Единицы измерения энергии электрического тока

Единицы измерения мощности. Мощность тока: единица измерения

Мощность в физике понимается как отношение совершаемой за определенное время работы к тому промежутку времени, за который она выполняется. Под механической работой подразумевается количественная составляющая воздействия силы на тело, из-за чего последнее перемещается в пространстве.

Можно выразить мощность и как скорость передачи энергии. То есть она показывает работоспособность автоматического аппарата. Благодаря измерению мощности становится понятным, как быстро делается работа.

Единицы измерения мощности

Мощность измеряют в ваттах или джоулях в секунду. Автомобилистам известно измерение мощности в лошадиных силах. Кстати, до появления паровых машин эту величину не измеряли вообще.

Однажды, используя механизм в шахте, инженер Дж. Уайт взялся за его улучшение. Для доказательства своего усовершенствования двигателя он сравнил его с работоспособностью лошадей. Люди использовали их в течение веков. Поэтому любому было нетрудно представить работу тягловой лошади за какой-то промежуток времени.

Наблюдая за ними, Уайт сравнивал модели паровых машин в зависимости от количества лошадиных сил. Он экспериментально вычислил, что мощность одной лошади равна 746 ваттам. Сегодня все уверены, что такое число является явно завышенным, но единицы измерения мощности решили не изменять.

Посредством названной физической величины узнают о производительности, так как при ее увеличении возрастает работа за тот же промежуток времени. Такая стандартизированная единица измерения стала очень распространенной. Ее стали применять в самых разных механизмах. Поэтому, хоть ватты и применяются уже давно, лошадиные силы для многих являются более понятными, чем другие единицы измерения мощности.

Как понимают мощность в бытовых электрических приборах

Мощность, конечно, указывают и в бытовых электрических механизмах. В светильниках используют ее определенные значения, например шестьдесят ватт. Лампочки с большим показателем мощности устанавливать тогда нельзя, так как в противном случае они быстро испортятся. Зато если приобретать не лампы накаливания, а светодиодные или люминесцентные, то они смогут светить с большей яркостью, потребляя при этом маленькую мощность.

Потребление энергии, естественно, прямо пропорционально величине мощности. Поэтому для производителей лампочек всегда есть поле для совершенствования продукта. В настоящее время потребители все больше предпочитают другие варианты, кроме ламп накаливания.

Спортивная мощность

Единицы измерения мощности известны не только в связи с использованием механизмов. Понятие мощности можно отнести и к животным, и к людям. К примеру, можно посчитать эту величину, когда спортсмен кидает мяч или другой инвентарь, получая ее в результате установления прикладываемой силы, расстояния и времени ее применения.

Можно воспользоваться даже компьютерными программами, с помощью которых показатель вычисляется в результате сделанного определенного количества упражнений и введения параметров.

Приборы измерения

Динамометры — это специальные устройства, с помощью которых измеряется мощность. Их используют также для определения силы и вращающего момента. Приборы применяют в самых разных областях промышленности. К примеру, именно они покажут мощность двигателя. Для этого мотор извлекают из автомобиля и подсоединяют к динамометру. Но есть устройства, которые способны вычислить искомое даже через колесо.

В спорте и медицине динамометры тоже находят широкое распространение. На тренажерах часто имеются датчики, которые подключены к компьютеру. С помощью них и производятся все измерения.

Мощность в ваттах

Джеймс Ватт изобрел паровую машину, и с 1889 года единица измерения мощности электрического тока стала ваттом, а в международную систему измерений величину включили в 1960 году.

В ваттах может измеряться не только электрическая, но и тепловая, механическая или любая другая мощность. Также нередко образуются кратные и дольные единицы. Их называют с добавлением к исходному слову различных префиксов: «кило», «мега», «гига» и др.:

  • 1 киловатт равен тысяче ватт;
  • 1 мегаватт равен миллиону ватт и так далее.

Киловатт-час

В международной системе СИ нет такой еденицы измерения, как киловатт-час. Этот показатель является внесистемным, введенным для учета израсходованной электрической энергии. В России действует ГОСТ 8.417-2002 с регламентацией, где единица измерения мощности электрического тока непосредственно обозначается и применяется.

Данную единицу измерения рекомендуется использовать для учета израсходованной электрической энергии. Она является самой удобной формой, с помощью которой получают приемлемые результаты. Кратные единицы здесь также могут применяться при необходимости. Они выглядят аналогично ваттам:

  • 1 киловатт-час равен 1000 ватт-час;
  • 1 мегаватт-час равен 1000 киловатт-час и так далее.

Полное наименование пишется, как уже видно, через дефис, а краткое — через точку (Вт·ч, кВт·ч).

Как обозначается мощность в электроприборах

Общепринято указывать упомянутый показатель прямо на корпусе электрического прибора. Возможными обозначениями являются:

  • ватт и киловатт;
  • ватт-час и киловатт-час;
  • вольт-ампер и киловольт-ампер.

Наиболее универсальным обозначением является использование таких единиц, как ватт и киловатт. При их наличии на корпусе прибора можно сделать вывод о том, что на данном оборудовании развивается указанная мощность.

Часто в ваттах и киловаттах измеряют механическую мощность электрических генераторов и моторов, тепловую мощность электрических нагревательных приборов и т. д. Так обозначается в основном мощность тока, единица измерения в приборе которого ориентирована в первую очередь на количество полученного тепла, а расчеты принимаются во внимание уже вслед за ним.

Ватт-час и киловатт-час показывают потребляемую мощность за данную единицу времени. Часто эти обозначения можно увидеть на бытовых электрических приборах.

В международной системе СИ есть единицы измерения электрической мощности, являющиеся эквивалентными ватту и киловатту — это вольт-ампер и киловольт-ампер. Такое измерение приводится для показания мощности переменного тока. Их применяют в технических расчетах тогда, когда важны электрические показатели.

Такое обозначение больше всего соответствует требованиям электротехники, где приборы, работающие с переменным током, имеют как активную, так и реактивную энергию. Поэтому электрическая мощность определяется суммой этих составляющих. Часто в вольт-амперах обозначают мощность таких приборов, как трансформаторы, дроссели, и других преобразователей.

При этом производитель самостоятельно выбирает, какие единицы измерения ему указывать, тем более что в случае маломощного оборудования (коим являются, например, бытовые электрические приборы) все три обозначения, как правило, совпадают.

Измерение электрической энергии

Электротехническое изделие в соответствии со своим назначением потребляет (вырабатывает) активную энергию, расходуемую на совершение полезной работы. При постоянстве напряжения, тока и коэффициента мощности количество потребленной (выработанной) энергии определяется соотношением Wp = UItcos φ = Pt

где P=UIcos φ — активная мощность изделия; t — продолжительность работы.

Единицей энергии в СИ служит джоуль (Дж). В практике еще находит применение внесистемная единица измерения Ватт х час (Вт х ч). Соотношение между этими единицами следующее: 1 Вт-ч=3,6 кДж или 1 Вт-с=1 Дж.

В цепях периодического тока количество израсходованной или выработанной энергии измеряют индукционными или электронными э лектрическими счетчиками.

Конструктивно индукционный счетчик представляет собой микроэлектродвигатель, каждому обороту ротора которого соответствует определенное количество электрической энергии. Соотношение между показаниями счетчика и числом оборотов, совершенных двигателем, называют передаточным числом и указывают на щитке: 1 кВт х ч = N оборотов диска. По передаточному числу определяют постоянную счетчика C=1/N, кВт х ч/об; C = 1000 — 3600/N Вт х с/об.

В СИ постоянная счетчика выражается в джоулях, так как число оборотов — безразмерная величина. Счетчики активной энергии выпускают как для однофазных, так и для трех- и четырехпроводных трехфазных сетей.

Рис. 1 . Схема включения счетчиков в однофазную сеть: а — непосредственное, б — черед измерительные трансформаторы

Однофазный счетчик (рис. 1 , а) электрической энергии имеет две обмотки: токовую и напряжения и может быть включен в сеть по схемам, подобным схемам включения однофазных ваттметров. Для исключения ошибок при включении счетчика, а следовательно, и ошибок учета энергии рекомендуется во всех случаях использовать схему включения счетчика, указанную на крышке, закрывающей его выводы.

Необходимо отметить, что при изменении направления тока в одной из обмоток счетчика диск начинает вращаться в другую сторону. Поэтому токовую обмотку прибора и обмотку напряжения следует включать так, чтобы при потреблении энергии приемником диск счетчика вращался в направлении, указанном стрелкой.

Токовый вывод, обозначенный буквой Г, подключают всегда со стороны питания, а к нагрузке подключают второй вывод токовой цепи, обозначенный буквой И. Кроме того, вывод обмотки напряжения, однополярный с выводом Г токовой обмотки, подключают также со стороны питания.

Смотрите так же:  Монтаж изоляторов линейной арматуры и проводов

При включении счетчиков через измерительные трансформа т оры тока необходимо одновременно учитывать полярность обмоток трансформаторов тока и трансформаторов напряжения (рис. 1, б) .

Счетчики выпускают как для применения с любыми трансформаторами тока и трансформаторами напряжения — универсальные, в условное обозначение которых добавлена буква У, так и для применения с трансформаторами, номинальные коэффициенты трансформации которых указаны на их щитке.

Пример 1 . Универсальный счетчик, имеющий параметры Uп=100 В и I = 5 А, используют с трансформатором тока, имеющим первичный ток 400 А и вторичный 5 А, и трансформатором напряжения с первичным напряжением 3000 В и вторичным 100 В.

Определить постоянную схемы, на которую надо умножить показания счетчика для нахождения количества израсходованной энергии.

Постоянную схемы находят как произведение коэффициента трансформации трансформатора тока на коэффициент трансформации трансформатора напряжения: D = kti х ktu = ( 400 х 3000 ) / ( 5 х 100 ) = 2400.

Подобно ваттметрам счетчики можно использовать с разными измерительными преобразователями, но в этом случае необходимо сделать перерасчет показаний.

Пример 2 . Счетчик, предназначенный для использования с трансформатором тока имеющим коэффициент трансформации kti1 = 400/5, и трансформатором напряжения с коэффициентом трансформации ktu1 = 6000/100, используется в схеме измерения энергии с другими трансформаторами, имеющими такие коэффициенты трансформации: kti2 = 100/5 и ktu2 =35000/100. Определить постоянную схемы, на которую надо умножить показания счетчика.

Постоянная схемы D = (kti2 х ktu2) / (kti1 х ktu1) = ( 100 х 35 000 ) / (400 х 6000) = 35/24 = 1 , 4583.

Трехфазные счетчики, предназначенные для измерения энергии в трехпроводных сетях, конструктивно представляют собой два объединенных однофазных счетчика (рис 2 , а, б). Они имеют две токовые обмотки и две обмотки напряжения. Обычно такие счетчики называют двухэлементными.

Все сказанное выше о необходимости соблюдения полярности обмоток прибора и обмоток, используемых вместе с ним измерительных трансформаторов в схемах включения однофазных счетчиков, в полной мере относится и к схемам включения, трехфазных счетчиков.

Для отличия элементов друг от друга в трехфазных счетчиках выводы дополнительно обозначены цифрами, одновременно указывающими и порядок следования фаз питающей сети, подключаемых к выводам. Таким образом, к выводам, отмеченным цифрами 1 , 2 , 3 подключают фазу L1 (А), к выводам 4, 5 — фазу L2 (В) и к выводам 7, 8, 9 — фазу L3 (С).

Определение показаний счетчика, включаемого с трансформаторами, рассмотрено в примерах 1 и 2 и полностью применимо к трехфазным счетчикам. Отм е тим, что цифра 3, стоящая на щитке счетчика перед коэффициентом трансформации как множитель, говорит только о необходимости применения трех трансформаторов и поэтому при определении постоянной схемы не учитывается.

Пример 3 . Определить постоянную схемы для универсального трехфазного счетчика , используемого с трансформаторами тока и напряжения, 3 х 800 А/5 и 3 х 15000 В / 100 (форма записи специально повторяет запись на щитке).

Определяем постоянную схемы: D = kti х ktu = ( 80 0 х 1500 ) /(5-100) =24000

Рис. 2. Схемы включения трехфазных счетчиков в трехпроводную сеть: а — непосредственное для измерения активной (прибор Р 11 ) и реактивной (прибор P 1 2) энергии, б — через трансформаторы тока для измерения активной энергии

Известно, что при изменении коэффициента мощности при разных токах I может быть получено одно и то же значение активной мощности UIcos φ , а следовательно, и активной составляющей тока Ia = Icos φ .

Увеличение коэффициента мощности приводит к уменьшению тока I при заданной активной мощности и поэтому улучшает использование линий передач и другого оборудования. С уменьшением коэффициента мощности при постоянной активной мощности требуется увеличить ток I, потребляемый изделием, что приводит к возрастанию потерь в линии передач и другом оборудовании.

Поэтому изделия с низким коэффициентом мощности потребляют от источника дополнительную энергию Δ Wp, необходимую для покрытия потерь, соответствующих возросшему значению тока. Эта дополнительная энергия пропорциональна реактивной мощности изделия и при условии постоянства во времени значений тока, напряжения и коэффициента мощности может быть найдена по соотношению Δ Wp = kWq = kUIsin φ , где Wq = UIsin φ — реактивная энергия (условное понятие).

Пропорциональность между реактивной энергией электротехнического изделия и энергией, вырабатываемой дополнительно на станции, сохраняется и при изменении напряжения, тока и коэффициента мощности во времени. На практике реактивную энергию измеряют внесистемной единицей (вар х ч и производными от нее — квар х ч, Мвар х ч и др.) с помощью специальных счетчиков, которые конструктивно полностью подобны счетчикам активной энергии и отличаются только схемами включения обмоток (см. рис. 2 , а, прибор P 12 ).

Все расчеты, связанные с определением измеренной счетчиками реактивной энергии, аналогичны рассмотренным выше расчетам для счетчиков активной энергии.

Следует обратить внимание на то, что энергия, расходуемая в обмотке напряжения (см. рис. 1 , 2), счетчиком не учитывается, и все затраты несет производитель электроэнергии, а энергия, потребляемая токовой цепью прибора, учитывается счетчиком т. е. затраты в этом случае относят на счет потребителя.

Помимо энергии с помощью счетчиков электрической энергии можно определить и некоторые другие характеристики нагрузки. Например, по показаниям счетчиков реактивной и активной энергии можно определить значение средневзвешенного tg φ нагрузки: tg φ = Wq/Wp , г д е W з — количество энергии, учтенное счетчиком активной энергии, за данный промежуток времени , Wq — то же, но учтенное счетчиком реактивной энергии за тот же период времени. Зная tg φ , по тригонометрическим таблицам находят cos φ .

Если оба счетчика имеют одинаковые передаточное число и постоянную схемы D, можно найти tg φ нагрузки для данного момента. Для этого за один и тот же промежуток времени t= (30 — 60) с одновременно отсчитывают число оборотов nq счетчика реактивной энергии и число оборотов np счетчика активной энергии. Тогда tg φ = nq/np.

При достаточно постоянной нагрузке можно по показаниям счетчика активной энергии определить ее активную мощность.

Пример 4 . Во вторичной обмотке трансформатора включен счетчик активной, энергии с передаточным числом 1 кВт х ч = 2500 об. Обмотки счетчика включены через трансформаторы тока с kti = 100/5 и напряжения с ktu = 400/100. За 50 с диск сделал 15 оборотов. Определить активную мощность.

Постоянная схема D = ( 400 х 100 ) /(5 х 100 ) = 80. Учитывая передаточное число, постоянная счетчика С = 3600/N = 3600/2500= 1,44 кВт х с/об. С учетом постоянной схемы C’ = CD= 1,44 х 80= 1 1 5,2 кВт х с/об.

Так и м образом, n оборотов д иска соответствуют расходу энергии Wp = С’n= 115,2 [ 15= 1728 кВт х с. Следовательно, мощность нагрузки Р = Wp/t = 17,28/50 = 34,56 кВт.

Единица измерения силы тока — что это значит?

С самого рождения и в течение всей жизни человека окружают электрические приборы. К ним относятся: бытовая техника, освещение наших жилищ и улиц, средства мобильной связи, даже современные автомобили переходят на электроэнергию. Все эти приборы потребляют электрический ток, одни берут его из электросетей, другие черпают от батарей и аккумуляторов, третьи от альтернативных источников энергии («ветряки», солнечные батареи и прочее). А многие ли из людей знают, какова единица измерения силы тока, и что такое электрический ток? В данной статье мы ответим на эти вопросы.

Начнем, пожалуй, с основных понятий. Электрическим током называют направленное упорядоченное движение в проводнике заряженных частиц. Рассмотрим условия существования тока:

  • наличие свободных электронов в металлическом проводнике;
  • наличие электрического поля (такое поле создается благодаря источнику тока).

Теперь перейдем к рассмотрению такого понятия, как единица измерения силы тока. Эта скалярная величина обозначается латинской литерой I. Определение единицы силы тока осуществляется отношением заряда q, проходящего через поперечное сечение металлического проводника, к отрезку времени t, за которое электрический ток прошел через проводник. Соответственно формула имеет следующий вид: I = q/ t. Единица измерения силы тока показывает, какой заряд пройдет через поперечное сечение провода за единицу времени.

Все довольно элементарно. Теперь разберем, какие существуют общепринятые единицы измерения силы тока. Для этого достаточно заглянуть в международную систему единиц (СИ). Из нее следует, что единица измерения силы тока – Ампер. Эта единица получила свое название в честь французского физика-математика Андре-Мари Ампера (1775-1836). Он ввел такие термины, как электродинамика, электростатика, соленоиды, ЭДС, гальванометр, электрический ток, напряжение и другие. Ученый А. М. Ампер предугадал возникновение такой науки, как «кибернетика», он стал первооткрывателем механического взаимодействия проводников с электрическим током, ввел правило определения направлений тока.

Смотрите так же:  Крепления провода к потолку

Теперь попробуем разобрать это понятие с точки зрения элементарной физики. Для этого необходимо осветить свойства прохождения электрического тока по двум параллельным проводникам. Если заряженные частицы движутся по двум проводам в одном направлении, то такие проводники начнут притягиваться, а если частицы будут двигаться в разных направлениях, то проводники будут стремиться оттолкнуться друг от друга. За единицу силы тока в один ампер принято считать такую силу, благодаря которой два параллельных провода длиной в один метр, разнесенных на расстояние одного метра, начнут взаимодействовать с силой 0,0000002Н.

Подведя итог, скажем, что знание о таком понятии, как сила тока, поможет определить количество потребляемой энергии электрическими приборами. Благодаря этому легко рассчитать нагрузку проводки в вашем доме и, соответственно, обезопасить свое жилье от пожара или повреждения электрооборудования, которое часто возникает при неправильном распределении бытовых электрических приборов.

Единицы измерения тока.

Измерять можно частоту, силу, сопротивление, напряжение и мощность электрического тока. В данной статье я привел пять табличек по каждому измерении электрического тока, где указано единицы измерения и то, как они обозначаются в формулах.

Данный материал может пригодиться не только физикам, но и начинаючим электрикам. Так как всегда необходимо, даже при электромонтаже, измерить ток. Например, при расчете мощности электрического автомата.

Единицы измерения энергии электрического тока

50 000 − 1 200 000

Соотношения между мощностью, током, напряжением и сопротивлением приведены на рис. 1.

Скорость, с которой механическая или другая энергия преобразуется в источнике в электрическую называется мощностью источника:

где Wи – электрическая энергия источника.

Скорость, с которой электрическая энергия преобразуется в приемнике в другие виды энергии, в частности в тепловую, называется мощностью приемника:

Мощность, определяющая непроизвольный расход энергии, например, на тепловые потери в источнике или в проводниках, называют мощностью потерь:

По закону сохранения энергии мощность источника равна сумме мощностей потребителей и потерь:

Это выражение представляет собой баланс мощностей.

Эффективность передачи энергии от источника к приемнику характеризует коэффициент полезного действия (КПД) источника:

Р2 – мощность, получаемая извне или потребляемая мощность;

Электрический ток представляет собой направленное движение электрически заряженных частиц. При столкновении движущихся частиц с молекулами и ионами вещества кинетическая энергия движущихся частиц передается ионам и молекулам, вследствие чего происходит нагревание проводника. Таким образом, электрическая энергия преобразуется в тепловую.

В 1844 г. русским академиком Э.Х. Ленцем и английским ученым Джоулем одновременно и независимо друг от друга был открыт закон, описывающий тепловое действие тока.

Закон Джоуля-Ленца: при прохождении электрического тока по проводнику количество теплоты, выделяемое проводником, прямо пропорционально квадрату силы тока, сопротивлению проводника и времени, в течение которого электрический ток протекает по проводнику:

где Q– количество теплоты, Дж, I – сила тока, А; R – сопротивление проводника, Ом; t – время, в течение которого электрический ток протекал по проводнику, с.

Закон Джоуля-Ленца используют при расчетах тепловых режимов источников электроэнергии, линий электропередачи, потребителей и других элементов электрической цепи. Преобразование электроэнергии в тепловую имеет очень большое практическое значение. Вместе с тем тепловое действие во многих случаях оказывается вредным (рис. 2).

Калькулятор

Сервис бесплатной оценки стоимости работы

  1. Заполните заявку. Специалисты рассчитают стоимость вашей работы
  2. Расчет стоимости придет на почту и по СМС

Номер вашей заявки

Прямо сейчас на почту придет автоматическое письмо-подтверждение с информацией о заявке.

Единицы работы электрического тока, применимые на практике

Урок 51. Физика 8 класс

Конспект урока «Единицы работы электрического тока, применимые на практике»

Все вы знаете, что в конце месяца нужно платить за электроэнергию, которая была использована в вашей квартире. В системе СИ время измеряется в секундах, но каждый раз переводить недели или месяцы в секунды — это неудобно, да и не нужно. Поэтому люди придумали единицу измерения, которой удобнее пользоваться на практике. Энергия, потребляемая из сети, будет зависеть от времени работы и от мощности того или иного прибора. Например, стиральная машина за час работы потребит больше энергии, чем лампочка за весь вечер. Итак, исходя из количества потребляемой энергии, единицей измерения, которую применяют на практике, является киловатт-час.

Так можно переводить любые единицы измерения.

Существует стоимость использования одного киловатт-часа энергии. Эта стоимость умножается на количество киловатт-часов, использованных за месяц, и мы, таким образом, получаем счет за электроэнергию. Например, 1 кВт∙ч стоит 3 рубля. Скажем, за месяц использовали 150 кВт∙ч электроэнергии. Тогда мы умножаем количество киловатт-часов на стоимость одного киловатт-часа и получаем сумму в рублях.

Для примера рассчитаем, сколько энергии израсходует утюг за месяц, если его мощность 1800 Вт и им пользуются по полчаса каждый второй день.

Поскольку в месяце 30 дней, утюг используется 15 раз в месяц по полчаса. Итого получается, что утюг работает 7,5 часов в месяц.

Ещё одна всем известная единица измерения — это лошадиная сила. Обычно именно в лошадиных силах измеряют мощность многих двигателей. Если речь идет о мощности электрического тока, то лошадиная сила равна 1 л. с. = 746 Вт. Например, мы можем вычислить, какую работу совершает двигатель мощностью 85 л. с. за 2 часа работы. Как правило, двигатель не работает постоянно на полную мощность, поэтому, будем считать, что в среднем за эти 2 часа он работал на 80 % мощности.

Появление таких единиц измерения не означает, что система СИ чем-то плоха. Наоборот, подавляющее большинство вычислений следует производить в системе СИ, а уже потом переводить полученный результат в какие угодно единицы измерения. Просто для некоторых ситуаций единицы измерения системы СИ не подходят.

Скажем, в астрономии расстояния такие большие, что километры использовать неудобно: получаются огромные числа. Например, от Солнца до Земли почти 150 млн км, а до Меркурия — около 60 млн км. Поэтому, ученые решили ввести единицу расстояния, известную, как астрономическая единица (а. е.). За астрономическую единицу как раз таки взято расстояние между Солнцем и Землей. Таким образом, расстояние от Солнца до Меркурия составляет примерно 0,4 а. е. Несмотря на это, в астрономии речь идет и о таких расстояниях, которые значительно больше астрономической единицы. В этих случаях используется световой год (несмотря на слово «год» — это единица измерения расстояния). Световой год — это расстояние, которое проходит свет в вакууме за один год.

Например, расстояние от Земли до центра нашей галактики составляет примерно 26 000 световых лет.

Производя какие-либо вычисления, нужно в первую очередь убедиться, что единицы измерения всех величин соответствуют друг другу. Например, если машина едет со средней скоростью 60 км/ч, то за 2 ч она проедет 120 км. Как мы это узнали? Мы умножили километры в час на часы и получили километры, потому что часы сократились. А вот если нам дано, что скорость машины 20 м/с, то чтобы посчитать, какое расстояние она проедет за 2 ч, нужно часы перевести в секунды, а потом только умножать на скорость. Теперь уже полученное расстояние будет измеряться в метрах, потому что скорость была дана в метрах в секунду.

Где? Что? Когда?

Интересные факты | планета Земля

Измерение электрической энергии. Получение электрической энергии. Единицы измерения электрического тока.

Когда мы включаем свет, компьютер, слушаем радио или смотрим телевизор, то используем электричество – самую удобную форму энергии. Это действительно так, ведь электричество быстро передаётся по проводам и кабелям и легко трансформируется во многие другие формы энергии, в том числе световую, тепловую, звуковую и двигательную.

Что называется электричеством?

Электричество – это движение. Или поток крохотных частиц атомов (электронов), которые имеют электрический заряд. Электроны движутся вокруг ядра в центре атома. Но если электрон получает достаточно энергии, он может оторваться от «своего» атома и перейти к другому, от которого уже отсоединился электрон и, в свою очередь, перешёл к новому атому и т.д. Движущиеся электроны представляют собой энергию. Миллиарды таких электронов, передвигающихся в одном и том же направлении, создают электрическое течение – ток.

Электрическая энергия или заряд не всегда движется. Она способна накапливаться снаружи изолятора. Так, если потереть пластмассовую расчёску, на её поверхности появится заряд – статическое электричество, и расчёска сможет притянуть лёгкие предметы, например кусочки тонкой бумаги.

» data-medium-file=»http://yznaj-ka.ru/wp-content/uploads/2013/10/whatis59-5.gif» data-large-file=»http://yznaj-ka.ru/wp-content/uploads/2013/10/whatis59-5.gif» class=»size-full wp-image-405″ alt=»Статистическое электричество» src=»http://yznaj-ka.ru/wp-content/uploads/2013/10/whatis59-5.gif» width=»292″ height=»252″ />

Смотрите так же:  Электропроводка 1 комнатной квартиры схемы

Все ли вещества могут проводить электричество?

Только некоторые вещества являются проводниками электричества. Большинство металлов, особенно серебро и золото, эффективно проводят электрический ток. Многие другие вещества обладают высоким сопротивлением по отношению к электрическому току и являются изоляторами (дерево, стекло, пластик, бумага, картон, керамика). Электрические провода обычно имеют проводящий стержень в виде металлической жилы, покрытый пластиковым кожухом для изоляции, который предотвращает утечку электричества.

Электричество измеряется разными способами с помощью специальных приборов.

Ампер (А) – величина или количество электрического тока. Один ампер равен примерно 6 на 1018 электронов, проходящих через сечение провода за одну секунду.

Вольт (В) – это показатель напряжения электричества, данный параметр называют также электродвижущей силой (ЭДС). Обычная батарейка для фонарика содержит 1,5 В. аккумулятор в автомобиле 12 В, сетевое электричество во многих странах, например во Франции и США, равно 110 В, а в России 220-240 В.

Ом – единица измерения сопротивления электрического тока. Хороший медный проводник длиной 1 метр не имеет ни одного Ома, а хороший изолятор той же длины, например из дерева, имеет миллионы Ом.

Ватт (Вт) – единица мощности электрического тока. В научных вычислениях ватт является скоростью изменения энергии (с которой энергия меняется или преобразуется). 1 Вт равен 1 Дж энергии в секунду.

Обычная лампочка накаливания может быть от 60 до 100 ватт, а комнатный обогреватель – 1000Вт.

Ватты могут служить для измерения не только электроэнергии, но и любой формы используемой энергии. Например, человеку для пробежки трусцой требуется 500 Вт, а семейный автомобиль производит около 100 000 Вт.

Лошадиная сила (л. с.) является устаревшей единицей измерения энергии, 1 л. с. Равна 746 Вт.

Во время производства электроэнергии типичная ветротурбина вырабатывает около 1 мегаватта (миллион ватт, МВт). Самая большая гидроэлектростанция производит более 10 000 МВт.

Работа и мощность электрического тока

Дата публикации: 16 августа 2013 .

Работа электрического тока

К цепи, представленной на рисунке 1, приложено постоянное напряжение U.

За время t по цепи протекло количество электричества Q. Силы электрического поля, действующего вдоль проводника, перенесли за это время заряд Q из точки А в точку Б. Работа электрических сил поля или, что то же, работа электрического тока может быть подсчитана по формуле:

Так как Q = I × t, то окончательно:

где A – работа в джоулях; I – ток в амперах; t – время в секундах; U – напряжение в вольтах.

По закону Ома U = I × r. Поэтому формулу работы можно написать и так:

Мощность электрического тока

Работа, произведенная в единицу времени, называется мощностью и обозначается буквой P.

Из этой формулы имеем:

Единица измерения мощности:

1 (Дж/сек) иначе называется ваттом (Вт). Подставляя в формулу мощности выражение для работы электрического тока, имеем:

Формула мощности электрического тока может быть выражена также через потребляемый ток и сопротивление потребителя:

Кроме ватта, на практике применяются более крупные единицы измерения электрической мощности. Электрическая мощность измеряется в:

100 Вт = 1 гектоватт (гВт);
1000 Вт = 1 киловатт (кВт);
1000000 Вт = 1 мегаватт (МВт).

Электрическая мощность измеряется специальным прибором – ваттметром. Ваттметр имеет две обмотки (катушки): последовательную и параллельную. Последовательная катушка является токовой и включается последовательно с нагрузкой на участке цепи, где производятся измерения, а параллельная катушка – это катушка напряжения, она соответственно включается параллельно этой нагрузке. Принцип действия ваттметра основан на взаимодействии двух магнитных потоков создаваемых током, протекающим по обмотке подвижной катушки (токовой катушки), и током, проходящим по неподвижной катушке (катушке напряжения). При прохождении измеряемого тока по обмотке подвижной и неподвижной катушек образуются два магнитных поля, при взаимодействии которых подвижная катушка стремится расположится так, чтобы направление ее магнитного поля совпадало с направлением магнитного поля неподвижной катушки. Вращающему моменту противодействует момент, созданный спиральными пружинками, через которые в подвижную катушку проводится измеряемый ток. Противодействующий момент пружинок прямо пропорционален углу поворота катушки. Стрелка, укрепленная на подвижной катушке, указывает значение измеряемой величины. Схема включения ваттметра показана на рисунке 2.

Если вы решили измерить потребляемую мощность, какой либо имеющейся у вас нагрузки, и при этом у вас отсутствует ваттметр, вы можете «изготовить» ваттметр своими руками. Из формулы P = I × U видно, что мощность, потребляемую в сети, можно определить, умножив ток на напряжение. Поэтому для определения мощности, потребляемой из сети, следует использовать два прибора, вольтметр и амперметр. Измерив амперметром потребляемый ток и вольтметром напряжение питающей сети, необходимо показание амперметра умножить на показание вольтметра.

Так, например, мощность, потребляемая сопротивлением r, при показании амперметра 3 А и вольтметра 220 В будет:

Для практических измерений электрической работы (энергии) джоуль является слишком мелкой единицей.

Если время t подставлять не в секундах, а в часах, то получим более крупные единицы электрической энергии:

1 Дж = 1 Вт × сек;
1 Вт × ч = 3600 ватт × секунд = 3600 Дж;
100 Вт × ч = 1 гектоватт × час (гВт × ч);
1000 Вт × ч = 1 киловатт × час (кВт × ч).

Электрическая энергия измеряется счетчиками электрической энергии.

Видео 1. Работа и мощность электрического тока

Видео 2. Еще немного о мощности

Пример 1. Определить мощность, потребляемую электрическим двигателем, если ток в цепи равен 8 А и двигатель включен в сеть напряжением 220 В.

P = I × U = 8 × 220 = 1760 Вт = 17,6 гВт = 1,76 кВт.

Пример 2. Какова мощность, потребляемая электрической плиткой, если плитка берет из сети ток в 5 А, а сопротивление спирали плитки равно 24 Ом?

P = I 2 × r = 25 × 24 = 600 Вт = 6 гВт = 0,6 кВт.

При переводе механической мощности в электрическую и обратно необходимо помнить, что
1 лошадиная сила (л. с.) = 736 Вт;
1 киловат (кВт) = 1,36 л. с.

Пример 3. Определить энергию, расходуемую электрической плиткой мощностью 600 Вт в течение 5 часов.

A = P × t = 600 × 5 = 3000 Вт × ч = 30 гВт × ч = 3 кВт × ч

Пример 4. Определить стоимость горения двенадцати электрических ламп в течение месяца (30 дней), если четыре из них по 60 Вт горят по 6 часов в сутки, а остальные восемь ламп по 25 Вт горят по 4 часа в сутки. Цена за энергию (тариф) 2,5 рубля за 1 кВт × ч.

Мощность четырех ламп по 60 Вт.

P = 60 × 4 = 240 Вт.

Число часов горения этих ламп в месяц:

t = 6 × 30 = 180 часов.

Энергия, расходуемая этими лампами:

A = P × t = 240 × 180 = 43200 Вт × ч = 43,2 кВт × ч.

Мощность остальных восьми ламп по 25 Вт.

P = 25 × 8 = 200 Вт.

Число часов горения этих ламп в месяц:

t = 4 × 30 = 120 часов.

Энергия, расходуемая этими лампами:

A = P × t = 200 × 120 = 24000 Вт × ч = 24 кВт × ч.

Общее количество расходуемой энергии:

43,2 + 24 = 67,2 кВт × ч

Стоимость всей потребленной энергии:

67,2 × 2,5 = 168 рублей.

Источник: Кузнецов М.И., «Основы электротехники» — 9-е издание, исправленное — Москва: Высшая школа, 1964 — 560с.

Похожие статьи:

  • Провода на свечи бмв е34 БМВ 5 (Е34). Свечи зажигания Свеча зажигания состоит из центрального электрода, изолятора, корпуса и бокового электрода (электрода массы). Центральный электрод герметично закреплен в изоляторе, а изолятор жестко связан с корпусом. Между […]
  • Белый и черный провода где плюс какого цвета провод плюс и минус? в зарядном устройстве 2 провода черный и белый . где плюс где минус? какого цвета провод плюс и минус? в зарядном устройстве 2 провода черный и белый . где плюс где минус? можно определить с помощью […]
  • Электрические схемы микроволновых печей самсунг Электрические схемы микроволновых печей Микроволновые печи с электромеханическим управлением обычно имеют стандартную электрическую схему. Отличия между различными моделями незначительны и не носят принципиального характера. Силовая часть […]
  • Отличие провода пунп от ввг Чем отличается ВВГ от ПУНП? Чем отличается ВВГ от ПУНП? Вроде сечение одинаковое, изоляция двойная. Можно ли проводку делать ПУНПом, если она заштукатуривается? Сырьём для ПВХ, методикой испытаний. Этот кабель выпускается по ГОСТ, а […]
  • Физик заземление Физика для Детей: З - значит Заземление (6 выпуск) 8 комментариев это скорее для даунов, чтоле -_- смотреть вообще не приятно Чувырла уж прям вполне отталкивающая Глупо как-то рассказано. Да и татух у ведущей нет и в носу без кольца. А […]
  • Гибкие провода гост ПВС 4х4 провод гибкий ГОСТ ПВС-это гибкий провод с медными многопроволочными скрученными жилами в ПВХ изоляции и ПВХ оболочке. ПО последней букве в маркировке "С"-что обозначает соединительный, ясно что кабель в основном используется для […]