Формула расчета тока в трехфазной сети

Формула мощности

При проектировании электрооборудования и расчёте кабелей и пусковой и защитной аппаратуры важно правильно рассчитать мощность и ток электроаппаратуры. В этой статье рассказывается о том, как найти эти параметры.

Формулы расчёта электрической мощности

Что такое мощность

При работе электронагревателя или электродвигателя они выделяют тепло или выполняют механическую работу, единица измерения которой – 1 джоуль (Дж).

Одна из основных характеристик электрооборудования – мощность, показывающая количество тепла или произведённой работы за 1 секунду и выражающаяся в ваттах (Вт):

В электротехнике 1Вт выделяется при прохождении тока в 1А при напряжении 1В:

Согласно закону Ома, найти мощность можно также, зная сопротивление нагрузки и ток или напряжение:

  • P (Вт) – мощность электроприбора;
  • I (А) – ток, протекающий через устройство;
  • R (Ом) – сопротивление аппарата;
  • U (В) – напряжение.

Номинальной называют мощность при номинальных параметрах сети и номинальной нагрузке на валу электродвигателя.

Для того чтобы узнать количество электричества, потреблённого за весь период работы, её необходимо умножить на время, которое аппарат работал. Поучившаяся величина измеряется в кВт*ч.

Расчёт в сетях переменного и постоянного напряжения

Электросеть, питающая электроприборы, может быть трёх видов:

  • постоянное напряжение;
  • переменное однофазное;
  • переменное трёхфазное.

Для каждого вида при расчётах используется своя формула мощности.

Расчёт в сети постоянного напряжения

Самые простые расчёты производятся в электросети постоянного тока. Мощность электроаппаратов, подключённых к ней, прямо пропорциональна току и напряжению и, чтобы найти её, используется формула:

Например, в электродвигателе с номинальным током 4,55А, подключённом к электросети 220В, мощность равна 1000 Ватт, или 1кВт.

И, наоборот, при известных напряжении сети и мощности ток рассчитывается по формуле:

Однофазные нагрузки

В сети, в которой отсутствуют электродвигатели, а также в бытовой электросети можно пользоваться формулами для сети постоянного напряжения.

Интересно. В бытовой электросети 220В ток можно вычислить по упрощённой формуле: 1кВт=5А.

Мощность переменного тока вычисляется сложнее. Эти аппараты, кроме активной, потребляют реактивную энергию, и формула:

показывает полную потребляемую энергию устройства. Для того чтобы узнать активную составляющую, нужно учесть cosφ – параметр, показывающий долю активной энергии в полной:

Например, в электродвигателе с Ракт 1кВт и cosφ 0,7 полная энергия, потребляемая устройством, будет 1,43кВт, и ток – 6,5А.

Треугольник активной, реактивной и полной энергии

Расчет в трехфазной сети

Трёхфазную электросеть можно представить как три однофазных сети. Однако в однофазных сетях используется понятие «фазное напряжение» (Uф), измеряемое между нулевым и фазным проводами, в сети 0,4кВ, равное 220В. В трёхфазных электросетях вместо «фазного» применяется понятие «линейное напряжение» (Uлин), измеряемое между линейными проводами и в сети 0,4кВ, равное 380В:

Поэтому формула для активной нагрузки, например, электрокотла, выглядит так:

При определении мощности электродвигателя необходимо учитывать cosφ, выражение приобретает следующий вид:

На практике этот параметр обычно известен, а узнать необходимо ток. Для этого используется следующее выражение:

Например, для электродвигателя 3кВт (3000Вт) и cosφ 0,7 расчёт получается таким:

Интересно. Вместо вычислений можно считать, что в трёхфазной сети 380В 1кВт соответствует 2А.

Лошадиная сила

В некоторых случаях при определении мощности автомобилей пользуются устаревшей единицей измерения «лошадиная сила».

Эту единицу ввел в обращение Джеймс Уайт, в честь которого названа единица мощности 1 Ватт, в 1789 году. Его нанял один пивовар для постройки парового двигателя для насоса, способного заменить лошадь. Чтобы определить, какой необходим двигатель, взяли лошадь и запрягли её качать воду.

Считается, что пивовар взял самую сильную лошадь и заставил её работать без отдыха. Реальная сила лошади меньше в 1,5 раза.

В разных странах соотношение 1ЛС и 1кВт немного отличается друг от друга. В России принято считать 1ЛС=0.735кВт, и автомобильный двигатель в 80ЛС соответствует электродвигателю 58,8кВт.

Знание того, как определить мощность и как узнать ток электроприборов, необходимы для проектирования электросетей, расчета кабелей и пускорегулирующей аппаратуры.

Как рассчитать мощность трехфазного тока

Мощность постоянного тока в электрической цепи определяется простым способом, путем умножения силы тока и напряжения. Эти величины являются постоянными и не подвержены изменениям во времени, поэтому и значение мощности будет постоянным, поскольку вся система находится в уравновешенном состоянии.

Переменный ток по всем параметрам отличается от постоянного, особенно наличием количества фаз. Очень часто возникают ситуации, когда нужно выполнить расчет мощности трехфазного тока, для того чтобы правильно определить характеристики подключаемой нагрузки. Проведение таких расчетов требует специальных знаний о работе трехфазной системы питания. Трехфазные сети, наряду с однофазными, получили широкое распространение в связи с низкими материальными затратами и удобством эксплуатации.

Характеристики трехфазной системы

Трехфазные цепи как правило соединяются двумя основными способами – звездой (рис. 1) и треугольником, который будет рассмотрен ниже. На всех схемах для более удобного пользования фазы обозначаются символами А, В, С или U, V, W.

При использовании схемы «звезда» (рис. 1), значение суммарного напряжения в точке пересечения фаз N является равным нулю. В этом случае трехфазный ток, по сравнению с однофазным, будет обладать постоянной мощностью. Данное положение указывает на уравновешенность трехфазной системы, а мгновенная полная мощность будет выражена в виде формулы:

Соединение звездой характеризуется двумя видами напряжения – фазным (рис. 2) и линейным (рис. 3). В первом случае напряжение определяется между одной из фаз и нулевой точной пересечения N. Линейное напряжение соответствует напряжению, существующему между самими фазами.

Таким образом, значение полной мощности для соединения звездой отображается следующей формулой:

Однако следует учитывать разницу между линейным и фазным напряжением, составляющую √3. Поэтому считать необходимо сумму мощностей всех фаз. Для расчетов активной мощности применяется формула Р = 3 х Uф х Iф х cosφ, а для реактивной – Р = √3 х Uл х Iф х cosφ.

Другим распространенным способом фазного соединения считается «треугольник».

Данный вид соединения предполагает одинаковое значение фазного (Uф) и линейного (Uл) напряжения. Соотношение между фазными и линейными токами определяется в виде формулы I = √3 х Iф, в соответствии с которой значение фазного тока составит Iф = I х √3.

Таким образом, мощности линейных величин при данном способе соединения будут выражаться с помощью следующих формул:

  • Полная мощность: S = 3 х Sф = √3 х U х I;
  • Активная мощность: Р = √3 х U х I х cosφ;
  • Реактивная мощность: Q = √3 х U х I х sinφ.

На первый взгляд формулы мощности для каждого вида соединений кажутся одинаковыми. При отсутствии достаточных знаний и опыта, это может привести к неправильным выводам. Чтобы избежать подобных ошибок, следует рассмотреть пример типового расчета.

  • Соединение электродвигателя выполнено в виде треугольника, напряжение в сети составляет 380 В, сила тока – 10 А. Поэтому значение полной мощности будет следующим: S = 1,73 х 380 х 10= 6574 В х А.
  • Далее этот же электродвигатель был соединен звездой. В этом случае на каждую обмотку фазы стало поступать напряжение в 1,73 раза ниже, чем при подключении треугольником, хотя сетевое напряжение осталось прежним. Соответственно сила тока в обмотках также уменьшилась в 1,73 раза. Существует еще один важный момент: если при соединении треугольником линейный ток в 1,73 раза превышал фазный, то в дальнейшем, когда схема изменилась на звезду, их значение стало равным. В результате, уменьшение линейного тока составило: 1,73 х 1,73 = 3 раза.
  • Таким образом, в одной и той же формуле используются разные значения: S = 1,73 х 380 х 10/3= 2191 В х А, следовательно при переподключении электродвигателя со схемы треугольника на звезду, происходит снижение мощности в 3 раза.

Измерение мощности ваттметром

В электрических сетях измерение мощности осуществляется специальным прибором – ваттметром. Схемы подключения могут быть разными, в зависимости от подключения нагрузки и ее характеристик. В случае симметричной нагрузки (рис. 1), для проведения измерений используется только одна фаза, а полученные результаты, затем, умножаются на три. Данный способ является наиболее экономичным, позволяя существенно снизить размеры измерительного прибора. Он используется в тех случаях, когда нет необходимости в получении точных данный по каждой фазе.

В случае несимметричной нагрузки (рис. 2) измерения будут более точными. Однако для замеров мощности каждой фазы потребуется три прибора с большими габаритными размерами. Обрабатывать показания также придется со всех трех приборов.

Расчет мощности трехфазного тока и ее измерение можно выполнить в электрической цепи при отсутствии нулевого проводника (рис. 3). В такой схеме применяется два прибора, а для расчетов используется первый закон Кирхгофа: IA+IB+IC=0. Таким образом, показания двух ваттметров в сумме дают значение трехфазной мощности для данной цепи.

Современный дизайн квартир

некоторые формулы для вычисления и методы измерения мощности

Переменный и постоянный ток отличаются один от другого многими параметрами, а особенно наличием фаз у первого вида. С этими отличиями связаны более сложные формулы и методы вычислений численных значений величин, характеризующих переменный ток, в том числе и мощность трёхфазного тока.

Характеристики трёхфазных цепей

Электрические системы, использующие в качестве источника питания трёхфазный ток, имеют два основных вида подключения: «звезда» и «треугольник». На схемах, изображающих подключение трёхфазного питания, принято обозначать фазы с помощью набора латинских букв:

А так называемая нейтраль обозначается буквой N.

На практике довольно часто приходится сталкиваться с необходимостью расчёта мощности электрического тока. В случае постоянного тока эта задача решается предельно просто — путём умножения напряжения и силы тока. Эти параметры не подвержены изменениям во времени, поэтому и значение мощности будет неизменным, так как система уравновешена и постоянно находится в таком состоянии.

Смотрите так же:  Заземление дома параметры

Совершенно иная ситуация возникает при необходимости расчётов мощности изменяющегося во времени по величине и направлению течения электрического тока. Выполнение таких вычислений требует специальных знаний о природе переменного тока и его особенностях.

Мощность трёхфазного тока вычисляется как сумма отдельных величин на каждой фазе и выражается формулой:

При условии равномерной загрузки сети, мощность, потребляемую каждой из них, определяют следующим образом: . То есть эту величину на отдельной фазе находят с помощью произведения соответствующих напряжений и токов на косинус угла сдвига фаз.

А так как нагрузка распределяется одинаково на каждую фазу, то и мощностные характеристики по отдельности будут равны между собой. В результате мощность трехфазной сети в этой ситуации можно найти, умножив на 3 эту величину, вычисленную для отдельной фазы: .

Соединение звезда

Использование такой схемы при соединении фаз даёт возможность уравновесить систему и получить суммарное напряжение в точке их пересечения N равное нулю. В случае соединения по схеме «звезда» трёхфазный ток характеризуется двумя типами напряжений: фазным и линейным. Фазное напряжение измеряется между одной из фаз (А, В или С) и нулевой точкой N, а линейное показывает значение разности потенциалов между двумя фазами (А-В, В-С или А-С).

Соотношения между линейными и фазными напряжениями и токами при такой схеме соединения выглядит следующим образом: и .

А, следовательно, общая мощностная характеристика находится по формуле: .

Соединительная схема треугольник

При подключении нагрузок в трёхфазной цепи по принципу «треугольника» одинаковыми будут значения линейного и фазного напряжения, а величины силы тока (линейная и фазная) будут связаны соотношением: .

Результирующая формула для мощности 3-фазного тока при равномерной нагрузке на каждую фазу в этом соединении будет выглядеть как .

Измерение мощности

Измерять мощность трёхфазных цепей позволяют ваттметры, специальные приборы, предназначенные для этой цели. Их количество и способы подключения зависят от конкретной электрической цепи: её характеристик и схемы подключения нагрузок. Трёхфазные сети различают по количеству подводящих проводов и распределением нагрузки по фазам, а именно:

  • трёхпроводная система;
  • четырёхпроводная система;
  • равномерная нагрузка;
  • асимметричная нагрузка.

В зависимости от варианта комбинации системы и нагрузки определяется методика измерения мощности в электрической сети.

Симметричная нагрузка

Если система состоит из четырёх проводов (3 фазы и «ноль»), а нагрузка равномерно распределена между фазами, то для того, чтобы узнать суммарную величину мощности, достаточно иметь один прибор для измерения. Токовую обмотку ваттметра последовательно подключают в один из линейных проводов, а между линейным и нулевым проводами включается обмотка напряжения измерительного устройства. Этот вид подключения даёт возможность узнать количество ватт на одной фазе. А поскольку нагрузка в системе распределяется равномерно, то результирующую мощность трёхфазной сети находят умножением полученных показаний на количество фаз, то есть на 3.

В случае трёхпроводной системы обмотка напряжения измерительного прибора включается на линейное напряжение сети, а его токовая обмотка пропускает через себя линейный электропоток. Поэтому общая мощность сети будет больше показаний ваттметра в раз.

Неравномерное распределение потребителей

Цепи с несимметричной нагрузкой на фазах требуют использования нескольких ваттметров для определения мощностной характеристики. В системе, состоящей из четырёх проводов, нужно подключить три прибора таким образом, чтобы обмотки напряжений каждого были включены между нулевым проводом и одной из фаз. Общий результат находится путём суммирования отдельных показаний каждого ваттметра.

Трёхпроводная система потребует минимум двух ваттметров для определения мощности всей цепи. С входным токовым зажимом и оставшимся свободным линейным проводом соединяются обмотки напряжений каждого отдельного ваттметра. Полученные показания складывают и получают значение этой величины для трёхфазной цепи. Эта схема подключения измерительных приборов основана на первом законе Кирхгофа.

Подобные нюансы очень важны при проектировании трёхфазной сети для частного сектора. А также их стоит учитывать при правильном обслуживании уже действующих систем электропитания.

Расчет номинального тока электродвигателя | Заметки электрика

Здравствуйте, уважаемые читатели и гости сайта «Заметки электрика».

Решил написать статью о расчете номинального тока для трехфазного электродвигателя.

Этот вопрос является актуальным и кажется на первый взгляд не таким и сложным, но почему-то в расчетах зачастую возникают ошибки.

В качестве примера для расчета я возьму трехфазный асинхронный двигатель АИР71А4 мощностью 0,55 (кВт).

Вот его внешний вид и бирка с техническими данными.

Если двигатель Вы планируете подключать в трехфазную сеть 380 (В), то значит его обмотки нужно соединить по схеме «звезда», т.е. на клеммнике необходимо соединить выводы V2, U2 и W2 между собой с помощью специальных перемычек.

При подключении этого двигателя в трехфазную сеть напряжением 220 (В) его обмотки необходимо соединить треугольником, т.е. установить три перемычки: U1-W2, V1-U2 и W1-V2.

Если же Вы решите подключить этот двигатель в однофазную сеть 220 (В), то его обмотки также должны быть соединены треугольником.

Для информации: почитайте подробную статью о схемах соединения обмоток в «звезду» и «треугольник».

Для правильного выбора автоматического выключателя (или предохранителей) и тепловых реле для защиты двигателя, а также для выбора контактора для его управления, в первую очередь нам нужно знать номинальный ток двигателя для конкретной схемы соединения обмоток.

Обычно, номинальные токи указаны прямо на бирке, поэтому можно смело ориентироваться на них. Но иногда циферки не видны или стерты, а известна только лишь мощность двигателя или другие его параметры.

Такое очень часто встречается, но еще чаще бирка вообще отсутствует или так затерта, что на ней абсолютно ничего не видно — приходится только догадываться, что там изображено.

Но это отдельный случай и что делать в таких ситуациях, я расскажу Вам в ближайшее время.

В данной же статье я хочу акцентировать Ваше внимание на формулу по расчету тока двигателя, потому что даже не все «специалисты» ее знают, хотя может и знают, но не хотят вспомнить основы электротехники.

Внимание! Мощность на шильдике двигателя указывается не электрическая, а механическая, т.е. полезная механическая мощность на валу двигателя. Об этом отчетливо говорится в действующем ГОСТ Р 52776-2007, п.5.5.3:

Полезную механическую мощность обозначают, как Р2.

Чаще всего мощность двигателя указывают не в ваттах (Вт), а в киловаттах (кВт). Для тех кто забыл, читайте статью о том, как перевести ватты в киловатты и наоборот.

Еще реже, на бирке указывают мощность в лошадиных силах (л.с.), но такого я ни разу еще не встречал на своей практике. Для информации: 1 (л.с.) = 745,7 (Ватт).

Но нас интересует именно электрическая мощность, т.е. мощность, потребляемая двигателем из сети. Активная электрическая мощность обозначается, как Р1 и она всегда будет больше механической мощности Р2, т.к. в ней учтены все потери двигателя.

1. Механические потери (Рмех.)

К механическим потерям относятся трение в подшипниках и вентиляция. Их величина напрямую зависит от оборотов двигателя, т.е. чем выше скорость, тем больше механические потери.

У асинхронных трехфазных двигателей с фазным ротором еще учитываются потери между щетками и контактными кольцами. Более подробно об устройстве асинхронных двигателей Вы можете почитать здесь.

2. Магнитные потери (Рмагн.)

Магнитные потери возникают в «железе» магнитопровода. К ним относятся потери на гистерезис и вихревые токи при перемагничивании сердечника.

Величина магнитных потерь в статоре зависит от частоты перемагничивания его сердечника. Частота всегда постоянная и составляет 50 (Гц).

Магнитные потери в роторе зависят от частоты перемагничивания ротора. Эта частота составляет 2-4 (Гц) и напрямую зависит от величины скольжения двигателя. Но магнитные потери в роторе имеют малую величину, поэтому в расчетах чаще всего не учитываются.

3. Электрические потери в статорной обмотке (Рэ1)

Электрические потери в обмотке статора вызваны их нагревом от проходящих по ним токам. Чем больше ток, чем больше нагружен двигатель, тем больше электрические потери — все логично.

4. Электрические потери в роторе (Рэ2)

Электрические потери в роторе аналогичны потерям в статорной обмотке.

5. Прочие добавочные потери (Рдоб.)

К добавочным потерям можно отнести высшие гармоники магнитодвижущей силы, пульсацию магнитной индукции в зубцах и прочее. Эти потери очень трудно учесть, поэтому их принимают обычно, как 0,5% от потребляемой активной мощности Р1.

Все Вы знаете, что в двигателе электрическая энергия преобразуется в механическую. Если объяснить чуть подробнее, то при подведенной к двигателю электрической активной мощности Р1, некоторая ее часть затрачивается на электрические потери в обмотке статора и магнитные потери в магнитопроводе. Затем остаточная электромагнитная мощность передается на ротор, где она расходуется на электрические потери в роторе и преобразуется в механическую мощность. Часть механической мощности уменьшается за счет механических и добавочных потерь. В итоге, оставшаяся механическая мощность — это и есть полезная мощность Р2 на валу двигателя.

Все эти потери и заложены в единственный параметр — коэффициент полезного действия (КПД) двигателя, который обозначается символом «η» и определяется по формуле:

Кстати, КПД примерно равен 0,75-0,88 для двигателей мощностью до 10 (кВт) и 0,9-0,94 для двигателей свыше 10 (кВт).

Еще раз обратимся к данным, рассматриваемого в этой статье двигателя АИР71А4.

На его шильдике указаны следующие данные:

  • тип двигателя АИР71А4
  • заводской номер № ХХХХХ
  • род тока — переменный
  • количество фаз — трехфазный
  • частота питающей сети 50 (Гц)
  • схема соединения обмоток ∆/Y
  • номинальное напряжение 220/380 (В)
  • номинальный ток при треугольнике 2,7 (А) / при звезде 1,6 (А)
  • номинальная полезная мощность на валу Р2 = 0,55 (кВт) = 550 (Вт)
  • частота вращения 1360 (об/мин)
  • КПД 75% (η = 0,75)
  • коэффициент мощности cosφ = 0,71
  • режим работы S1
  • класс изоляции F
  • класс защиты IP54
  • название предприятия и страны изготовителя
  • год выпуска 2007

Расчет номинального тока электродвигателя

В первую очередь необходимо найти электрическую активную потребляемую мощность Р1 из сети по формуле:

Смотрите так же:  Подключение светодиодов к 24 вольта

Р1 = Р2/η = 550/0,75 = 733,33 (Вт)

Величины мощностей подставляются в формулы в ваттах, а напряжение — в вольтах. КПД (η) и коэффициент мощности (cosφ) — являются безразмерными величинами.

Но этого не достаточно, потому что мы не учли коэффициент мощности (cosφ), а ведь двигатель — это активно-индуктивная нагрузка, поэтому для определения полной потребляемой мощности двигателя из сети воспользуемся формулой:

S = P1/cosφ = 733,33/0,71 = 1032,85 (ВА)

Найдем номинальный ток двигателя при соединении обмоток в звезду:

Iном = S/(1,73·U) = 1032,85/(1,73·380) = 1,57 (А)

Найдем номинальный ток двигателя при соединении обмоток в треугольник:

Iном = S/(1,73·U) = 1032,85/(1,73·220) = 2,71 (А)

Как видите, получившиеся значения равны токам, указанным на бирке двигателя.

Для упрощения, выше приведенные формулы можно объединить в одну общую. В итоге получится:

Поэтому, чтобы определить номинальный ток двигателя, необходимо в данную формулу подставлять механическую мощность Р2, взятую с бирки, с учетом КПД и коэффициента мощности (cosφ), которые указаны на той же бирке или в паспорте на электродвигатель.

Ток двигателя при соединении обмоток в звезду:

Iном = P2/(1,73·U·cosφ·η) = 550/(1,73·380·0,71·0,75) = 1,57 (А)

Ток двигателя при соединении обмоток в треугольник:

Iном = P2/(1,73·U·cosφ·η) = 550/(1,73·220·0,71·0,75) = 2,71 (А)

Надеюсь, что все понятно.

Решил привести еще несколько примеров с разными типами двигателей и мощностями. Рассчитаем их номинальные токи и сравним с токами, указанными на их бирках.

1. Асинхронный двигатель 2АИ80А2ПА мощностью 1,5 (кВт)

Как видите, этот двигатель можно подключить только в трехфазную сеть напряжением 380 (В), т.к. его обмотки собраны в звезду внутри двигателя, а в клеммник выведено всего три конца, поэтому:

Iном = P2/(1,73·U·cosφ·η) = 1500/(1,73·380·0,85·0,82) = 3,27 (А)

Полученный ток 3,27 (А) соответствует номинальному току 3,26 (А), указанному на бирке.

2. Асинхронный двигатель АОЛ2-32-4 мощностью 3 (кВт)

Данный двигатель можно подключать в трехфазную сеть напряжением, как на 380 (В) звездой, так и на 220 (В) треугольником, т.к. в клеммник у него выведено 6 концов:

Iном = P2/(1,73·U·cosφ·η) = 3000/(1,73·380·0,83·0,83) = 6,62 (А) — звезда

Iном = P2/(1,73·U·cosφ·η) = 3000/(1,73·220·0,83·0,83) = 11,44 (А) — треугольник

Полученные значения токов при разных схемах соединения обмоток соответствуют номинальным токам, указанных на бирке.

3. Асинхронный двигатель АИРС100А4 мощностью 4,25 (кВт)

Iном = P2/(1,73·U·cosφ·η) = 4250/(1,73·380·0,78·0,82) = 10,1 (А) — звезда

Iном = P2/(1,73·U·cosφ·η) = 4250/(1,73·220·0,78·0,82) = 17,45 (А) — треугольник

Расчетные значения токов при разных схемах соединения обмоток соответствуют номинальным токам, указанных на шильдике двигателя.

4. Высоковольтный двигатель А4-450Х-6У3 мощностью 630 (кВт)

Этот двигатель можно подключить только в трехфазную сеть напряжением 6 (кВ). Схема соединения его обмоток — звезда.

Iном = P2/(1,73·U·cosφ·η) = 630000/(1,73·6000·0,86·0,947) = 74,52 (А)

Расчетный ток 74,52 (А) соответствует номинальному току 74,5 (А), указанному на бирке.

Дополнение

Представленные выше формулы это конечно хорошо и по ним расчет получается более точным, но есть в простонародье более упрощенная и приблизительная формула для расчета номинального тока двигателя, которая наибольшее распространение получила среди домашних умельцев и мастеров.

Все просто. Берете мощность двигателя в киловаттах, указанную на бирке и умножаете ее на 2 — вот Вам и готовый результат. Только данное тождество уместно для двигателей 380 (В), собранных в звезду. Можете проверить и поумножать мощности приведенных выше двигателей. Но лично я же настаиваю Вам использовать более точные методы расчета.

P.S. А вот теперь, как мы уже определились с токами, можно приступать к выбору автоматического выключателя, предохранителей, тепловой защиты двигателя и контакторов для его управления. Об этом я расскажу Вам в следующих своих публикациях. Чтобы не пропустить выход новых статей — подписывайтесь на рассылку сайта «Заметки электрика». До новых встреч.

Если статья была Вам полезна, то поделитесь ей со своими друзьями:

Расчет тока трехфазного двигателя — Всё о электрике в доме

Расчет мощности трехфазного тока

В статье для упрощения обозначений линейные величины напряжения, тока и мощности трехфазной системы будут даваться без индексов, т. е. U, I и P.

Мощность трехфазного тока равна тройной мощности одной фазы.

При соединении в звезду PY=3∙Uф∙Iф∙ cosφ =3∙Uф∙I∙ cosφ.

При соединении в треугольник P∆=3∙Uф∙Iф∙ cosφ =3∙U∙Iф∙ cosφ.

На практике применяется формула, в которой ток и напряжение обозначают линейные величины и для соединения в звезду и в треугольник. В первое уравнение подставим Uф=U/√3, а во второе Iф=I/√3, получим общую формулу P=√3∙U∙I ∙ cosφ.

1. Какую мощность P1 берет из сети трехфазный асинхронный двигатель, показанный на рис. 1 и 2, при соединении в звезду и треугольник, если линейное напряжение U=380 В, а линейный ток I=20 А при cosφ =0,7?

Вольтметр и амперметр показывают линейные значения, действующие значения.

Мощность двигателя по общей формуле будет:

P1=√3∙U∙I ∙ cosφ =√3∙380∙20∙0,7=9203 Вт=9,2 кВт.

Если подсчитать мощность через фазные значения тока и напряжения, то при соединении в звезду фазный ток равен Iф=I=20 А, а фазное напряжение Uф=U/√3=380/√3,

P1=3∙Uф∙Iф ∙ cosφ =3∙U/√3∙I∙ cosφ =3∙380/√3∙20∙0,7;

P1=3∙380/1,73∙20∙0,7=9225 Вт ≈9,2 кВт.

При соединении в треугольник фазное напряжение Uф=U, а фазный ток Iф=I/√3=20/√3; таким образом,

P1=3∙Uф∙Iф ∙ cosφ =3∙U∙I/√3∙ cosφ ;

P1=3∙380∙20/1,73∙0,7=9225 Вт ≈9,2 кВт.

2. В четырехпроводную сеть трехфазного тока между линейными и нулевым проводами включены лампы, а к трем линейным проводам подключается двигатель Д, как показано на рис. 3.

На каждую фазу включены 100 ламп по 40 Вт каждая и 10 двигателей мощностью по 5 кВт. Какие активную и полную мощности должен отдавать генератор Г при sin⁡φ=0,8? Каковы токи фазный, линейный и в нулевом проводе генератора при линейном напряжении U=380 В?

Общая мощность ламп Pл=3∙100∙40 Вт =12000 Вт =12 кВт.

Лампы находятся под фазным напряжением Uф=U/√3=380/1,73=220 В.

Общая мощность трехфазных двигателей Pд=10∙5 кВт =50 кВт.

Активная мощность, отдаваемая генератором, PГ и получаемая потребителем P1 равны, если пренебречь потерей мощности в проводах электропередачи:

P1= PГ=Pл+Pд=12+50=62 кВт.

Полная мощность генератора S=PГ/ cosφ =62/0,8=77,5 кВА.

В этом примере все фазы одинаково нагружены, а потому в нулевом проводе в каждое мгновение ток равен нулю.

Фазный ток обмотки статора генератора равен линейному току линии (Iф=I), а его значение можно получить, воспользовавшись формулой для мощности трехфазного тока:

I=P/(√3∙U ∙ cosφ )=62000/(√3∙380∙0,8)=117,8 А.

3. На рис. 4 показано, что к фазе B и нулевому проводу подключена плитка мощностью 500 Вт, а к фазе C и нулевому проводу – лампа 60 Вт. К трем фазам ABC подключены двигатель мощностью 2 кВт при cosφ =0,7 и электрическая плита мощностью 3 кВт.

Чему равны общая активная и полная мощности потребителей? Какие токи проходят в отдельных фазах при линейном напряжении сети U=380 В?

Активная мощность потребителей P=500+60+2000+3000=5560 Вт=5,56 кВт.

Полная мощность двигателя S=P/ cosφ =2000/0,7=2857 ВА.

Общая полная мощность потребителей будет: Sобщ=500+60+2857+3000=6417 ВА =6,417 кВА.

Ток электрической плитки Iп=Pп/Uф =Pп/(U⁄√3)=500/220=2,27 А.

Ток лампы Iл=Pл/Uл =60/220=0,27 А.

Ток электрической плиты определим по формуле мощности для трехфазного тока при cosφ =1 (активное сопротивление):

Ток двигателя IД=P/(√3∙U∙ cosφ )=2000/(√3∙380∙0,7)=4,34 А.

В проводе фазы A течет ток двигателя и электрической плиты:

В фазе B течет ток двигателя, плитки и электрической плиты:

В фазе C течет ток двигателя, лампы и электрической плиты:

Везде даны действующие значения токов.

На рис. 4 показано защитное заземление З электрической установки. Нулевой провод заземляется наглухо у питающей подстанции и потребителя. Все части установок, к которым возможно прикосновение человека, присоединяются к нулевому проводу и тем самым заземляются.

При случайном заземлении одной из фаз, например C, возникает однофазное короткое замыкание и предохранитель или автомат этой фазы отключает ее от источника питания. Если человек, стоящий на земле, коснется неизолированного провода фаз A и B, то он окажется только под фазным напряжением. При незаземленной нейтрали фаза C не была бы отключена и человек оказался бы под линейным напряжением по отношениям к фазам A и B.

4. Какую подводимую к двигателю мощность покажет трехфазный ваттметр, включенный в трехфазную сеть с линейным напряжением U=380 В при линейном токе I=10 А и cosφ =0,7? К. п. д. двигателя η=0,8? Чему равна мощность двигателя на валу (рис. 5)?

Ваттметр покажет подводимую к двигателю мощность P1 т. е. мощность полезную P2 плюс потери мощности в двигателе:

P1=√(3∙) U∙I∙ cosφ =1,73∙380∙10∙0,7=4,6 кВт.

Полезная мощность, за вычетом потерь в обмотках и стали, а также механических в подшипниках

5. Трехфазный генератор отдает ток I=50 А при напряжении U=400 В и cosφ =0,7. Какая механическая мощность в лошадиных силах необходима для вращения генератора при к. п. д. генератора η=0,8 (рис. 6)?

Активная электрическая мощность генератора, отдаваемая электродвигателю, PГ2=√(3∙) U∙I∙ cosφ =√3∙400∙50∙0,7=24220 Вт =24,22 кВт.

Механическая мощность, подводимая к генератору, PГ1 покрывает активную мощность PГ2 и потери в нем: PГ1=PГ2/ηГ =24,22/0,8≈30,3 кВт.

Эта механическая мощность, выраженная в лошадиных силах, равна:

PГ1=30,3∙1,36≈41,2 л. с.

На рис. 6 показано, что к генератору подводится механическая мощность PГ1. Генератор преобразует ее в электрическую, которая равна

PГ2=PГ1∙ηГ. Эта мощность, активная и равна PГ2=√3∙U∙I∙ cosφ. передается по проводам электродвигателю, в котором она преобразуется в механическую мощность. Кроме того, генератор посылает электродвигателю реактивную мощность Q, которая намагничивает двигатель, но в нем не расходуется, а возвращается в генератор.

Она равна Q=√3∙U∙I∙sin⁡φ и не превращается ни в тепло, ни в механическую мощность. Полная мощность S=P⁄ cosφ. как мы видели раньше, определяет только степень использования материалов, затраченных на изготовление машины.

6. Трехфазный генератор работает при напряжении U=5000 В и токе I=200 А при cosφ =0,8. Чему равен его к. п. д. если мощность, отдаваемая двигателем, вращающим генератор, равна 2000 л. с.

Мощность двигателя, поданная на вал генератора (если нет промежуточных передач),

Мощность, развиваемая трехфазным генератором,

PГ2=√(3∙) U∙I∙ cosφ =1,73∙5000∙200∙0,8=1384000 Вт =1384 кВт.

Смотрите так же:  Выбор заземляющего провода

К. п. д. генератора η= PГ2/PГ1 =1384/1472=0,94=94%.

7. Какой ток проходит в обмотке трехфазного трансформатора при мощности 100 кВА и напряжении U=22000 В при cosφ =1?

Полная мощность трансформатора S=√3∙U∙I=1,73∙22000∙I.

Отсюда ток I=S/(√3∙U)=(100∙1000)/(1,73∙22000)=2,63 А.

8. Какой ток потребляет трехфазный асинхронный двигатель при мощности на валу 40 л. с. при напряжении 380 В, если его cosφ =0,8, а к. п. д. η=0,9?

Мощность двигателя на валу, т. е. полезная, P2=40∙736=29440 Вт.

Подводимая к двигателю мощность, т. е. мощность, получаемая из сети,

Ток двигателя I=P1/(√3∙U∙I∙ cosφ )=32711/(1,73∙380∙0,8)=62 А.

9. Трехфазный асинхронный двигатель имеет на щитке следующие данные: P=15 л. с.; U=380/220 В; cosφ =0,8; η=85%; соединение – звезда. Величины, обозначенные на щитке, называются номинальными.

Чему равны активная, полная и реактивная мощности двигателя? Каковы величины токов: полного, активного и реактивного (рис. 7)?

Механическая мощность двигателя (полезная) равна:

Подводимая к двигателю мощность P1 больше полезной на величину потерь в двигателе:

Полная мощность S=P1/ cosφ =13/0,8=16,25 кВА;

Q=S∙sin⁡φ=16,25∙0,6=9,75 кВАр (см. треугольник мощностей).

Ток в соединительных проводах, т. е. линейный, равен: I=P1/(√3∙U∙ cosφ )=S/(√3∙U)=16250/(1,73∙380)=24,7 А.

Активный ток Iа=I∙ cosφ =24,7∙0,8=19,76 А.

Реактивный (намагничивающий) ток Iр=I∙sin⁡φ=24,7∙0,6=14,82 А.

10. Определить ток в обмотке трехфазного электродвигателя, если она соединена в треугольник и полезная мощность двигателя P2=5,8 л. с. при к. п. д. η=90%, коэфφциенте мощности cosφ =0,8 и линейном напряжении сети 380 В.

Полезная мощность двигателя P2=5,8 л. с. или 4,26 кВт. Поданная к двигателю мощность

P1=P2/η=4,26/0,9=4,74 кВт. I=P1/(√3∙U∙ cosφ )=(4,74∙1000)/(1,73∙380∙0,8)=9,02 А.

При соединении в треугольник ток в обмотке фазы двигателя будет меньше, чем ток подводящих проводов: Iф=I/√3=9,02/1,73=5,2 А.

11. Генератор постоянного тока для электролизной установки, рассчитанный на напряжение U=6 В и ток I=3000 А, в соединении с трехфазным асинхронным двигателем образует двигатель-генератор. К. п. д. генератора ηГ=70%, к. п. д. двигателя ηД=90%, а его коэфφциент мощности cosφ =0,8. Определить мощность двигателя на валу и подводимую к нему мощность (рис. 8 и 6).

Полезная мощность генератора PГ2=UГ∙IГ=6∙3000=18000 Вт.

Подводимая к генератору мощность равна мощности на валу P2 приводного асинхронного двигателя, которая равна сумме PГ2 и потерь мощности в генераторе, т. е. PГ1=PГ2/η=18000/0,7=25714 Вт.

Активная мощность двигателя, подаваемая к нему из сети переменного тока,

P1=P2/ηД =25714/0,9=28571 Вт =28,67 кВт.

12. Паровая турбина с к. п. д. ηТ=30% вращает генератор с к. п. д. ηГ=92% и cosφ =0,9. Какую подводимую мощность (л. с. и ккал/сек) должна иметь турбина, чтобы генератор обеспечивал ток 2000 А при напряжении U=6000 В? (Перед началом расчета см. рис. 6 и 9.)

Мощность генератора переменного тока, отдаваемая потребителю,

PГ2=√(3∙) U∙I∙ cosφ =1,73∙6000∙2000∙0,9=18684 кВт.

Подводимая к генератору мощность равна мощности P2 на валу турбины:

PГ1=P2=PГ2/ηГ =18684/0,92=20308 кВт.

Подводимая к турбине при помощи пара мощность

P1=P2/ηТ =20308/0,3=67693 кВт,

или P1=67693∙1,36=92062 л. с.

Подводимую мощность к турбине в ккал/сек определим по формуле Q=0,24∙P∙t;

13. Определить сечение провода длиной 22 м, по которому идет ток к трехфазному двигателю мощностью 5 л. с. напряжением 220 В при соединении обмотки статора в треугольник. cosφ =0,8; η=0,85. Допустимое падение напряжения в проводах ∆U=5%.

Подводимая к двигателю мощность при полезной мощности P2

По соединительным проводам протекает ток I=P1/(U∙√3∙ cosφ ) = 4430/(220∙√3∙0,8)=14,57 А.

В трехфазной линии токи складываются геометрически, поэтому падение напряжения в проводе следует брать ∆U. √3, а не ∆U. 2, как при однофазном токе. Тогда сопротивление провода:

где ∆U – в вольтах.

S=(ρ∙l)/r=1/57∙22/0,436=0,886 мм2 ≈1 мм2.

Сечение проводов в трехфазной цепи получается меньшим, чем в однофазной.

14. Определить и сравнить сечения проводов для постоянного переменного однофазного и трехфазного токов. К сети подсоединены 210 ламп по 60 Вт каждая на напряжение 220 В, находящиеся на расстоянии 200 м, от источника тока. Допустимое падение напряжения 2%.

а) При постоянном и однофазном переменном токах, т. е. когда имеются два провода, сечения будут одинаковыми, так как при осветительной нагрузке cosφ =1 и передаваемая мощность

а ток I=P/U=12600/220=57,3 А.

Допустимое падение напряжения ∆U=220∙2/100=4,4 В.

Сопротивление двух проводов r=∆U/I∙4,4/57,3=0,0768 Ом.

Для передачи мощности необходимо общее сечение проводов 2∙S1=2∙91,4=182,8 мм2 при длине провода 200 м.

б) При трехфазном токе лампы можно соединить в треугольник, по 70 ламп на сторону.

При cosφ =1 передаваемая по проводам мощность P=√3∙Uл∙I.

Допустимое падение напряжения в одном проводе трехфазной сети не ∆U⁄2 (как в однофазной сети), a ∆U⁄√3. Сопротивление одного провода в трехфазной сети будет:

Общее сечение проводов для передачи мощности 12,6 кВт в трехфазной сети при соединении в треугольник меньше, чем в однофазной: 3∙S3ф=137,1 мм2.

в) При соединении в звезду необходимо линейное напряжение U=380 В, чтобы фазное напряжение на лампах было 220 В, т. е. чтобы лампы включались между нулевым проводом и каждым линейным.

Ток в проводах будет: I=P/(U:√3)=12600/(380:√3)=19,15 А.

Сопротивление провода r=(∆U:√3)/I=(4,4:√3)/19,15=0,1325 Ом;

Общее сечение при соединении в звезду – самое маленькое, что достигается увеличением напряжения тока для передачи данной мощности: 3∙S3зв=3∙25,15=75,45 мм2.

Статьи и схемы

Полезное для электрика

Расчет параметров трехфазного асинхронного двигателя

Трехфазный асинхронный двигатель с коротко-замкнутым ротором серии 4А имеет технические данные, при­веденные в табл. 4. Определить высоту оси вращения h, число полюсов 2р, скольжение при номинальной нагрузке sHM. момент на валу Мном. начальный пусковой Мп и максимальный

М max момен­ты, номинальный и пусковой токи IHM и Iп в питающей сети при соединении обмоток статора звездой и треугольником.

Асинхронный трехфазный двигатель с короткозамкнутым ротором марки А02-82-6 имеет следующие паспортные данные: напряжение
U= 220 /380 В, номинальная мощность Р2 = 40 кВт, частота вращения п2 = 980 об/мин, КПД η=91,5%, коэффициент мощности cos φ=0,91, кратность пу­скового тока КI = 5, кратность пускового момента KM = l,l, перегрузочная способность двигателя λ= 1,8. Определить число пар полюсов, номинальное сколь­жение, номинальные максимальный и пусковой вра­щающие моменты, номинальный и пусковой токи двигателя при соединении обмотки статора в «тре­угольник» и «звезду». Возможен ли пуск нагружен­ного двигателя, если подводимое напряжение на 10% ниже номинального и пуск производится переключением обмоток статора со «звезды» на «треугольник» от сети с напряжением U=220. В?

Решение. Для определения числа пар полюсов можно воспользоваться маркировкой двигателя, ча­стотой вращения магнитного поля или ротора.

Если известна маркировка, то последнее число в марке двигателя означает количество полюсов. В данном двигателе шесть полюсов; следовательно, три пары. При известной частоте вращения магнит­ного поля число пар полюсов определяем по формуле

По этой же формуле определяем число пар полюсов, если задана частота вращения ротора, но в этом случае получаемый результат округляем до ближайшего целого числа. Например, для заданных условий р = 60//п2 = 3000/980 = 3,06; отбросив сотые доли, получаем число пар полюсов двигателя—3.

Частота вращения магнитного поля

Номинальное значение скольжения

Мощность, потребляемая двигателем,

Номинальный вращающий момент двигателя

Для определения фазных, линейных и пусковых токов (фазными являются токи в обмотках статора, линейными—токи в подводящих проводах) нужно учесть следующее: если двигатель рассчитан на работу от сети переменного тока с напряжением, 220/380 В, то это значит, что каждая фаза обмотки статора рассчитана на напряжение 220 В. Обмотку необходимо включить по схеме «треугольник», если в сети линейное напряжение U =220 В, и по схеме «звезда», если в сети линейное напряжение U =380 В.

Определяем фазный, линейный и пусковой токи при линейном напряжении U =220 В и соединении обмотки статора по схеме «треугольник».

Фазный ток в обмотке статора

Найдем значения фазных, линейных и пусковых токов, если обмотки статора включены по схеме «звезда» и подключены к сети с линейным напряже­нием U =38О В.

Значение фазного тока найдем из формулы мощ­ностей для линейных значений токов и напряжений

При соединении обмоток в «звезду» линейный ток

Из сопоставления фазных, линейных и пусковых токов при различных соединениях обмоток можно заметить, что фазные токи оказались практически одинаковыми, а линейные и пусковые — различными.

Для определения возможности пуска в ход двигате­ля, находящегося под номинальной нагрузкой и пони­женным напряжением, необходимо определить пуско­вой вращающий момент при пониженном напряжении.

В соответствии с формулой M=CU 2 вращающий момент двигателя пропорционален квадрату подво­димого напряжения. При понижении напряжения на 10% вращающий момент

M’=C Uном = C Опубликовано в рубрике Советы экспертов

Похожие статьи:

  • Расчет тока медного провода Сечение провода по мощности. Расчёт сечения провода по мощности выполняется для того, чтобы убедиться в том, что выбранный провод отвечает требованиям надёжности и безопасной эксплуатации электропроводки. Если использовать сечение […]
  • Пускатель магнитный пм 12-010100 Купить Магнитный пускатель ПМ 12-010100 220В 10А Характеристики Отзывы Задать вопрос Дополнительно Вы можете задать любой интересующий вас вопрос по товару или работе магазина. Наши квалифицированные специалисты […]
  • Однофазный двигатель переменного тока с конденсатором Конденсаторный двигатель В ГОСТ 27471-87 [1] дано следующее определение:Конденсаторный двигатель - двигатель с расщепленной фазой, у которого в цепь вспомогательной обмотки постоянно включен конденсатор. Конденсаторный двигатель, хотя и […]
  • Батареи 380 вольт Солнечные панели Солнечные батареи, представленные в нашем магазине, сделаны в Китае, на одном из крупнейших заводов. По данным Европейской ассоциации производителей фотоэлектрических систем (EPIA), на данный момент около 70% компаний, […]
  • Как делается заземление ванны Заземление ванны. Как правильно сделать заземление ванной комнаты в квартире Большинство современных людей свой день начинают с посещения ванной комнаты. Именно в ней совершаются гигиенические процедуры, а также происходит очищение, […]
  • Сечение кабеля витой пары UTP, 24AWG, 5, 5е, 6, композит, FTP - перевод сокращенных обозначений характеристик сетевого компьютерного кабеля и коннектора. В прайс-листах компьютерных фирм продающих витую пару - кабель медный и коннекторы rj-45 часто можно увидеть […]