах необходимого значения, применяются меры по уменьшению пускового тока этих двигателей. Это делается либо при помощи специальных схем, которые позволяют регулировать токи в обмотках статора, либо использованием асинхронных движков специальной конструкции – с фазным ротором.

Как устроен фазный ротор?

Фазный ротор содержит обмотки в виде катушек с витками. Эти катушки соединены по схеме «звезда». Конец каждой обмотки соединён с ответствующим кольцом. При подаче напряжения на статор на каждом кольце появляется напряжение. В скользящем контакте с кольцом находится щётка, которая даёт возможность подключения внешних элементов. Эти элементы являются частью схемы управления. Она получается более простой, по сравнению с теми схемами, которыми движок управляется со стороны статора. Чаще всего схема управления содержит набор резисторов.

Они подключаются по мере разгона вала. Хотя такой способ управления пуском асинхронного двигателя не самый экономичный, он наиболее часто применяется на практике в силу своей простоты и минимума коммутационных помех. Ограничение тока ротора это не только возможность плавного запуска двигателя, но и ограничение скорости вращения вала. Но тогда более рациональным решением будет использование индуктивностей вместо резисторов. Иллюстрации, показывающие особенности конструкции асинхронного движка с фазным ротором показаны далее.

При автоматическом управлении лучше всего применять реле или полупроводниковые коммутаторы, которые параллельно стартовому резистору подключают новые резисторы, постепенно уменьшая их суммарное сопротивление до нуля с шунтированием всех резисторов последним коммутатором или контактами реле. Для наиболее плавного пуска необходимо использовать реостат 1, который на схеме слева включён в электрической цепи ротора и своими ползунками 5 соединён с кольцами 2 через клеммы щёток 3. Движок начинает работать после замыкания контактов рубильника 4. При этом ползунки реостата должны быть установлены в положение «Пуск».

В этом положении сопротивлении реостата максимально. Вал движка начинает вращаться. Перемещение ползунка будет приводить к разгону вала до максимальной скорости, которая появится при нулевом значении сопротивлении реостата. Однако есть ещё одно следствие такой регулировки двигателя с фазным ротором. Меняется связь крутящего момента и скольжения. Этот эффект показан на графике ниже. При определённой величине сопротивления в цепи ротора максимум крутящего момента смещается в сторону более высоких оборотов движка, как на кривой 2. Кривая 1 соответствует нулевому значению сопротивления в цепи фазного ротора.

При нулевом сопротивлении кольца, по сути, замкнуты накоротко. Щётки и кольца из-за трения изнашиваются. А поскольку после завершения разгона вала этот узел фактически не используется его целесообразно исключить из процесса работы. По этой причине асинхронный двигатель с фазным ротором предусматривает специальный механизм. Он отодвигает щётки от колец и одновременно замыкает последние накоротко. В результате кольца и щётки работают намного дольше по сравнению с тем вариантом, который предусматривает их непрерывный контакт.

Простота и надёжность асинхронных двигателей основана на конструкции ротора. Но именно это обстоятельство и создаёт проблемы с их эксплуатацией. Большие пусковые токи в некоторых случаях неприемлемы настолько, что оправдывается более сложная и дорогостоящая намоточная конструкция ротора с кольцами и щётками. Тогда и применяют асинхронный двигатель с фазным ротором. Но более сложная конструкция и цена их в сравнении с асинхронными двигателями с короткозамкнутым ротором оправдывается также и тем, что они позволяют получить величину крутящего момента в рабочем режиме при меньших габаритах и массе. Поэтому эти особенности делают асинхронные двигатели с фазным ротором в ряде случаев наиболее предпочтительными.

Устройство асинхронных электродвигателей

Электродвигатели являются встроенными элементами рабочих узлов техники, и именно они обеспечивают им правильную работу. Неважно, складское ли это оборудование или стиральная машина – эти устройства никак не смогут обойтись без использования электромотора и чаще всего в настоящее время для этого применяются именно асинхронные электродвигатели.

Электродвигатели этого типа на сегодняшний день имеют довольно обширную область применения, чем они обязаны, прежде всего, своим рабочим характеристикам. Дело в том, что их особенностью является практически полная независимость частоты вращения вала от нагрузки на нем.

Устройство асинхронных электродвигателей. Асинхронные электродвигатели состоят из двух частей: ротора 1 и статора 2. Внутренняя его часть называется ротор, эта часть вращается и несет на себе обмотку. Внешняя часть представляет собой корпус двигателя и называется статор, она неподвижна, внутри неё имеются специальные пазы (магнитопровод), куда пофазно уложены витки (секции) обмоток (статорная обмотка). Фазы статорных обмоток могут быть соединены «звездой» или «треугольником».

Собираются обе эти части из изолированных листов штампованной стали толщиной около 0,35-0,5 мм. Для высокомощных машин зазор между ротором и статором делается как можно меньше, порядка 1-1,5 мм, в маломощных двигателях еще меньше. Вал вращается в подшипниках, расположенных в подшипниковых щитах.

Виды асинхронных электродвигателей. Рассмотрим виды асинхронных двигателей и их устройство. В зависимости от конструкции ротора, асинхронные двигатели можно разделить на два вида: с короткозамкнутым и фазным ротором. Главное различие этих видов электродвигателей состоит только в устройстве ротора.

Асинхронные электродвигатели с короткозамкнутым ротором. Эти двигатели имеют ротор, внешне очень похожий на беличью клетку. Статорная их обмотка представляет собой стержни, выполненные из алюминия или меди, замкнутые с торцов ротора двумя кольцами. На сегодняшний день электродвигатели малой и средней мощности (до 100 кВт) снабжены «беличьем колесом», сделанным из алюминия, путем заливки его под давлением в пазы ротора.

Асинхронные электродвигатели с фазным ротором. Обмотки фазного ротора соединены, чаще всего, между собой «звездой». Двигатель с фазным ротором имеет еще одно название – двигатель с контактными кольцами, такое название произошло оттого, что концы обмоток соединяются с тремя медными кольцами, которые электрически изолированы не только от вала двигателя, но и друг от друга. Кольца насажены на сердечник ротора через изоляционные прокладки. На них накладываются специальные щётки, которые даже при вращении имеют электрический контакт с обмотками ротора двигателя. Для изменения скорости щетки соединяют с реостатом.

Принцип действия асинхронных электродвигателей. Питающее напряжение подается на статорную обмотку, образуя вращающееся магнитное поле, которое, в свою очередь, воздействуя на обмотку ротора (стержней) наводит в ней ЭДС, создающую электрический ток.

В результате взаимодействия магнитного поля стержней, вызываемого этим электрическим током с магнитным полем статора и образуется сила, создающая вращающийся электромагнитный момент, т. е. вращение ротора.

Частота вращения вала асинхронных электродвигателей зависит, прежде всего, от количества пар полюсов, определяемых количеством катушек на каждую фазу. Так, три катушки обмотки создают двухполюсное магнитное поле (одну пару полюсов). При стандартной частоте 50 Гц скорость вращения ротора будет порядка 3000 об/мин. При увеличении магнитного поля по полюсам снижается скорость вращения ротора, например магнитное поле при шести полюсах имеет скорость в три раза меньше, чем у двухполюсного.

В настоящее время, большее применение получили двигатели с короткозамкнутым ротором, из-за простоты устройства, а значит, во многом – и простоты ремонта, обслуживания и удобства эксплуатации. Двигатели с фазным ротором используются значительно реже.

Устройство и принцип работы простейшего электродвигателя

Электродвигатель – это просто устройство для эффективного преобразования электрической энергии в механическую.

В основе этого преобразования лежит магнетизм. В электродвигателях используются постоянные магниты и электромагниты, кроме того, используются магнитные свойства различных материалов, чтобы создавать эти удивительные устройства.

Существует несколько типов электродвигателей. Отметим два главных класса: AC и DC.

Электродвигатели класса AC (Alternating Current) требуют для работы источник переменного тока или напряжения (такой источник Вы можете найти в любой электрической розетке в доме).

Электродвигатели класса DC (Direct Current) требуют для работы источник постоянного тока или напряжения (такой источник Вы можете найти в любой батарейке).

Универсальные двигатели могут работать от источника любого типа.

Не только конструкция двигателей различна, различны способы контроля скорости и вращающего момента, хотя принцип преобразования энергии одинаков для всех типов.

Электродвигатели используются повсюду. Даже дома вы можете обнаружить огромное количество электродвигателей. Электродвигатели используются в часах, в вентиляторе микроволновой печи, в стиральной машине, в компьютерных вентиляторах, в кондиционере, в соковыжималке и т. д. и т. п. Ну а электродвигатели, применяемые в промышленности, можно перечислять бесконечно. Диапазон физических размеров – от размера со спичечную головку до размера локомотивного двигателя.

Смотрите так же:  Узо авдт 63

Показанный ниже промышленный электродвигатель работает и на постоянном, и на переменном токе. Его статор – это электромагнит, создающий магнитное поле. Обмотки двигателя поочередно подключаются через щетки к источнику питания. Одна за другой они поворачивают ротор на небольшой угол, и ротор непрерывно вращается.

ЭЛЕКТРОСАМ.РУ

Электродвигатель. Виды и применение. Работа и устройство

Электродвигатель представляет электромашину, перестраивающую электрическую энергию в механическую. Обычно электрическая машина реализует механическую работу благодаря потреблению приложенной к ней электроэнергии, преобразовывающейся во вращательное движение. Ещё в технике есть линейные двигатели, способные создавать сразу поступательное движение рабочего органа.

Особенности конструкции и принцип действия

Не важно какое конструктивное исполнение, но устройство любых электродвигателей однотипное. Ротор и статор находятся внутри цилиндрической проточки. Вращение ротора возбуждают магнитное поле, отталкивающее его полюса от статора (неподвижной обмотки). Сохранять постоянное отталкивание можно путём перекоммутации обмоток ротора, или образовав вращающееся магнитное поле непосредственно в статоре. Первый способ присущий коллекторным электродвигателям, а второй — асинхронным трехфазным.

Корпус любых электродвигателей обычно чугунный или выполнен из сплава алюминия. Однотипные двигатели, не смотря на конструкцию корпуса производятся с одинаковыми установочными размерами и электрическими параметрами.

Работа электродвигателя базируется на принципах электромагнитной индукции. Магнитная и электрическая энергия создают электродвижущуюся силу в замкнутом контуре, проводящем ток. Это свойство заложено в работу любой электромашины.

На движущийся электроток в середине магнитного поля постоянно воздействует механическая сила, стремительно пытающаяся отклонить направление зарядов в перпендикулярной силовым магнитным линиям плоскости. Во время прохождения электротока по металлическому проводнику либо катушке, механическая сила норовит подвинуть или развернуть всю обмотку и каждый проводник тока.

Назначение и применение электродвигателей

Электрические машины имеют много функций, они способны усиливать мощность электрических сигналов, преобразовывать величины напряжения либо переменный ток в постоянный и др. Для выполнения таких разных действий существуют многообразные типы электромашин. Двигатель представлят тип электрических машин, рассчитанных для преобразования энергии. А именно, этот вид устройств превращает электроэнергию в двигательную силу или механическую работу.

Он пользуется большим спросом во многих отраслях. Их широко используется в промышленности, на станках различного предназначения и в других установках. В машиностроении, к примеру, землеройных, грузоподъёмных машинах. Также они распространены в сферах народного хозяйства и бытовых приборах.

Классификация электродвигателей

Электродвигатель, является разновидностью электромашин по:

  • Специфике, создающегося вращательного момента:
    • гистерезисные;
    • магнитоэлектрические.
  • Строению крепления:
    • с горизонтальным расположением вала;
    • с вертикальным размещением вала.
  • Защите от действий внешней среды:
    • защищённые;
    • закрытые;
    • взрывонепроницаемые.

В гистерезисных устройствах вращающий момент образуется путём перемагничивания ротора или гистерезиса (насыщения). Эти двигатели мало эксплуатируются в промышленности и не считаются традиционными. Востребованными являются магнитоэлектрические двигатели. Существует много модификаций этих двигателей.

Их разделяют на большие группы по типу протекающего тока:

  • Постоянного тока.
  • Переменного тока.
  • Универсальные двигатели (работают на постоянном переменном токе).

Особенности магнитоэлектрических двигателей постоянного тока

С помощью двигателей постоянного тока создают регулируемые электрические приводы с высокими эксплуатационными и динамическими показателями.

Типы электродвигателей:

  • С электромагнитами.
  • С постоянными магнитами.

Группа электродвигателей, питание которых выполняется постоянным током, подразделяется на подвиды:

  • Коллекторные . В этих электроприборах присутствует щёточно-коллекторный узел, обеспечивающий электрическое соединение неподвижной и вращающейся части двигателя. Устройства бывают с самовозбуждением и независимым возбуждением от постоянных магнитов и электромагнитов.
  • Выделяют следующие виды самовозбуждения двигателей:
    • параллельное;
    • последовательное;
    • смешанное.
  • Коллекторные устройства имеют несколько минусов:
    • Низкая надёжность приборов.
    • Щёточно-коллекторный узел довольно сложная в обслуживании составляющая часть магнитоэлектрического двигателя.
  • Безколлекторные (вентильные) . Это двигатели с замкнутой системой, работающие по аналогичному принципу работы синхронных устройств. Оснащены датчиком положения ротора, преобразователем координат, а также инвертором силовым полупроводниковым преобразователем.

Эти машины выпускаются различных размеров от самых маленьких низковольтных до громадных размеров (в основном до мегаватта). Миниатюрными электродвигателями оснащены компьютеры, телефоны, игрушки, аккумуляторные электроинструменты и т.п.

Применение, плюсы и минусы электродвигателей постоянного тока

Электромашины постоянного тока применяют в разных областях. Ими комплектуют подъёмно-транспортные, красочно-отделочные производственные машины, а также полимерное, бумажное производственное оборудование и т.д. Часто электрический двигатель этого типа встраивают в буровые установки, вспомогательные агрегаты экскаваторов и другие виды электротранспорта.

Преимущества электрических двигателей:

  • Лёгкость в управлении и регулировании частоты вращения.
  • Простота конструкции.
  • Отменные пусковые свойства.
  • Компактность.
  • Возможность эксплуатации в разных режимах (двигательном и генераторном).

Минусы двигателей:

  • Коллекторные двигатели требуют трудное профилактическое обслуживание щёточно-коллекторных узлов.
  • Дороговизна производства.
  • Коллекторные устройства имеют не большой срок службы из-за изнашивания самого коллектора.

Электродвигатель переменного тока

В электродвигателях переменного тока электроток описывается по синусоидальному гармоническому закону, периодично меняющему свой знак (направление).

Статор этих устройств изготавливают из ферромагнитных пластинок, имеющих пазы для помещения в них витков обмотки с конфигурацией катушки.

Электродвигатели по принципу работы бывают синхронными и асинхронными . Главным их отличием является то, что скорость магнитодвижущей силы статора в синхронных приборах равна скорости вращения ротора, а в асинхронных двигателях эти скорости не совпадают, обычно ротор вращается медленнее поля.

Синхронный электродвигатель

Из-за одинакового (синхронного) вращения ротора с магнитным полем, аппараты именуют синхронными электродвигателями. Их подразделяют на подвиды:

  • Реактивный.
  • Шаговый.
  • Реактивно-гистерезисный.
  • С постоянными магнитами.
  • С обмотками возбуждения.
  • Вентильный реактивный.
  • Гибридно-реактивный синхронный двигатель.

Большая часть компьютерной техники оснащена шаговыми электродвигателями. Преобразование энергии в этих устройствах основано на дискретно угловом передвижении ротора. Шаговый электродвигатель имеет высокую продуктивность, независящую от их мизерных размеров.

Достоинства синхронных двигателей:

  • Стабильность частоты вращения, что не зависит от механических нагрузок на валу.
  • Низкая чувствительность к скачкам напряжения.
  • Могут выступать в роли генератора мощности.
  • Снижают потребление мощности, предоставляемой электростанциями.

Недостатки в синхронных устройствах:

  • Сложности с запуском.
  • Сложность конструкции.
  • Затруднения в регулировки частоты вращения.

Недостатки синхронного двигателя, делают более выгодным для использования электродвигатель асинхронного типа. Тем не менее, большинство синхронных двигателей из-за их работы с постоянной скоростью востребованы для установок в компрессоры, генераторы, насосы, а также крупные вентиляторы и пр. оборудование.

Асинхронный электродвигатель

Статор асинхронных двигателей представляет распределённую двухфазную, трехфазную, реже многофазную обмотку. Ротор выполняют в виде цилиндра, используя медь, алюминий либо металл. В его пазы залиты либо запрессованные токопроводящие жилы к оси вращения под определённым углом. Они соединяются в одно целое на торцах ротора. Противоток возбуждается в роторе от переменного магнитного поля статора.

По конструктивным особенностям выделяют два вида асинхронных двигателей:

  • С фазным ротором.
  • С короткозамкнутым ротором.

В остальном конструкция приборов не имеет отличий, статор у них абсолютно одинаковый. По числу обмоток выделяют такие электродвигатели:

  • Однофазные . Этот тип двигателей самостоятельно не запускается, ему требуется стартовый толчок. Для этого применяется пусковая обмотка либо фазосдвигающая цепь. Также приборы запускаются вручную.
  • Двухфазные . В этих устройствах присутствуют две обмотки со смещёнными на угол фазами. В приборе возникает вращающееся магнитное поле, напряженность которого в полюсах одной обмотки нарастает и синхронно спадает в другой.
    Двухфазный электродвигатель может самостоятельно запускаться, но с реверсом присутствуют сложности. Часто этот тип устройств подключают к однофазным сетям, включая вторую фазу через конденсатор.
  • Трехфазные . Достоинством этих типов электродвигателей является легкий реверс. Основные части двигателя – это статор с тремя обмотками и ротор. Позволяет плавно регулировать скорость ротора. Эти приборы довольно востребованы в промышленности и технике.
  • Многофазные . Состоят эти устройства из встроенной многофазной обмотки в пазах статора на его внутренней поверхности. Эти двигатели гарантируют высокую надёжность при эксплуатации и считаются усовершенствованными моделями двигателей.

Асинхронные электрические двигатели значительно облегчают работу людей, поэтому они незаменимы во многих сферах.

Достоинствами этих приборов, которые сыграли роль в их популярности, являются следующие моменты:

  • Простота производства.
  • Высокая надёжность.
  • Не нуждаются в преобразователях для включения в сеть.
  • Небольшие расходы при эксплуатации.

Ко всему этому, можно добавить относительную стоимость асинхронных приборов. Но они также имеют и недостатки:

  • Невысокий коэффициент мощности.
  • Трудность в точной регулировке скорости.
  • Маленький пусковой момент.
  • Зависимость от напряжения сети.

Но благодаря питанию электродвигателя с помощью частотного преобразователя, некоторые недостатки устройств устраняются. Поэтому потребность асинхронных моторов не падает. Их применяют в приводах разных станков в областях металлообработки, деревообработки и пр. В них нуждаются ткацкие, швейные, землеройные, грузоподъёмные и другие виды машин, а также вентиляторы, насосы, центрифуги, разные электроинструменты и бытовые приборы.

Похожие статьи:

  • Помещение с 380 вольт Офис склад в Находке Заметка к объявлению Собственность 380 вольт городской телефон интернет в помещение имеется три отдельных входа парковка назначение производственное высота потолка в складе 3метра расмотривается аренда Объявление […]
  • Провода во вьетнаме Доставка контейнеров из Вьетнама Доставим любой груз из Вьетнама (Ханой, Хошимин) в Москву, Санкт-Петербург, Владивосток и другие города России. Предлагаем выгодные условия перевозки контейнеров FCL Вьетнам — Россия. Для небольших партий […]
  • Зачем паять провода Немного о правильном паянии. в 100500й раз о том, как, чем и на чём паять Конечно, об этом писали реально 100500 раз. И гугл выдает огромное количество статей о том, как качество запаять по-быстрому проводочек, транзитор или чего там […]
  • Провода пвс продажа Провод ПВС 3х10 Описание Характеристики Аналоги Производители Расчет Задать вопрос Расшифровка провода ПВС 3х10: Элементы конструкции провода ПВС 3х10: 1. Токопроводящая жила.2. Изоляция.3. […]
  • Схема электронного полива Устройство автоматического полива - схема Устройство для автоматического полива представляет собой электронное реле на транзисторе VT1, база и эмиттер которого соединены с пластинами из токопроводящего материала, воткнутыми в почву на […]
  • Раки узо Рецепт УЗО (OUZO) 7 дней.Если класть анис 100г(2 аптечных пачки) на 1 литр 70% спирта. Анис - бадьян 50+50 г на на 1 литр 70% спирта. 7 дней настаиваем(на батарее отопления можно и 3 дня, если на водяной бане, то 3 часа). Убираем из […]