Фазное напряжение в трехфазной сети

Линейные и фазные напряжения

Под симметричной трехфазной системой принято понимать совокупность трех ЭДС синусоидальной формы равной частоты, амплитуды, сдвинутых по фазе на треть периода (угол 2/3) .

График изменения ЭДС во времени, векторная диаграмма имеют вид.

Источником системы 3-х-фазного напряжения обычно служит генератор, у которого в пазах статора уложены проводники – обмотки. Плоскости этих обмоток обычно сдвинуты на 120 гр в пространстве. Под фазой участка трехфазной цепи понимают расстояние с одинаковым по величине током.

Разность потенциалов между нулевым узлом схемы и началом любой из фаз именуют фазным напряжением, условно обозначая UA, Uв, Uс. Разность потенциалов от начала вектора принято называть линейным, обозначая UAB, UBC, UCA.

Соответственно, фазные напряжения согласно 2-му закону Кирхгофа в общем случае равны:

На диаграмме векторов они изображается участком от концов векторов UA, UB. По аналогии, вычисляют и другие линейные величины — UBC, UCA. При симметричной системе фазных напряжений совокупность линейных также — симметрична.

Существуют 2 способа подключения обмоток генерирующих установок и приемников электроэнергии трехфазной сети:

При соединении звездой величина линейного напряжения равна:

Uл = v3 Uф = 1,73Uф.

К примеру, если мы имеем фазное напряжение генераторной установки равное 220В, при этом линейное будет – 380В.

Другим способом соединения, использующий трехпроходное соединение, является треугольник.

В таком случае, конец каждой обмотки подключается к началу следующей, образуя треугольник, при этом линейные провода подключены к его вершинам.

При подключении треугольником линейное напряжение генераторной установки в общем случае равно фазному:

Исходя из этого, делаем вывод: переключение обмоток генераторной установки со звезды к треугольнику приводит к увеличению линейного напряжения в 1,73р. Выполнять подключение обмоток, используя метод треугольника, рекомендуется лишь при симметричной нагрузке, поскольку в противном случае ток, может превышать номинальные величины.

Линейное напряжение

В электрических цепях бывают разные типы напряжения. Линейное напряжение можно наблюдать в трехфазной сети, где оно возникает между двумя фазовыми проводами. В большинстве случаев его уровень достигает 380 Вольт.

Отличие линейного от фазного напряжения

Если представить трехфазную цепь, то четко понятно, что в ней есть определенное напряжение между фазными контактами и фазным и нулевым проводом. Это происходит из-за того, что в этой схеме используется четырёхпроводная трехфазная цепь. Главные её характеристики – напряжение и частота. Напряжение, возникающее в цепи между двумя фазными проводами – это линейное, а то, что появляется между фазным и нулевым – фазным.

4-проводная сеть

Примечательной особенностью линейного напряжения является то, что именно по нему рассчитываются токи и другие параметры трехфазной цепи. Кроме того, к такой схеме можно подключать не только стандартные трехфазные контакты, но и однофазные (это различные бытовые приборы, приемники). Номинальное равняется 380 вольт, при этом оно может изменяться в зависимости от скачков или других перемен в локальной сети.

Существует несколько вариантов такого соединения, скажем, система с нейтралью под заземлением является самой популярной. Она характеризуется тем, что подключение к ней производится по особой схеме:

  1. Однофазные отводы подключаются к фазным проводам;
  2. Трехфазные – к трехфазным, соответственно.

Линейное напряжение имеет очень широкое использование благодаря своей безопасности и удобства разветвления сети. Электрические приборы подключаются только к одному- фазному проводу, опасность представляет он один. Расчет системы очень прост, в нем руководствуются стандартными формулами из физики. При этом, чтобы измерить этот параметр сети, достаточно воспользоваться простым мультиметром, для того, чтобы замерить характеристики фазового подключения потребуется несколько специальных устройств (датчики тока, вольтметры и прочие).

Некоторые особенности сети:

  1. При разводке такой проводки не требуется использовать профессиональные приборы- все измерения проводятся отвертками с индикаторами;
  2. При соединении проводников нет необходимости подключать нулевой провод, т. к. благодаря свободной нейтрали, риск поражения током крайне мал;
  3. Электротехника использует такую схему подключения для различных электродвигателей и других устройств, требующих высокую мощность для работы. Дело в том, что используя этот тип напряжения есть возможность повысить КПД на треть, что является весьма полезным свойством, в особенности, для асинхронного двигателя;
  4. Схема используется как для переменного тока, так и для постоянного;
  5. Нужно помнить, что однофазное соединение можно подключить к трехфазной сети, но не наоборот;
  6. Но, у такой цепи есть и определенные недостатки. В линейном соединении проводников очень сложно обнаружить повреждения. Это способствует повышенной пожарной опасности.

Соответственно, основная разница между фазовым и линейным напряжением заключается в разности подсоединяемых проводов обмоток.

Для контроля и выравнивания этого параметра часто используется специальный прибор – линейный стабилизатор напряжения. Он позволяет поддерживать показатель на определённом уровне, при этом нормализуя повышенное. Еще одно его определение – импульсный стабилизатор. Устройство может подключаться к розетке, контактам электрических приборов и т. д.

Расчет

Соединение

Линейное и фазное напряжение часто используется для запуска генератора. Рассмотрим, какие бывают соединения проводов на примере трехфазного генератора. Он состоит из первичных и вторичных обмоток. Их можно соединить звездой или треугольником.

Схема звезда и треугольник

Соединяя проводники в «треугольник» начало второй фазы соединяется с концом первой. Помимо этого, к каждому фазному проводнику подключаются линейные провода источника. Это выравнивает токи, исходя из чего, фазовое напряжение становится равным линейному. Аналогичная схема и для подключения трансформатора и двигателя.

Такое соединение также позволяет обеспечить нулевую электрическую движущую силу и постоянную частоту. Токи обмоток сдвигаются на 120 градусов, благодаря чему в общей схеме это соединение имеет вид трех отдельных токов, которые относительно друг друга сдвинуты на 2/3 периода. Это соотношение может изменяться в зависимости от типа подключаемого устройства и характеристик сети.

Формулы для расчета двигателей

Аналогично можно подсоединить трехфазный асинхронный двигатель, стабилизатор или усилитель в сеть 220 вольт «звездой». Эта схема подразумевает подключение начала обмоток к сети. Тогда от входа начнет двигаться ток с характеристиками сети. Контакты выхода (концы обмоток), соединятся с началом при помощи специальных перемычек. Таким образом, межфазное напряжение будет протекать через все активные контакты.

В изолированной сети используются различные пусковые конденсаторы для запуска системы. Аналогично соединяются клеммы на обмотках. Это подключение часто используется для понижающих трансформаторов и различных двигателей, предусмотренных для работы в однофазной сети.

Стабилизатор напряжения с защитой от перегрузок

Для того чтобы рассчитать линейное напряжение используется формула Киргофа:

∑ Ik = 0;, которая говорит о том, что в любом узле цепи сила тока равна нулю.

И закон Ома:

I = U / R . Зная эти законы можно без проблем рассчитать любую характеристику определенного контакта или сети.

При разветвлении системы может понадобиться вычислить напряжение между фазовым проводом и нейтральным:

IL = IF – эти параметры могут изменяться в зависимости от подключения. Отсюда следует, что линейные параметры равняются фазовым.

Но, в определенных ситуациях, необходимо рассчитать, чем равно соотношение напряжения между фазовым и линейным проводниками.

Для этого используется формула: Uл=Uф∙√3, где:

Uл –линейное, Uф – фазовое. Формула справедлива только если IL = IF.

При включении в сеть дополнительных отводов, нужно отдельно вычислять фазовое напряжение каждого из подключений. Тогда вместо Uф подставляются данные этого конкретного отвода.

При работе с промышленными установками может потребоваться расчет реактивной трехфазной мощности. Он производится по формуле:

Фазное и линейное напряжение

Одним из вариантов систем многофазных электрических цепей является трехфазная цепь. В многофазных электрических цепях происходит действие синусоидальных электродвижущих сил с одинаковой частотой. Они отличаются друг от друга по фазе и создаются от общего источника энергии. В трехфазных цепях важными параметрами являются фазное и линейное напряжение, отличающиеся своими электрическими характеристиками.

Что такое фаза

Каждая часть многофазной системы, имеющая одинаковую характеристику тока, называется фазой. Поэтому определение фазы имеет двоякое значение в электротехнике. Во-первых, как величина, изменяющаяся синусоидально, а во-вторых, как отдельная часть в системе многофазных электрических цепей. Количество фаз определяет наименование цепей: двухфазные, трехфазные, шестифазные и т.д.

Самыми распространенными цепями в современной энергетике являются трехфазные. Они имеют ряд преимуществ перед другими видами цепей, как однофазными, так и многофазными. Они более экономичны при производстве и передаче электроэнергии. Трехфазное напряжение возникает в результате вращения магнита внутри катушки. С его помощью достаточно просто образуется вращающееся круговое магнитное поле, обеспечивающее работу асинхронных двигателей. Данное явление известно, как ЭДС или по-другому, электродвижущая сила индукции.

Вращающийся магнит называется ротором, а катушки, расположенные вокруг него, образуют статор. Переменное напряжение получается путем преобразования постоянного напряжения, когда прямая линия принимает синусоидальную конфигурацию с изменяющимися положительными и отрицательными значениями.

Изменение магнитного потока происходит за счет вращения ротора, что и приводит к образованию переменного напряжения. В статоре имеется три катушки, в каждой из которых присутствует собственная отдельная электрическая цепь. Каждая катушка сдвинута относительно друг друга на 120 градусов по окружности. Под действием вращающегося магнита во всех катушках возникает одинаковое переменное напряжение между фазами в трехфазной сети.

Трехфазные цепи дают возможность получать два эксплуатационных напряжения на одной установке – фазное и линейное.

Фазное и линейное напряжение в трехфазных цепях

Фазное напряжение – возникает между началом и концом какой-либо фазы. По другому его еще определяют, как напряжение между одним из фазных проводов и нулевым проводом.

Линейное — определяется как межфазное или между фазное – возникающее между двумя проводами или одинаковыми выводами разных фаз.

Рассматривая фазные и линейные напряжения и токи, следует отметить, что показатель фазного напряжения составляет примерно 58% от параметров линейного. Таким образом, при нормальных условиях эксплуатации показатели линейных одинаковы и превышают фазные в 1,73 раза. То есть, если линейное напряжение 380, чему равно фазное можно определить с помощью этого коэффициента.

В трехфазной сети напряжение, как правило, оценивают по данным линейного напряжения. Для трехфазных линий, которые отходят от подстанции, устанавливается линейное напряжение номиналом 380 вольт. Это соответствует фазному в 220 вольт. В трехфазных четырех проводных сетях номинальное напряжение указывается с обозначением обеих величин – 380/220 В. Это означает, что в такую сеть подключаются как приборы с 380 вольт, так и однофазные – на 220 вольт.

Смотрите так же:  Таблица автомат по сечению провода

Наибольшее распространение получила трехфазная система 380/220 вольт с заземленным нулевым проводом. Однофазные электроприборы на 220 вольт подключаются к линейному напряжению между любой парой фазных проводов. Трехфазные электроприборы подключаются к трем различным проводам фаз. В последнем случае не требуется использование нулевого провода, при этом отсутствие заземления повышает риск поражения током, когда нарушена изоляция.

Отличие линейного напряжения от фазного

Прежде чем рассматривать практическое значение этих параметров, необходимо точно знать, чем различаются между собой линейное и фазное напряжения. Определенное межфазное напряжение в трехфазной цепи может возникнуть либо между двумя фазами, либо между одной из фаз и нулевым проводом. Подобное взаимодействие становится возможным из-за использования в схеме четырехпроводной трехфазной цепи. Ее основными характеристиками являются напряжение и частота.

Напряжение, возникающее между двумя фазными проводниками, считается линейным, а между фазным и нулевым возникает фазное. Линейное напряжение используется для расчета токов и других параметров трехфазной цепи. К таким схемам возможно подключение не только трехфазных контактов, но и однофазных, например, различных бытовых приборов. Номинальное значение линейного напряжения составляет 380 В. Иногда оно изменяется под действием различных факторов, появляющихся в локальной сети. Таким образом, все основные различия между обоими видами напряжений заключаются в способах соединения обмоток.

Наибольшее распространение получило линейное напряжение, из-за безопасного использования и удобного распределения сетей. Для его замеров достаточно мультиметра, тогда как определение характеристик фазного напряжения требует использования вольтметров, датчиков тока и других специальных приборов.

Контроль и выравнивание данного параметра осуществляется с помощью линейного стабилизатора напряжения. Этот прибор обеспечивает поддержание этого показателя на нормативном уровне, в том числе он нормализует и повышенное напряжение.

Использование линейного и фазного напряжения

Классическим примером использования линейного и фазного напряжения считаются соединения, используемые при запуске трехфазного генератора. В его конструкцию входят первичные и вторичные обмотки, которые могут соединяться звездой или треугольником.

Схема «треугольник» предполагает соединение конца первой фазы с началом второй. Кроме того, каждый фазный проводник соединяется с линейными проводами источника тока. В результате, происходит выравнивание токов, а фазное напряжение становится равным линейному. По такой же схеме подключаются электродвигатели и трансформаторы.

Другим вариантом является схема «звезда». В этом случае начала всех обмоток подключаются к одной сети при помощи перемычек. Таким образом, в обмотки будет поступать ток с характеристиками этой сети, а межфазное напряжение вступит во взаимодействие со всеми активными контактами.

Чем фазное напряжение отличается от линейного?

Прежде чем браться за ответ на вопрос выше потребуется проделать целую экскурсию в историю и обустройство силовых электрических сетей переменного тока. Также важно понимать, что рассматриваемые термины имеют чётко определённый смысл лишь в описываемом ниже контексте.

С чего всё началось

Первую коммерческую попытку передачи электроэнергии потребителям предпринял Т.Эдисон, используя для этого сеть постоянного тока — однако быстро выяснилось, что предложенная им архитектура построения сети очень материалоёмка и неудобна, а сколько-нибудь эффективное преобразование одного постоянного напряжения в другое по величине на стороне потребителя энергии попросту невозможно (в то время в принципе ещё не существовало ни электронных ламп, ни транзисторов, на которых можно было бы построить нужные устройства-преобразователи).

Тогда же свою альтернативную систему, базирующуюся на синусоидальном переменном токе, начал продвигать Д.Вестингауз (синусоидальная форма вызвана не тем, что кому-то она «особенно понравилась» — просто ток/напряжение именно этой формы получались в типовом генераторе в силу естественных физических причин). Очевидный плюс использования переменного тока выражался в том, что его можно легко и эффективно (КПД до

99%) преобразовывать по напряжению с помощью простого электромагнитного устройства — трансформатора (в нём есть как минимум две обычно электрически разделённых обмотки/катушки, при этом находящихся на общем магнитопроводе, обеспечивающем сильную индуктивную связь между ними).

Многофазные электрические сети

Для усовершенствования оборудования сетей переменного тока Д.Вестингауз пригласил Н.Тесла, который изобрёл и теоретически обосновал работу многофазных электрических сетей и машин, положив начало использования в США двухфазной сети переменного тока и попутно предложив трёхфазную систему, использующую для передачи электроэнергии шесть проводов. В свою очередь М.Доливо-

Добровольский предложил существенное усовершенствование трёхфазной системы Н.Тесла, в которой для передачи электроэнергии достаточно всего четырёх или даже вообще трёх проводов — чем положил начало силовым трёхфазным сетям практически в том виде, в каком нам они сейчас известны.

Соединение обмоток звезда-звезда

Как это устроено и работает

Простую однофазную систему можно представить как два провода, в одном из которых присутствует меняющееся синусоидальному закону напряжение, а второй провод служит «землёй», куда это напряжение может стекать при подключении потребителя (нагрузки).

Поскольку напряжение фазы меняется по закону синуса, легко представить два других провода под напряжением, в которых запаздывает или опережает по фазе электрических колебаний рассмотренное в первой линии на 120 градусов — тогда получится полностью взаимно-симметричная система (ведь в окружности ровно 360 градусов!), где любая из выбранных фаз опережает либо отстаёт от соседней точно на 120 градусов — и в такой системе может быть выделена одна-единственная «земля» и три разных фазных провода (именно эту схему в итоге и предложил М.Доливо-Добровольский).

Очевидно, что электрическую нагрузку в такой системе можно подключать двояко: либо между любой выбранной фазой и «землёй» (нейтралью), либо между фазными проводами (попутно отметим, что «истинно трёхфазные», симметричные потребители электроэнергии вроде асинхронных электродвигателей могут работать в подобной системе вовсе без нейтрали).

в 3 раз): если между отдельной фазой и нейтралью переменное напряжение составляет

220 вольт, то между фазными проводами будет

380 вольт. Напряжение синусоидальной формы между любой из фаз и выделенной нейтралью здесь называется «фазным», а между любыми двумя фазами — «линейным».

Сходства/отличия

  1. Как фазное, так и линейное напряжения являются синусоидальными и сосуществуют рядом в вышеописанной промышленной трёхфазной системе с выделенной нейтралью.
  2. Фазное напряжение замеряется между фазой и нейтралью (в штатно функционирующей, без перекоса фаз трёхфазной системе фазные напряжения разных фаз практически идентичны по величине).
  3. Линейное напряжение замеряется между соседними фазами (и также в случае отсутствия перекоса фаз практически идентично в любой из выбранных пар).
  4. Порядковая величина различия между фазным/линейным напряжением в существующей трёхфазной системе весьма существенна — линейное больше фазного в √3 раз.

Что такое линейное и фазное напряжение?

Самыми распространенными цепями в современной энергетике являются трехфазные цепи. Они имеют ряд преимуществ перед другими видами цепей — как однофазными, так и многофазными.

Они более экономичны при производстве и передаче электроэнергии. С их помощью достаточно просто образуется вращающееся круговое магнитное поле, обеспечивающее работу асинхронных двигателей.

Электрическое напряжения трехфазных сетей.

Трехфазные цепи дают возможность получать 2 эксплуатационных напряжения на одной установке – фазное и линейное.

Напряжение трехфазной сети принято оценивать по линейному напряжению. Для отходящих от подстанции трехфазных линий установлено номинальное линейное напряжение 380 В, что соответствует фазному 220 В. В обозначении номинального напряжения трехфазных четырехпроводных сетей указывают обе величины, т. е. 380/220 В.

Этим подчеркивается, что к такой сети можно подключать не только трехфазные электроприемники на номинальное напряжение 380 В, но и однофазные на 220 В.

Каждая часть многофазной системы, имеющая одинаковую характеристику тока, называется фазой. Поэтому определение фазы имеет двоякое значение в электротехнике. Во-первых, как величина, изменяющаяся синусоидально, а во-вторых, как отдельная часть в системе многофазных электрических цепей.

Линейное и фазное напряжение — отличие и соотношение

В этой краткой статье, не вдаваясь в историю сетей переменного тока, разберемся в соотношениях между фазными и линейными напряжениями. Ответим на вопросы о том, что такое фазное напряжение и что такое линейное напряжение, как они соотносятся между собой и почему эти соотношения именно таковы.

Ни для кого не секрет, что сегодня электроэнергия от генерирующих электростанций подается к потребителям по высоковольтным линиям электропередач с частотой 50 Гц. На трансформаторных подстанциях высокое синусоидальное напряжение понижается, и распределяется по потребителям на уровне 220 или 380 вольт. Где-то сеть однофазная, где-то трехфазная, однако давайте разбираться.

Действующее значение и амплитудное значение напряжения

Прежде всего отметим, что когда говорят 220 или 380 вольт, то имеют ввиду действующие значения напряжений, выражаясь математическим языком — среднеквадратичные значения напряжений. Что это значит?

Это значит, что на сомом деле амплитуда Um (максимум) синусоидального напряжения, фазного Umф или линейного Umл, всегда больше этого действующего значения. Для синусоидального напряжения его амплитуда больше действующего значения в корень из 2 раз, то есть в 1,414 раза.

Так что для фазного напряжения в 220 вольт амплитуда равна 310 вольт, а для линейного напряжения в 380 вольт амплитуда окажется равной 537 вольт. А если учесть, что напряжение в сети никогда не бывает стабильным, то эти значения могут быть как ниже, так и выше. Данное обстоятельство всегда следует учитывать, например выбирая конденсаторы для трехфазного асинхронного электродвигателя.

Фазное сетевой напряжение

Обмотки генератора соединены по схеме «звезда», и объединены концами X, Y и Z в одной точке (в центре звезды), которая называется нейтралью или нулевой точкой генератора. Это четырехпроводная трехфазная схема. К выводам обмоток A, B и C присоединяются линейные провода L1, L2 и L3, а к нулевой точке — нейтральный провод N.

Напряжения между выводом A и нулевой точкой, B и нулевой точкой, С и нулевой точкой, — называются фазными напряжениями, их обозначают Ua, Ub и Uc, ну а поскольку сеть симметрична, то можно просто написать Uф — фазное напряжение.

В трехфазных сетях переменного тока большинства стран стандартное фазное напряжение равно приблизительно 220 вольт — напряжение между фазным проводом и нейтральной точкой, которая обычно заземляется, и ее потенциал принимается равным нулю, потому она и называется еще нулевой точкой.

Линейное напряжение трехфазной сети

Напряжения между выводом A и выводом B, между выводом B и выводом C, между выводом C и выводом A, — называются линейными напряжениями, то есть это напряжения между линейными проводниками трехфазной сети. Их обозначают Uab, Ubc, Uca, или можно просто написать Uл.

Стандартное линейное напряжение в большинстве стран равно приблизительно 380 вольт. Легко заметить в данном случае, что 380 больше 220 в 1,727 раза, и, пренебрегая потерями, ясно, что это квадратный корень из 3, то есть 1,732. Безусловно, напряжение в сети все время в ту или другую сторону колеблется в зависимости от текущей загруженности сети, но соотношение между линейными и фазными напряжениями именно таково.

Откуда взялся корень из 3

В электротехнике часто применяют векторный метод изображения синусоидально изменяющихся во времени величин напряжений и токов. Метод основан на положении, что при вращении некоторого вектора U вокруг начала координат с постоянной угловой скоростью ω, его проекция на ось Y пропорциональна синусу ωt, то есть синусу угла ω между вектором U и осью Х, который в каждый момент времени определен.

График зависимости величины проекции от времени есть синусоида. И если амплитуда напряжения — это длина вектора U, то проекция, которая меняется со временем — это текущее значение напряжения, а синусоида U(ωt) отражает динамику напряжения.

Так вот, если теперь изобразить векторную диаграмму трехфазных напряжений, то получится, что между векторами трех фаз одинаковые углы по 120°, и тогда если длины векторов — это действующие значения фазных напряжений Uф, то чтобы найти линейные напряжения Uл, необходимо вычислить РАЗНОСТЬ любой пары векторов двух фазных напряжений. Например Ua – Ub.

Выполнив построение методом параллелограмма, увидим, что вектор Uл = Uа + (-Ub), и в результате Uл = 1,732Uф. Отсюда и получается, что если стандартные фазные напряжения равны 220 вольт, то соответствующие линейные будут равны 380 вольт.

Охрана труда и БЖД

Охрана труда и безопасность жизнедеятельности

Анализ опасности поражения током в различных электрических сетях. Электробезопасность

Случаи поражения человека током возможны лишь при замыкании электрической цепи через тело человека или, иначе говоря, при прикосновении человека не менее чем к двум точкам цепи, между которыми существует некоторое напряжение.

Опасность такого прикосновения, оцениваемая величиной тока, проходящего через тело человека, или же напряжением прикосновения, зависит от ряда факторов: схемы включения человека в цепь, напряжения сети, схемы самой сети, режима ее нейтрали, степени изоляции токоведущих частей от земли, а также от величины емкости токоведущих частей относительно земли и т. п.

Схемы включения человека в цепь могут быть различными. Однако наиболее характерными являются две схемы включения: между двумя проводами и между одним проводом и землей (рис. 68). Разумеется, во втором случае предполагается наличие электрической связи между сетью и землей.

Применительно к сетям переменного тока первую схему обычно называют двухфазным включением, а вторую — однофазным.

Двухфазное включение, т. е. прикосновение человека одновременно к двум фазам, как правило, более опасно, поскольку к телу человека прикладывается наибольшее в данной сети напряжение — линейное, и поэтому через человека пойдет больший ток:

где Ih — ток, проходящий через тело человека, А; UЛ = √3 Uф — линейное напряжение, т. е. напряжение между фазными проводами сети, В; Uф — фазное напряжение, т. е. напряжение между началом и концом одной обмотки (или между фазным и нулевым проводами), В.

Рис. 68. Случаи включения человека в цепь тока:
а — двухфазное включение; б, в — однофазные включения

Нетрудно представить, что двухфазное включение является одинаково опасным в сети как с изолированной, так и с заземленной нейтралями.

При двухфазном включении опасность поражения не уменьшится и в том случае, если человек надежно изолирован от земли, т. е. если он имеет на ногах резиновые галоши или боты либо стоит на изолирующем (деревянном) полу, или на диэлектрическом коврике.

Однофазное включение происходит значительно чаще, но является менее опасным, чем двухфазное включение, поскольку напряжение, под которым оказывается человек, не превышает фазного, т. е. меньше линейного в 1,73 раза. Соответственно меньше оказывается ток, проходящий через человека.

Кроме того, на величину этого тока влияют также режим нейтрали источника тока, сопротивление изоляции и емкость проводов относительно земли, сопротивление пола, на котором стоит человек, сопротивление его обуви и некоторые другие факторы.

В трехфазной трехпроводной сети с изолированной нейтралью ток, проходящий через человека, при прикосновении к одной из фаз сети в период ее нормальной работы (рис. 69, а) определяется следующим выражением в комплексной форме (А):

где Z — комплекс полного сопротивления одной фазы относительно земли (Ом):

здесь r и С — соответственно сопротивление изоляции провода (Ом) и емкость провода (Ф) относительно земли (приняты для упрощения одинаковыми для всех проводов сети).

Рис. 69. Прикосновение человека к проводу трехфазной трехпроводной сети с изолированной нейтралью: а — при нормальном режиме; б — при аварийном режиме

Ток в действительной форме равен (А):

, (35)

Если емкость проводов относительно земли мала, т. е. С = 0, что обычно имеет место в воздушных сетях небольшой протяженности, то уравнение (35) примет вид

, (36)

Если же емкость велика, а проводимость изоляции незначительна, т. е. r ≈ ∞, что обычно имеет место в кабельных сетях, то согласно выражению (35) ток через человека (А) будет:

, (37)

где хс = 1/wC — емкостное сопротивление, Ом.

Из выражения (36) следует, что в сетях с изолированной нейтралью, обладающих незначительной емкостью между проводами и землей, опасность для человека, прикоснувшегося к одной из фаз в период нормальной работы сети, зависит от сопротивления проводов относительно земли: с увеличением сопротивления опасность уменьшается.

Поэтому очень важно в таких сетях обеспечивать высокое сопротивление изоляции и контролировать ее состояние в целях своевременного выявления и устранения возникших неисправностей.

Однако в сетях с большой емкостью относительно земли роль изоляции проводов в обеспечении безопасности прикосновения утрачивается, что видно из уравнений (35) и (37).

При аварийном режиме работы сети, т. е. когда возникло замыкание одной из фаз на землю через малое сопротивление гзм ток через человека, прикоснувшегося к здоровой фазе (рис. 69, б), будет (А):

, (38)

а напряжение прикосновения (В):

, (39)

Если принять, что rзм = 0 или по крайней мере считать, что гзм , (40)

т. е. человек окажется под линейным напряжением.

В действительных условиях гзм > 0, поэтому напряжение, под которым окажется человек, прикоснувшийся в аварийный период к исправной фазе трехфазной сети с изолированной нейтралью, будет значительно больше фазного и несколько меньше линейного напряжения сети. Таким образом, этот случай прикосновения во много раз опаснее прикосновения к той же фазе сети при нормальном режиме

работы [см. уравнения (36) и (39), имея в виду, что r/3>rзм].

В трехфазной четырехпроводной сети с заземленной нейтралью проводимость изоляции и емкостная проводимость проводов относительно земли малы по сравнению с проводимостью заземления нейтрали, поэтому при определении тока через человека, касающегося фазы сети, ими можно пренебречь.

При нормальном режиме работы сети ток через человека будет (рис. 70, а):

, (41)

где г0 — сопротивление заземления нейтрали, Ом.

Рис. 70. Прикосновение человека к фазному проводу трехфазной четырехпроводной сети с заземленной нейтралью: а — при нормальном режиме; б — при аварийном режиме

Симметрирование (выравнивание) фазных напряжений и нагрузок (устранение перекоса фаз). Устройство: симметрирующий трансформатор ТСТ.

Устранение перекоса фаз (напряжений), перекоса фазных нагрузок, выравнивание (симметрирование) напряжений (фаз), равномерное распределение нагрузок по фазам питающей сети существенно снижает расход электроэнергии, топлива генератора, обеспечивает безотказную работу электроприемников.

1. Описание предлагаемой технологии (метода) повышения энергоэффективности, его новизна и информированность о нем (объем не ограничен)

Сущность явления перекоса фаз

Явление перекоса фаз известно практически всем, кто так или иначе сталкивается с проблемами, связанными с потреблением электроэнергии. Перекос фаз проявляется в трехфазных четырех- (пяти-) проводных сетях с глухозаземленной нейтралью напряжением до 1000 В.

В идеальном состоянии фазное напряжение (напряжение между каждой из трех фаз и нулевым рабочим проводником) составляет 220 В. Векторная диаграмма напряжений генератора (модель, отображающая взаимосвязь и взаиморасположение фазных и линейных напряжений) показана на рис. 1.

Линейные напряжения образуют равносторонний треугольник с вершинами UA, UB, UC. Фазные напряжения 0A, 0B и 0C равны между собой и сдвинуты друг относительно друга на угол 120°. Данная модель является идеальной и перекос фазных напряжений в ней отсутствует.

Рис. 1. Векторная диаграмма напряжений генератора.

При подключении нагрузки на разные фазы, которая всегда отличается и по величине, и по характеру — резистивная и реактивная (индуктивная и емкостная), в питающей сети возникает перекос фазных напряжений. Помимо вреда, который наносит электроэнергия низкого качества непосредственно электроприемникам, возникают уравнительные токи, вызывающие дополнительный расход электроэнергии, и, соответственно, топлива, масла, охлаждающей жидкости при питании от генератора.

Схема, иллюстрирующая условия возникновения перекоса фаз (напряжений) представлена на рис. 2, где RA, RB, RC — активные сопротивления нагрузок по фазам, причем RA > RB > RC ≠ 0.

Если бы сопротивления нагрузки были равны, то токи, через них протекающие так же были равны между собой. Учитывая то, что угол сдвига между ними равен 120°, то их геометрическая сумма равнялась бы нулю.

Однако при их неравенстве в результате суммирования возникает ток I00′, который называется уравнительным (см. рис. 2.). А, следовательно, напряжение U00′, которое называется напряжением смещения. Графически напряжение смещения показано на рис. 3. красной сплошной линией. Красным пунктиром обозначены фазные напряжения, сдвинутые друг относительно друга на произвольный угол и отображающие перекос фаз. Белым пунктиром показана идеальная ситуация без перекоса фазных напряжений.

Рис. 2 Схема, иллюстрирующая условия возникновения перекоса фаз.

Чем больше уравнительный ток, тем больше Ваши потери электроэнергии. Чем больше напряжение смещения, тем выше риск повреждений, отключений, отказов, неустойчивой работы Ваших электроприемников, генератора электроэнергии, тем быстрее они изнашиваются, тем больше потребляют ресурсов.

Рис. 3. Напряжение смещения.

Последствия перекоса фаз

Последствия перекоса фаз проявляются в увеличении электропотребление из сети; в неправильной работе электроприемников, их сбоях, отказах, отключениях, перегорании предохранителей, износе изоляции. Для трехфазных автономных источников неравномерность загрузки их фаз чревата механическими повреждениями подшипников валов, подшипниковых щитов генератора и приводного двигателя, закоксовыванию форсунок.

Условно негативные последствия перекоса фаз можно разделить на три группы:

1) последствия для электроприемников (приборов, оборудования), связанные с их повреждениями, отказами, увеличением износа, уменьшением периода эксплуатации;

2) последствия для источников электроэнергии (увеличение износа, повреждения, увеличение энергопотребление при питании от госсети, повышенный расход топлива, масла, охлаждающей жидкости при питании от генератора, повреждения генератора, уменьшение периода его эксплуатации);

3) последствия для потребителей, связанные с безопасностью, так как ухудшение качества изоляции может привести к:

  • электротравматизму;
  • возгоранию электропроводки или электроприемников;

а также последствия, связанные с увеличением расходов на:

  • электроэнергию;
  • расходные материалы для генератора;
  • ремонт электроприемников, поврежденных вследствие перекоса фаз;
  • приобретение новых электроприемников, отказавших вследствие перекоса фаз.

Традиционные способы решения проблем, связанных с электроэнергией низкого качества

Для обеспечения заданного напряжения на каждой из фаз традиционно используются стабилизаторы напряжения. В бытовых условиях применяют однофазные стабилизаторы напряжения, которые обеспечивают защиты отдельных электроприемников или небольшой их группы. В промышленных условиях используются трехфазные стабилизаторы напряжения различной мощности, которые конструктивно состоят из трех однофазных стабилизаторов напряжения.

Принцип их действия таков, что они реагируют на отклонения на каждой отдельно взятой фазе и поднимают или опускают напряжение до необходимого уровня на своей фазе, провоцируя изменения напряжений на двух других фазах и являясь, таким образом, вторичной причиной возникновения перекоса фаз.

Из изложенного выше ясно, что трехфазные стабилизаторы напряжения фактически не решают поставленную перед ними задачу, так как сами провоцируют несимметрию трехфазной системы. Помимо своего основного недостатка трехфазные стабилизаторы напряжения потребляют значительное количество электроэнергии и требуют значительных сервисных расходов, так как обладают низкой надежностью — и электромеханические, и электронные стабилизаторы напряжения имеют быстроизнашивающиеся и часто отказывающие детали.

Альтернативная технология

Для решения задачи по устранению перекоса фазных напряжений и обеспечения заданного фазного напряжения необходимо использовать технологию, которая позволит выравнивать напряжение не на каждой из фаз по отдельности, а симметрировать фазы между собой, то есть симметрировать всю трехфазную систему. Такое устройство обладает значительно большей эффективностью, оно не только само потребляет меньше электроэнергии, но и снижает электропотребление из сети для электроприемников.

Преимущества использования такой технологии:

  • снижение уровня энергопотребления из сети при сохранении нагрузки;
  • снижение расходов на электроэнергию для питания электроприемников;
  • снижение расходов электроэнергии и других ресурсов на обеспечение необходимой величины фазных напряжений;
  • снижение расходов на топливо, масло, охлаждающую жидкость при питании от генератора;
  • снижение расходов на генератор, так как технология позволяет использовать генератор меньшей мощности для той же группы приборов;
  • снижение расходов на ремонт, сервисное обслуживание, приобретение электроприемников, поврежденных вследствие перекоса фаз;
  • снижение расходов на ремонт, сервисное обслуживание, приобретение устройств, предназначенных для обеспечения заданной величины напряжения и обладающих низкой надежностью и низкой эффективностью (например, электромеханических и электронных трехфазных стабилизаторов напряжения).
  • обеспечение возможности подключать фазных потребителей мощностью до 50% трехфазной мощности.

1. Надежность электроприемников. Защита, обеспечение их устойчивой и безотказной работы.

2. Надежность устройства для симметрирования фазных нагрузок и устранения перекоса фазных напряжений. Принцип работы устройства основан на перемагничивании обмоток. Отсутствие подвижных и электронных частей делает устройство исключительно надежным, практически безотказным.

3. Надежность источника электроэнергии. Защита генератора от механических повреждений подшипников валов генератора и приводного двигателя вследствие перекоса фаз.

1. Защита от электротравматизма, возгорания электропроводки или электроприемников, вызванных износом изоляции вследствие перекоса фаз.

2. Обеспечения безопасности за счет применения защитной меры зануление.

Диапазон изменения фазных напряжений

Представленная технология допускает 100%-ый перекос нагрузки и устраняет перекос фазных напряжений во всем диапазоне их изменений независимо от причины перекоса: (1) перекос в подводящей питающей сети, вызванный неисправностями в распределительной сети, (2) неравномерное распределение фазных нагрузок, (3) подключение мощного потребителя, (4) комбинированные причины.

Рис. 4. Диапазон перекоса фазных напряжений.

Прикладные задачи, решаемые с помощью применения представленной технологии

Устранение перекоса фазных напряжений, т.е. выравнивание фаз сети друг относительно друга.

  • Равномерное распределение нагрузок по фазам.
  • Обеспечение заданной величины линейных напряжений.
  • Обеспечение заданной величины фазных напряжений.
  • Преобразование трехфазной сети в одно-(двух) фазную:

— с гальванической развязкой

— без гальванической развязки питающей сети и потребителя;

— с изменением (увеличением или уменьшением) выходного напряжения;

  • Преобразование трехфазной трехпроводной сети в трехфазную четырехпроводную (т.е. формирование нулевого рабочего проводника для возможности подключения фазной нагрузки).

Ниже на рисунках представлены варианты подключения нагрузки без использования представленной технологии и с использованием представленной технологии.

Рис. 5. Подключение нагрузки напрямую к сети. Максимальная нагрузка на одну фазу составляет треть от трехфазной мощности источника электроэнергии.

Подключение мощного однофазного электроприемника вызывает перекос фаз и повышает риск его повреждений и повреждений других электроприемников. Если мощность такого фазного потребителя превышает треть трехфазной мощности, это вызывает его неправильную работу (сбой, отключение, отказ).

Рис. 6. Подключение более мощной нагрузки к тому же (см. рис. 4) источнику электроэнергии с использованием представленной технологии.

Максимальная нагрузка на одну фазу может составлять 50% от трехфазной мощности источника электроэнергии. Источник электроэнергии воспринимает нагрузку как равномерно распределенную по фазам.

Рис. 7. Подключение той же нагрузки (см. рис. 4) к генератору меньшей мощности с использованием представленной технологии.

Представленная технология позволяет подключать ту же группу электроприемников к генератору электроэнергии меньшей мощности, при этом источник электроэнергии будет воспринимать нагрузку как равномерно распределенную по фазам.

Представленная технология запатентована, не имеет аналогов в России и за рубежом. Оборудование, производимое на основе данной технологии, сертифицировано и соответствует ТУ.

2. Результат повышения энергоэффективности при массовом внедрении

Массовое внедрение такой технологии позволит более рационально использовать электроэнергию, снизить ее потери; обеспечивать тех же потребителей (группы электроприемников) меньшим количеством электроэнергии; снизить затраты на электроэнергию, затраты на топливо, масло, охлаждающую жидкость при питании от генератора; продлить срок службы электроприемников, уменьшить их износ, обеспечить безотказную работу электроприемников; снизить расходы на источники электроэнергии, так как для той же группы электроприемников возможно использование генератора меньшей мощности.

3. Прогноз эффективности технологии (метода) в перспективе с учетом:

  • роста цен на энергоресурсы: эффективность технологии повышается при росте цен на энергоресурсы, так как позволяет снизить их расход.
  • роста благосостояния населения: тхнология способствует росту благосостояния населения, так как защищает электроприемники от износа и отказов, то есть позволяет снизить расходы не только на электроэнергию, но и на сервисное обслуживание электроприемников.
  • введением новых экологических требований: технология способствует защите окружающей среды, так как экономия электроэнергии способствует экономии энергоресурсов, а использование источников электроэнергии меньшей мощности позволяет меньше загрязнять окружающую среду.
  • других факторов: технология позволяет отогревать конструкции и коммуникации (при обледенении проводов, промерзании трубопроводов и т.д.); подключать оборудование, чувствительное к значительным отклонениям от номинала, так как устраняет эти отклонения; однофазное оборудование, потребляющее до 50% трехфазной мощности; преобразовывать трехфазную сеть в одно(двух)фазную, трехфазную трехпроводную сеть в трехфазную четырехпроводную сеть, обеспечивать заданный уровень напряжения, отличающийся от напряжения в исходной сети.

4. Существует ли необходимость проведения дополнительных исследований для расширения перечня объектов для внедрения данной технологии?

Нет. Сфера применения технологии практически безгранична: везде, где есть трехфазная сеть и условия для возникновения перекоса фаз — то есть, необходимость подключения нагрузки .

5. Обозначить причины, по которым предлагаемые энергоэффективные технологии не применяются в массовом масштабе; наметить план действий для снятия существующих барьеров.

Причина, почему данная технология не применяется в массовом масштабе — отсутствие информированности о ее существовании. План действий: разработка и реализация маркетинговой стратегии по продвижению технологии.

6. Существующие меры поощрения, принуждения, стимулирования для внедрения предлагаемой технологии (метода) и необходимость их совершенствования.

Стимулирующие меры, которые предпринимает обладатель технологии: возможность бесплатного тестирования технологии на территории потенциального заказчика.

7. Наличие технических и других ограничений применения технологии (метода) на различных объектах.

Технические ограничения: необходимость дополнительной сертификации на объектах повышенной опасности, например сертификация на сейсмостойкость для использования на электростанциях.

8. Необходимость проведения НИОКР и дополнительных испытаний; темы и цели работ.

9. Наличие постановлений, правил, инструкций, нормативов, требований, запретительных мер и других документов, регламентирующих применение данной технологии (метода) и обязательных для исполнения; необходимость внесения в них изменений или необходимость изменения самих принципов формирования этих документов; наличие ранее существовавших нормативных документов, регламентов и потребность в их восстановлении.

10. Необходимость разработки новых или изменения существующих законов и нормативно-правовых актов.

11. Наличие внедренных пилотных проектов, анализ их реальной эффективности, выявленные недостатки и предложения по совершенствованию технологии с учетом накопленного опыта.

12. Возможность влияния на другие процессы при массовом внедрении данной технологии (изменение экологической обстановки, возможное влияние на здоровье людей, повышение надежности энергоснабжения, изменение суточных или сезонных графиков загрузки энергетического оборудования, изменение экономических показателей выработки и передачи энергии и т.п.).

Технология повышает надежность энергоснабжения, изменяет экономические показатели.

Здесь мы можем разместить контактную информацию о Вашей компании и ссылку на Ваш сайт
Как разместить контактную информацию

Для того чтобы добавить описание энергосберегающей технологии в Каталог, заполните опросник и вышлите его на c пометкой «в Каталог».
Скачать опросник

Авторские права на размещенные материалы принадлежат авторам
Тел.(495) 360-66-26 E-mail:
© Портал ЭнергоСовет.ru — энергосбережение, энергоэффективность, энергосберегающие технологии 2006-2019
Возрастная категория Интернет-сайта 18 +
реклама | карта сайта | о проекте | контакты | правила использования статей

Похожие статьи:

  • Схема соединения тн Схемы соединения измерительных трансформаторов напряжения Схема включения однофазного трансформатора напряжения представлена на рис. 1, а. Предохранители FV1 и FV2 защищают сеть высокого напряжения от повреждений первичной обмотки TV. […]
  • Если покрыть провода лаком Подготовка БК регулятора к водным процедурам На RC автомобилях многие сталкиваются с проблемой герметизации силовой установки, особенно при заездах по бездорожью или в сырую погоду. Производители RC электроники не особо жалуют моделистов […]
  • Вес провода пв-3 4 Провод ПВ-3 120 Вес кабеля - провод ПВ-3 120: 1,251 кг/метр Наружный диаметр кабеля - провод ПВ-3 120: 21,0 мм Устройство провода гибкого марки ПВ3 или ПуГВ (по ГОСТ Р 53768-2010) на напряжение до 0,45 кВ. Жила провода ПВ3 – […]
  • Реле тока рт-40 технические характеристики Реле тока РТ-40, РТ-140 Реле тока РТ-140 применяется в схемах релейной защиты и автоматики энергетических систем в качестве органа, реагирующего на повышение тока. Условия эксплуатации реле РТ40, РТ-140 Высота над уровнем моря до […]
  • Сварка провода ас Термопатрон АС Термитные патроны для сварки алюминиевых, сталеалюминиевых и медных проводов Помимо сварки катодных выводов ЭХЗ, медный термит находит применение и в других областях. Таких как сварка проводов различной площади сечения и из […]
  • Крепление неизолированного провода к изолятору Вязки спиральные для крепления неизолированных проводов марок А и АС Вязки спиральные (ТУ 3449-032-27560230-02) предназначены для крепления неизолированных проводов марок А, АС, АЖ сечением до 150 мм2 на штыревых изоляторах. Вязки […]