Драйвер светодиодов 220 схема

Микросхемы-драйверы светодиодов

В предыдущей статье мы рассказали как сделать драйвер для светодиодов своими руками, используя транзисторы и распространенные микросхемы-стабилизаторы напряжения. Сегодня же речь пойдет о схемах драйверов на специализированных микросхемах.

Начнем с самой популярной на сегодняшний день микросхемы драйвера светодиодов РТ4115.

Просто поразительно, как это никому не известному китайскому производителю PowTech удалось создать настолько успешную микросхему драйвера светодиодов, вместив в компактном корпусе несколько блоков управления с мощным полевым транзистором на выходе!

Микросхема требует минимального обвеса и позволяет конструировать светодиодные светильники мощностью более 30 Вт с высоким КПД и возможностью плавной регулировки яркости.

Согласно официальной документации, LED-драйвер с функцией диммирования на основе PT4115 обладает следующими техническими характеристиками:

  • диапазон рабочего входного напряжения: 6–30В;
  • регулируемый выходной ток до 1,2А;
  • погрешность стабилизации выходного тока — не более 5%;
  • имеется защита от обрыва нагрузки и перегрева;
  • имеется вывод DIM для регулировки яркости и включения/выключения;
  • частота переключения до 1 МГЦ;
  • КПД до 97% (максимум, чего я добился — 90%);
  • производится в двух вариантах корпуса — SOT89-5 и ESOP8 (последний более эффективен, с точки зрения рассеивания мощности);
  • единственный прецизионный элемент обвязки — маломощный токозадающий резистор (погрешность сопротивления 1A

Драйвер светодиода своими руками на микросхеме LM3406

Микросхема LM3406 представляет собой импульсный понижающий драйвер мощного светодиода.

  • Выходной ток до 1.5 Ампер
  • Встроенный полевой транзистор, который способствует увеличению КПД и уменьшению количества внешних компонентов
  • Поддерживает цифровую (ШИМ) и аналоговую регулировку яркости
  • Защита от перегрева
  • Может работать без конденсатора на выходе
  • Широкий диапазон питающих напряжений — от 6 до 40В

Схему драйвера светодиода я взял типовую из даташита, только добавил некоторые мелочи:

  • Разъем питания
  • Нулевые резисторы по входу и выходу
  • Светодиодный индикатор питания
  • Защиту ножки обратной связи
  • Диод для защиты от обрыва в цепи светодиодов

Замечу, что в даташите есть несколько схем, я выбрал схему с защитой от обрыва в нагрузке. Схема получилась вот такая:

В качестве индуктивности использовано желто-красное кольцо из распыленного железа, снятое со старой материнской платы.

Родную обмотку снимаем, наматываем новую обмотку, порядка 20 витков медным проводом диаметром 0.5 мм. Я намотал проводом от витой пары.

Либо ставим готовую индуктивность 22 мкГн, способную протащить через себя ток не менее 1А. Плата выполнена из двустороннего стеклотекстолита толщиной 1.5 мм. На обратной стороне платы оставлен слой меди для более быстрого распределения тепла по плате.

Обратная сторона платы драйвера:

На брюшке микросхемы расположен теплоотводящий контакт, который обязательно должен быть припаян к медному полигону на плате, для должного охлаждения микросхемы. При перегреве микросхемы сработает температурная защита. В совокупности с защитой от обрыва нагрузки, при правильном питании микросхемы, «убить» её практически нереально.

Выходной ток драйвера задаётся резистором, подключенным между выводом «CS» и землёй. Ток рассчитывается по формуле:

Ток_драйвера_Ампер = 0,2 / Сопротивление_резистора_Ом

Я составил резистор из трёх параллельно соединённых резисторов по 1 Ом. Общее сопротивление получившегося резистора — примерно 0,333 Ом.

0,2 / 0,333 Ом = 0,6 А

Выходной ток драйвера равен 0,6 Ампер.

В качестве нагрузки подключим к драйверу 2 светодиода CREE XP-G, соединённых последовательно:

На вход драйвера подадим 12 Вольт

Ну и напоследок, табличка с результатами КПД:

Напряжение падения на светодиодах,

Ток через светодиоды,

Мощность на светодиодах,

Когда я собирал данный светодиодный драйвер 2 года назад, КПД был выше. Скорее всего, причина в использованной индуктивности. Но так как меня устраивает КПД 90%, то переделывать индуктивность не буду.

Список радиоэлементов

Прикрепленные файлы:

  • Плата LM3406 Zlodey [SL6].lay6 (44 Кб)
  • Сердечники из распылённого железа в импульсных источниках питания.pdf (2209 Кб)

Оценить статью

  • Техническая грамотность

Средний балл статьи: 5 Проголосовало: 2 чел.

Комментарии (13) | Я собрал ( 0 ) | Подписаться

Для добавления Вашей сборки необходима регистрация

В общем собрал схему. Поэкспериментировал и несколько раз перечитал даташит. Комментарии к тому что сделал автор статьи.
1. На авторской схеме явно излишние С1, С5, С8. Как сама микросхема толерантна к высокочастотным помехам, так и LED диоды.
2. Ставить 0 Ом резисторы в качестве предохранителя — КРАЙНЕ спорное решение.
3. На схеме автора номинал С3 = 0,1мкФ. В даташите латинским по белому указано что он болжен быть 22нФ. Но это не криминально. Я пробовал и так и эдак. Результат одинаковый.
4. Номинал С4 сильно завышен. Если драйвер будет использоваться БЕЗ диммирования, то это не криминально. Если с ШИМ диммированием, то при включении на минимальной яркости диод загорается только через ПОЛ МИНУТЫ!! То есть лампа не загорается пока не зарядятся эти 470мкФ. Сам производитель на своей эвалюэйшен боард там поставил танталовый 2,2мкФ
5. Если будуте использовать ШИМ диммирование, то номинал резистора R6 должен быть от 4,7кОм до 10кОм, но уж никак не 100 Ом. Это ВАЖНО, так как ток там не должен быть превышать 70мкА.

Но это все критика. А вот «респекты и уважухи»:
1. Из всего многообразия вариантов схемы в даташите, данный вариант самый безопасный и тяжелоубиваемый. Согласен с выбором автора.
2. Очень правильный вариант разводки платы. Тепло нужно отводить. С другой стороны, у меня 13,2В и 0,24А на выходе не нагрели чип даже на пару градусов. На ощуп!

Замечания о самом чипе.
Цена. Стоимость чипа 160 рублей (2,5$). Что самое интересное у Чипа и Дипа цена = цене у быстрого Али. Ценник конский. С учетом всей обвязки, конечный ценник запросто перевалит за 500р (7,7$)
На этом фоне PT4115 выглядит ЗНАЧИТЕЛЬНО интересней. Сам чип у бастрого Али стоит 10рублей. А из обвязки нужны только доиод, резистор и индуктивность.

Так же у данного чипа несколько ограничено применение. Фонарики. Авто. Настольные лампы.
Для светильника на потолок гораздо интересней HV9910, так как на потолке не важна гальваническая развязка с 220В, а данный чип на вход принимает до 400В.

Спасибо за здравую критику.
0,1 мкФ здесь всёже нужны (у нас здесь частота не 50 Гц).
С остальными пунктами согласен.

Добавлю, что PT4115 при токе 1А имеет КПД примерно 80% или меньше.
LM3406 при токе 1А кпд выше 90%.
Также есть вариант использовать LM3406HV при питающем напряжении до 75 вольт. Если требуется зажечь большую гирлянду из светодиодов. PT4115 так не умеет.

Рубрикатор

Наши новости

Подписка на новости

Какие лампы Вы используете для домашнего освещения?

Недорогой драйвер питания светодиодов на базе микросхемы CPC9909

Макаренко Антон

Любой светодиодный светильник помимо светоизлучающих диодов содержит драйвер — электронную схему, преобразующую энергию внешней питающей цепи к пригодному для питания светодиодов виду. Драйвер во многом определяет качество излучаемого светодиодами света, длительность безотказной работы светильника, потребляемую светильником мощность и, не в последнюю очередь, его стоимость. В статье рассмотрены компоненты простейшего светодиодного драйвера на базе микросхемы CPC9909 и процесс его проектирования.

Провозглашенный в России курс на энергосбережение закономерно повлек за собой бурное развитие рынка светодиодного освещения и вызвал появление огромного количества небольших и средней руки компаний, жаждущих получения госзаказов. По прошествии почти двух лет с момента принятия закона «Об энергосбережении и о повышении энергетической эффективности…» российский рынок светотехники можно считать более или менее сформированным. Повысился профессионализм производителей светодиодных светильников. С рынка ушли откровенные шарлатаны, производившие кустарные изделия низкого качества.

Основными потребителями светодиодных светильников по-прежнему являются компании с государственным участием (такие как ОАО «РЖД» или «Газпром»). Тем не менее повышение интереса к энергосберегающим технологиям в последнее время характерно и для частного бизнеса. Экономия финансовых средств за счет меньшего потребления электроэнергии со временем делает установку светодиодных ламп выгодным вложением средств. Все это говорит о том, что рынок светодиодной продукции в последующие годы будет расти и развиваться стремительными темпами.

Любой светодиодный светильник помимо светоизлучающих диодов (дискретных либо кластеров) содержит драйвер. Драйвер — электронная схема, преобразующая энергию внешней питающей цепи (например 220 В, 50 Гц) к пригодному для питания светодиодов виду (например, стабилизированный ток 350 мА). Драйвер во многом определяет качество излучаемого светодиодами света (уровень пульсаций, яркость), длительность безотказной работы светильника, требования светильника к параметрам электропитания, потребляемую светильником мощность и, не в последнюю очередь, стоимость светильника.

Драйверы бывают линейные и импульсные. Линейные отличаются низкой ценой, но эффективность их работы невелика — при работе они выделяют много тепла, а это потери мощности. Кроме того, светодиодные светильники с линейными драйверами очень чувствительны к параметрам питающего напряжения. Простейший пример линейного драйвера — токоограничивающий резистор в китайских светодиодных фонариках.

Импульсные драйверы дороже линейных, однако они защищают светодиоды от электропомех и колебаний напряжения в питающей сети. Эффективность современных импульсных драйверов достигает 98%, они не требуют дополнительных мер охлаждения, а потребляемая светильником мощность равна мощности использованных светодиодов. Именно импульсные драйверы позволяют воспользоваться всеми благами энергосбережения, которые предоставляют светодиодные технологии.

Конструкция импульсного светодиодного драйвера от Clare

При создании светодиодного светильника можно использовать готовый драйвер либо разработать устройство самостоятельно. Сложность конструкции драйвера напрямую зависит от мощности светодиодного светильника, дополнительных функций, требуемых от драйвера, а также от требований к габаритным размерам.

Компания Clare, входящая в состав корпорации IXYS, предлагает простое решение для построения недорогого эффективного импульсного светодиодного драйвера. Микросхема Clare CPC9909 (рис. 1, 2) представляет собой контроллер импульсного преобразователя, выполненного в компактном корпусе.

Рис. 1. Внешний вид микросхемы CPC9909

Рис. 2. Расположение выводов микросхемы CPC9909

Задача создания драйвера на базе CPC9909 сводится к расчету номиналов компонентов, образующих драйвер.

Как видно из представленной схемы (рис. 3), допускается питание CPC9909 непосредственно от высокого напряжения (питание драйвера 8. 550 В). Это возможно за счет встроенного стабилизатора напряжения, что упрощает и удешевляет схему драйвера, а также делает его более компактным.

Рис. 3. Cветодиодный драйвер на базе CPC9909 с питанием от переменного напряжения

Микросхема CPC9909 сохраняет работоспособность в широком диапазоне температур –55…+85 °С, что особенно ценно с учетом разнообразия климатических условий в России.

Рассмотрим компоненты простейшего светодиодного драйвера на базе CPC9909 и процесс его проектирования.

Микросхема CPC9909

Микросхема CPC9909 (рис. 4) работает по схеме частотно-импульсной модуляции (PFM) с постоянным контролем пикового тока.

Рис. 4. Устройство микросхемы CPC9909

Схема регулирования является стабильной, позволяющей работать с коэффициентом заполнения импульса D (величина, обратная скважности) более 50% без характерных в таком случае нестабильности и высших гармоник.

Драйвер на CPC9909 стабилизирует ток в светодиодах, сравнивая с опорным напряжением падение на токовом шунте — резистивном датчике тока, подключенном ко входу CS микросхемы. Источником опорного напряжения служит встроенный в CPC9909 источник калиброванного напряжения 250 мВ.

При необходимости на вход LD микросхемы может быть подано другое (меньшее) опорное напряжение для организации аналогового диммирования либо для реализации функции мягкого включения (рис. 5). Мягкое включение (soft-start) — постепенное нарастание тока на светодиодах при включении светильника с целью дополнительного продления ресурса светодиодов.

Рис. 5. Реализация мягкого включения в драйвере на базе микросхемы CPC9909

Данная функция особо рекомендуется для мощных светильников, отличающихся высоким тепловыделением. В случае отсутствия необходимости в мягком включении вход LD микросхемы следует подключить к выходу VDD. Для упрощения рассмотрения далее считаем, что мягкое включение не требуется (но при необходимости легко может быть добавлено).

В рассматриваемой схеме ток через светодиоды имеет пилообразный характер (рис. 6), изменяясь в диапазоне от ILED_min до ILED_max по периодическому закону. Данный характер тока — следствие работы микросхемы CPC9909 по стабилизации тока через светодиоды.

Рис. 6. Стадии работы драйвера на базе CPC9909

При первом включении ток в цепи измерительного резистора равен нулю, что приводит к открытию транзистора. Открытие транзистора означает начало периода on-time.

В течение периода on-time ток на выходе драйвера нарастает с динамикой, ограниченной индуктивностью L, при этом в L запасается энергия (рис. 7). В момент достижения током заранее заданной пороговой величины ILED_max транзистор закрывается, ток через светодиоды начинает спадать — наступает период off-time.

Рис. 7. Токопротекание во время периода on-time

В течение периода off-time светодиоды питаются энергией, ранее накопленной в индуктивности L. Энергия постепенно тратится, ток плавно спадает. Интенсивность спада тока определяется величиной индуктивности.

В конце периода off-time (рис. 8), длительность которого задана заранее, микросхема открывает транзистор, начинается следующий период on-time. В этот период индуктивность L восстанавливает израсходованную энергию, а ток возрастает до пороговой величины ILED_max. Процесс носит периодический характер.

Рис. 8. Токопротекание во время периода off-time

Основные параметры работы драйвера на CPC9909 (величина ILED_max и длительность периода off-time) задаются двумя резисторами — времязадающим и измерительным. Рекомендации по выбору их номиналов рассмотрены ниже.

Времязадающий резистор Rt

Длительность периода off-time задается резистором Rt:

Для примера, при Rt = 309 кОм величина toff = 5,482 мкс.

Величина toff при заданном коэффициенте заполнения D определяет номинальную рабочую частоту переключения FSW:

При этом коэффициент заполнения D зависит от соотношения напряжения на светодиодах и напряжения питания микросхемы CPC9909:

где VLED — номинальное напряжение на выходе драйвера, а VBULK — напряжение на выходе выпрямительного моста

Таким образом, номинал Rt зависит от величины номинальной рабочей частоты переключения:

Рекомендованная частота переключения FSW составляет 30. 120 кГц — это оптимальный диапазон, позволяющий создать драйвер с высокой электромагнитной совместимостью и при этом использовать компактную индуктивность.

Индуктивность

Индуктивность ограничивает динамику изменения тока на выходе драйвера и таким образом определяет величину высокочастотных пульсаций тока в светодиодах.

Значительное превышение тока в светодиодах над средним значением приводит к быстрой деградации кристалла светодиода и снижает ресурс работы светильника. Особо сильные пульсации способны вывести светодиод из строя за счет импульсного пробоя. Поэтому на этапе проектирования необходимо ограничить уровень пульсаций на выходе драйвера на безопасном для светодиодов уровне.

Ограничим уровень пульсации величиной 30% от величины среднего тока ILED_AV (здесь ILED_AV — номинальный ток на выходе драйвера):

Для поддержания выбранного уровня пульсаций тока в светодиодах (30%) потребуется использовать индуктивность следующего номинала:

При этом пиковое значение тока в индуктивности, нормированное для каждого отдельно взятого индуктора, соответствует ILED_AV и может быть определено по формуле:

На данном этапе важно определить доступность для заказа индуктора с полученными параметрами, а также его габаритные размеры и стоимость. Если требуемый индуктор недоступен, дорог либо слишком велик, необходимо провести коррекцию указанного выше расчета. Пытаться применять заказную индуктивность целесообразно только в случае безуспешности коррекции расчетов.

Токоизмерительный резистор RSENSE

При работе от встроенного источника 250 мВ (без использования входа LD) величина пикового значения тока в светодиодах, ограничиваемого драйвером, определяется номиналом резистора RSENSE:

Выбрав уровень пульсаций на выходе драйвера (30%), можно определить величину пикового тока на выходе драйвера:

Требуемый по заданию средний ток на выходе драйвера (ILED_AV) позволяет определить номинал резистора RSENSE в схеме драйвера:

Мощность, выделяемая на датчике тока, может быть оценена величиной:

На практике следует выбирать резистор с двукратным запасом мощности.

Входной фильтрующий конденсатор (конденсатор фильтрации 50 Гц)

Входное переменное напряжение после выпрямления прикладывается ко входному конденсатору, номинал емкости которого CBULK выбирается исходя из минимального значения выпрямленного напряжения и мощности, потребляемой драйвером из внешней питающей сети:

При этом уровень потребляемой из питающей сети мощности PAC определяется как сумма мощностей потерь в драйвере и мощности, отдаваемой в светодиоды. Мощность потерь складывается из потерь в транзисторе, дросселе, обратном диоде и резисторах, а также мощности, потребляемой микросхемой CPC9909.

Минимальное напряжение VAC_min определяется в техническом задании на драйвер (нижний порог напряжения питания драйвера), а FAC — номинальная частота переменного тока в питающей сети.

Напряжение VBULK_min — сумма напряжений на выходе драйвера и падений напряжений на измерительном резисторе, открытом транзисторе и дросселе.

Вторым параметром, определяющим выбор конденсатора, является номинальное напряжение фильтрующего конденсатора.

В случае построения драйвера на 220 В оказывается достаточным использовать конденсатор на 400 В. При этом емкости 4,7. 22 мФ достаточно для работы типового драйвера мощностью 5. 15 Вт с выходным током 350 мА.

Необходимо помнить, что электролитические конденсаторы имеют паразитные параметры, наиболее важный из которых — ESR, или эквивалентное последовательное сопротивление, которое приводит к нагреванию конденсатора при протекании импульсных токов. При выборе конденсатора необходимо убедиться в том, что он будет выдерживать максимальный импульсный ток при максимальной температуре, а его параметр ESR стабилен в необходимом диапазоне частот (от 120 Гц до 100 кГц).

Эффективная последовательная индуктивность (ESL) — другой паразитный параметр, ограничивающий эффективность электролитического конденсатора на высоких частотах.

Комбинация значений ESR в нужном диапазоне температур и наличие большого ESL могут потребовать дополнительного параллельного включения танталового конденсатора, который будет устранять высокочастотные выбросы напряжения. При этом снижается влияние ESR во всем температурном диапазоне.

Предохранитель Fuse и термистор Rthm

Предохранитель должен обеспечить защиту схемы от превышения протребляемого тока во включенном состоянии на протяжении периода коммутации (turn-on). Рекомендуется выбрать предохранитель, номинал которого будет в три-пять раз выше пикового входного тока:

Термистор, включенный последовательно со входным выпрямительным мостом, защищает от превышения зарядного тока входного конденсатора в момент первого включения драйвера. Номинал термистора можно рассчитать по формуле:

Входной выпрямитель

Выбор входного выпрямителя зависит от максимального входного напряжения VAC_max, прямого номинального и пикового тока.

Значение тока через один диод IRECT должно быть выбрано исходя из коэффициента 1,5 к среднему входному току IAC_AVG:

При этом весь диодный мост должен обеспечить пятикратный запас прямого рабочего тока IAC_AVG:

Конденсатор цепи питания Cvdd

Вывод VDD микросхемы CPC9909 должен быть соединен с землей с помощью конденсатора с низким ESR для эффективного подавления высокочастотных выбросов напряжения (типовое значение 0,1 мкФ).

Выбор диода и MOSFET-транзистора

Максимальное напряжение на диоде VD и MOSFET-транзисторе равно выпрямленному напряжению на входе схемы. Для увеличения надежности необходимо обеспечить запас в 50%:

Максимальный среднеквадратичный ток через транзистор зависит от скважности импульса D. Выберем транзистор с трехкратным запасом по току:

Для драйвера мощностью 5. 10 Вт транзистор IXTA8N50P является наиболее подходящим выбором: выполненный в SMD-корпусе D2-Pack по технологии Polar, данный MOSFET обеспечивает 30%-ное снижение сопротивления канала при одновременном уменьшении заряда затвора Qg, что обеспечивает более высокий КПД схемы преобразователя. При этом транзисторы семейства Polar имеют низкое значение теплового сопротивления Rjc, что облегчает отвод тепла от кристалла транзистора и повышает надежность драйвера. В случае необходимости транзистор IXTA8N50P можно использовать с радиатором, аналогичным Aavid Thermalloy с номером 573100.

Рабочее напряжение на диоде соответствует максимальному напряжению на выходе драйвера с запасом 50%, а среднее значение тока через диод зависит от скважности D и от среднего тока в светодиодах. Рекомендуется выбирать диод с трехкратным запасом по току:

Высокая частота коммутации FSW преобразователя требует использования быстрого диода, например BYV26_B.

Топология печатной платы

Для всех импульсных преобразователей правильное заземление и оптимальная длина проводников являются определяющими при разработке топологии печатной платы. Драйвер светодиодов работает на высокой частоте, поэтому необходимо сделать проводник к затвору транзистора как можно короче, что снизит «дребезг» и помехи при коммутации. На высоких частотах ток «выталкивается» к поверхности проводников за счет скин-эффекта, поэтому необходимо сделать площадь «земли» как можно больше для снижения паразитных индуктивностей. По возможности одна из сторон печатной платы должны быть разведена на «землю».

Датчик тока RSENSE должен стоять как можно ближе к выводу CS для снижения вероятности ложных срабатываний внутреннего компаратора. Кроме того, резистор Rt должен располагаться далеко от индуктивности и иных проводников, работающих на высоких частотах.

Возможные схемы применения

Поскольку CPC9909 может работать с коэффициентом заполнения импульса более 50%, это делает ее пригодной для построения повышающих преобразователей, широко используемых, например, в системах резервного и аварийного освещения (рис. 9).

Рис. 9. Повышающий светодиодный драйвер на базе CPC9909

«МТ-Систем», российский дистрибьютор Clare, имеет богатый опыт работы с микросхемой CPC9909. Инженеры компании помогут подобрать необходимые компоненты для создания наиболее эффективного драйвера, способного решить поставленную задачу. Кроме того, специалистами «МТ-систем» разработано специализированное программное средство (рис. 10) для автоматизации расчетов, упрощенно приведенных выше. Детальный расчет, учитывающий влияние динамических потерь и допустимых отклонений номиналов компонентов, сложен и не может быть изложен в рамках одной статьи. При этом задача построения оптимального драйвера требует выполнения нескольких расчетных итераций для нахождения оптимального соотношения компонентов. Автоматизация расчета позволяет быстро и безошибочно найти требуемое схемное решение, получить номиналы и режимы работы компонентов и оценить эффективность (КПД) драйвера.

Рис. 10. Средство автоматизации проектирования драйвера

Стоит обратить особое внимание, что микросхема CPC9909 на текущий момент является единственным высоковольтным решением, обеспечивающим «российский» диапазон рабочих температур от –55 °С и устойчивую работу в отечественных электросетях.

Наиболее привлекательным выглядит применение CPC9909 для создания недорогих компактных светодиодных AC/DC-драйверов мощностью до 25 Вт (драйверы без встроенного корректора коэффициента мощности) либо DC/DC- драйверов для светильников с батарейным питанием. Рыночную успешность разрабатываемого драйвера обеспечат его компактность, низкая стоимость и высокая эффективность.

Литература

  1. CPC9909: High Efficiency, Off-Line, High Brightness LED Driver. http://www.clare.com/Products/LEDDrivers.htm
  2. CPC9909: Design considerations. Application note, AN-301. http://www.clare.com/home/pdfs.nsf/www/AN-301-July-6-2011.pdf/$file/AN-301-July-6-2011.pdf

Другие статьи по данной теме:

Если Вы заметили какие-либо неточности в статье (отсутствующие рисунки, таблицы, недостоверную информацию и т.п.), просьба сообщить нам об этом. Пожалуйста укажите ссылку на страницу и описание проблемы.

LED драйвер схема

В нашей разработке, мы взяли LED элемент мощностью 1 ватт, но можно изменить радиокомпоненты Led драйвера и использовать светодиоды и большей мощности.

  • входное напряжение: 2В до 18В
  • выходное напряжение: на 0,5 меньше, чем входное напряжение (0.5V падение на полевом транзисторе)
  • ток: 20 ампер

В качестве источника питания я применил готовый трансформаторный блок питания на 5 Вольт, т.к для питания одного светодиода его вполне хватит. Радиатор на мощный транзистор не нужен, т.к ток около 200 мА. Поэтому резистор R3 будет около 2 кОм (I=0,5/R3). Он является установочным и закрывает транзистор Q2, если течет повышенный ток

Транзистор FQP50N06L в соответствии с паспортными данными работает только до 18 Вольт, если требуется больше вам следует воспользоваться справочником по транзисторам.

Т.к данная схема очень проста собрал ее без печатной платы с помощью навесного монтажа. Следует также сказать о назначении транзисторов в этой конструкции. FQP50N06L применен в качестве переменного резистора, а 2N5088BU в роли токового датчика. Он также задает обратную связь, которая следит за параметрами тока и держит его в заданных пределах.

Эта простая схемка отлично зарекомендовала себя в индикации на приборной панели авто, благодоря своей простоте и надежности.

Эту схему можно использовать для запитки светодиодов как в автомобиле и не только в нем. Данная схема ограничивает ток и обеспечивает нормальную работу светодиода. Этот драйвер может запитать светодиоды мощностью 0,2-5 ватт от 9-25 Вольт благодоря применению микросхемы стабилизатора напряжения LM317.

Сопротивление резистора можно определить по следующей формуле R = 1.25/I, где I — ток светодиода в Амперах. Если вы хлтите применить мощные светодиоды, микросхему LM317 обязательно установите на теплоотвод.

Для стабильной работы схемы Led драйвера на LM317, входное напряжение должно немного превышать напряжение питания светодиода примерно на 2 вольта. Диапазон ограничения выходного тока составляет 0,01А…1,5А и с выходным напряжением до 35 вольт. При необходимости схему можно подключить к самодельному блоку питания.

На рисунке ниже показана схема светодиодного драйвера мощность которого рассчитана на 6 светодиодов, в роли питающего источника используется батарея 1,5В типа АА. Катушка индуктивности L1 намотана на ферритовое кольцо диаметром 10 мм и содержит 10 витков медного провода диаметром 0,5 мм.

За основу схемы взята микросхема МАХ756, она проектировалась для переносных устройств с независимым питанием. Драйвер продолжает работать даже при понижении питающего напряжения до 0,7 В. Если возникнет необходимость выходное напряжение драйвера можно задать от3 до 5 вольт при токе нагрузки до 300мА. КПД при максимальной нагрузке более 87 %.

Работы драйвера на микросхеме MAX756 можно условно поделить на два цикла, а именно:

Первый: Внутренний транзистор микросхеме в данный момент открыт и через дроссель течет линейно-нарастающий ток. В электромагнитном поле дросселя копится энергия. Конденсатор C3 потихоньку разряжается и отдает ток светодиодам. Продолжительность цикла около 5 мкс. Но этот цикл может быть завершен досрочно, в том случае, если максимально допустимый ток стока транзистора возрастет более 1 А.

Второй: Транзистор в этом цикле заперт. Ток от дросселя через диод заряжает конденсатор C3, взамен того, что он потерял в первом цикле. С увеличением напряжения на конденсаторе до некоторого уровня данный этап цикла финиширует.

Микросхема MAX756 переходит в режим с постоянной продолжительностью фазы (соответственно 5 мкс и 1 мкс соответственно). Выходное напряжение в этом случае не стабилизировано, оно снижается, но остается по возможности максимально возможным.

К схеме подключены четыре светодиода типа L-53PWC «Kingbright». Так как при токе 15 мА прямое падение на светодиодах будет 3,1 вольта, лишние 0,2 вольта погасит резистор R1,. По мере прогрева светодиодов, падение напряжения на них снижается, и резистор R1 в каком-то роде стабилизирует ток потребления светодиодов и их яркость свечения.

Дроссель можно взять самодельный, намотав проводом ПЭВ-2 0,28 на сердечник (кольцо размером К10x4x5 из магнитной проницаемостью 60) от сетевого фильтра 35 витков. Так же можно взять и готовые дроссели с индуктивностью от 40 до 100 мкГн и рассчитанные на ток более 1А

Микросборка CAT3063 это трех канальный светодиодный драйвер, который с минимальным внешним обвесом из 4-х емкостей и резистора отлично подходит для питания светодиодов.

С помощью R1 осуществляется настройка потока выходного тока. В момент включения, светодиодные драйверы будут работать в 1Х режиме, т.е выходное направление будет равно входному. Если выходного напряжения будет нехватать для запуска и работы светодиодных драйверов, то произойдет автоматическое увеличение уровня входного тока, в 1,5 Х раза. Сопротивление в схеме будет меняться в зависимости от тока светодиода (мA). Допустим, если он будет минимальным и равным 1 мА — R1 — 649кОм. 5 мА — 287 кОм, 10 мА — 102 кОм, 15 мА — 49.9 кОм, 20 мА — 32.4 кОм, 25 мА — 23.7 кОм, 30 мА — 15.4 кОм.

При конструирование светодиодной лампы, любой разработчик сталкивается с задачей отвода тепла, выделяющегося в небольшом объёме светильника, т.к перегрев светодиодам противопоказан. Кроме того источником выделения тепла, помимо самих светодиодов, является блок питания или другими словами — светодиодный драйвер.

Схемы драйверов светодиодных прожекторов

Светодиодная фара 12 В YF-053 CREE Вид спереди

Публикую сегодня третью статью Конкурса статей. Статья посвящена ремонту драйверов светодиодных прожекторов. Напоминаю, что недавно у меня уже была статья по ремонту светодиодных прожекторов и светильников, рекомендую ознакомиться.

А в этой статье автор решил поделиться схемами светодиодных драйверов и опытом по их ремонту.

Автора зовут Сергей, он живет в п. Лазаревское, города Сочи.

Статья по схемам светодиодных драйверов и их ремонту

Очень хороший у Вас сайт. Хочу поделиться схемами некоторых электронных устройств, срисованных мною с самих девайсов.

В частности, по теме освещения — схемы двух модулей от автомобильных LED прожекторов с напряжением на 12В. Заодно, хочу задать Вам и читателям несколько вопросов по комплектующим этих модулей.

Я не силён писать статьи, об опыте ремонта каких-то электронных устройств (это, в основном, – силовая электроника) пишу только на форумах, отвечая на вопросы участников форума. Там же делюсь схемами, срисованными мною с устройств, которые мне приходилось ремонтировать. Надеюсь, схемы светодиодных драйверов, нарисованные мною, помогут читателям в ремонте.

На схемы этих двух LED драйверов, обратил внимание потому, что они просты, как самокат, и их очень легко повторить своими руками. Если с драйвером модуля YF-053CREE-40W, вопросов не возникло, то по топологии схемы второго модуля LED прожектора TH-T0440C, их несколько.

Схема LED драйвера светодиодного модуля YF-053CREE-40W

Внешний вид этого прожектора приведен вначале статьи, а вот так этот светильник выглядит сзади, виден радиатор:

YF-053 CREE Вид сзади

Светодиодные модули этого прожектора выглядят так:

YF-053 CREE LED Модуль YF-053CREE-40W

Опыт по срисовыванию схем с реальных сложных устройств у меня имеется большой, поэтому схему этого драйвера срисовал легко, вот она:

YF-053 CREE Драйвер LED прожектора, схема электрическая

Принципиальная схема LED драйвера TH-T0440C

Как выглядит этот модуль (это автомобильная светодиодная фара):

Модуль LED прожектора TH-T0440C

Схема светодиодного модуля (драйвера) TH-T0440C

В этой схеме больше непонятного, чем в первой.

Во-первых, из-за необычной схемы включения ШИМ-контроллера, мне не удалось эту микросхему идентифицировать. По некоторым подключениям она похожа на AL9110, но тогда непонятно, как она работает без подключения к схеме её выводов Vin (1), Vcc (Vdd) (6) и LD (7) ?

Также возникает вопрос по подключению MOSFET-а Q2 и всей его обвязки. Он ведь он имеет N-канал, а подключён в обратной полярности. При таком подключении работает только его антипараллельный диод, а сам транзистор и вся его “свита”, совершенно бесполезны. Достаточно было вместо него поставить мощный диод Шоттки, или “баян” из более мелких.

А что там свежего в группе ВК СамЭлектрик.ру?

Подписывайся, и читай статью дальше:

Светодиоды для LED драйверов

Я не смог определиться со светодиодами. Они в обоих модулях одинаковые, хотя их производители разные. На светодиодах нет никаких надписей (с обратной стороны – тоже). Искал у разных продавцов по строке “Сверхяркие светодиоды для LED-прожекторов и LED-люстр”. Там продают кучу разных светодиодов, но все они, или без линз, или с линзами на 60º, 90º и 120º .

YF-053 CREE Светодиод

Похожих по виду на мои, не встретил ни разу.

Собственно, у обоих модулей одна неисправность – частичная, или полная деградация кристаллов светодиодов. Думаю, причина – максимальный ток с драйверов, установленный производителями (китаёзы) в целях маркетинга. Мол, смотрите, какие яркие наши люстры. А то, что они светят от силы часов 10, их не волнует.

Если возникнут претензии от покупателей, они всегда могут ответить, что прожекторы вышли из строя от тряски, ведь такие “люстры” в основном покупают владельцы джипов, а они ездят не только по шоссе.

Если удастся найти светодиоды, буду уменьшать ток драйвера до тех пор, пока не станет заметно уменьшаться яркость светодиодов.

Светодиоды лучше искать на АлиЭкспресс, там большой выбор. Но это рулетка, как повезёт.

Даташиты (техническая информация) на некоторые мощные светодиоды будут в конце статьи.

Думаю, главное для долговечной работы светодиодов – не гнаться за яркостью, а устанавливать оптимальный ток работы.

До связи, Сергей.

P.S. электроникой “болею” с 1970 г., когда на уроке физики собрал свой первый детекторный приёмник.

Ещё схемы драйверов

Ниже размещу немного информации по схемам и по ремонту от меня (автора блога СамЭлектрик.ру)

Светодиодный прожектор Навигатор, рассмотренный в статье Про ремонт светодиодных прожекторов (ссылку уже давал в начале статьи).

Схема стандартная, выходной ток меняется за счет номиналов элементов обвязки и мощности трансформатора:

LED Driver MT7930 Typical. Схема электрическая принципиальная типовая для светодиодного прожектора

Схема взята из даташита на эту микросхему, вот он:

• LED Driver MT 7930. Typical application / Описание, типовая схема включения и параметры микросхемы для драйверов светодиодных модулей и матриц., pdf, 661.17 kB, скачан:1461 раз./

В даташите подробно расписано, что и как надо поменять, чтобы получить нужный выходной ток драйвера.

Вот более развернутая схема драйвера, приближенная к реальности:

LED Driver MT7930. Схема электрическая принципиальная

Видите слева от схемы формулу? Она показывает, от чего зависит выходной ток. Прежде всего, от резистора Rs, который стоит в истоке транзистора и состоит из трех параллельных резисторов. Эти резисторы, а заодно и транзистор выгорают.

Имея схему, можно приниматься за ремонт драйвера.

Но и без схемы можно сразу сказать, что в первую очередь надо обратить внимание на:

  • входные цепи,
  • диодный мост,
  • электролиты,
  • силовой транзистор,
  • пайку.

Далее надо проверить поступление питания на микросхему, которое подается в два захода – сначала от диодного моста, потом (после нормального запуска) – с обмотки обратной связи выходного трансформатора.

Сам я именно подобные драйвера ремонтировал несколько раз. Иногда помогала только полная замена микросхемы, транзистора и почти всей обвязки. Это очень трудозатратно и экономически неоправданно. Как правило – это гораздо проще и дешевле – покупал и устанавливал новый Led Driver, либо отказывался от ремонта вообще.

Скачать и купить

Вот даташиты (техническая информация) на некоторые мощные светодиоды:

• led datasheet 4,8W- / Техническая информация по мощному светодиоду для фар и прожекторов, pdf, 689.35 kB, скачан:584 раз./

• led datasheet 10W / Техническая информация по мощному светодиоду для фар и прожекторов, pdf, 1.82 MB, скачан:746 раз./

На этом всё, голосуйте на Сергея из Сочи, задавайте вопросы в комментариях, делитесь опытом!

Особая благодарность тем, кто пришлёт схемы реальных светодиодных драйверов, для коллекции. Я опубликую их в этой статье.

Похожие статьи:

  • Диммеры 220 вольт Что такое диммер для светодиодной лампы и как его выбрать Ошибочным мнением является то, что обычный диммер подходит для светодиодной лампы 220В. Никогда не делайте так, это приведет только к одному – поломке лампы! Статья написана для […]
  • Диммер 220 вольт схема Устройство и схема диммера В этой статье рассмотрим устройство, которое продается в магазинах электротоваров, как регулятор яркости ламп накаливания. Речь идет о диммере. Название "диммер" произошло от английского глагола "to dim" - […]
  • Лампы с цоколем g4 220 вольт Светодиодная лампа Цоколь G4, 220 Вольт, 3 Ватт, GNL 1 Интернет-магазин светодиодного освещения Интернет-магазин светодиодного освещения Для оптовых заказов Для розничных заказов © 2009 - 2019 "LEDRUS"Интернет-магазин светодиодного […]
  • Конструкция светодиодных ламп на 220 вольт Светодиодная лампа: устройство и принцип работы Устройство и принцип работы светодиодных ламп. Основные части осветительного прибора: - светодиоды; - драйвер; - цоколь; - корпус. Светоизлучающий диод. Буквенно его обозначают сокращением […]
  • Светодиодные матрицы на 220 вольт Светодиодные матрицы Светодиодные матрицы представляют собой технологическое объединение на одной подложке нескольких светоизлучающих полупроводниковых кристаллов, с общей заливкой смесью люминофора и силикона. Появление LED-матриц […]
  • Схема питания светодиодов от 220 Питание светодиодов от 220В своими руками. Схема и подробное описание В данной статье приведен еще один пример схемы питание светодиодов от 220В, которую можно собрать самостоятельно. В отличии от светодиодной лампы на 220В, описанной в […]
Смотрите так же:  Котята грызут провода