Где происходит темновая фаза

Темновая фаза фотосинтеза

Темновая фаза фотосинтеза связана с реакциями фиксации углерода, которые проходят в строме хлоропласта и продолжаются в цитоплазме без непосредственного поглощения света. В процессе световой фазы фотосинтеза накапливается достаточно высокий уровень АТФ и НАДФ·Н. Однако сами по себе эти макроэргические соединения не способны синтезировать углеводы из CO2. Становится очевидным, что и темновая фаза фотосинтеза – сложный процесс, включающий большое количество последовательно идущих реакций, возможных только после осуществления световой фазы.

Общая схема взаимодействия световой и темновой фаз фотосинтеза

Существует несколько разных путей связывания CO2 в углеводы, встречающихся у растений разных экологических и систематических групп, но основным, характерным для всех растений, является так называемый C3-путь фотосинтеза, или цикл Кальвина.

Способ ассимиляции СО2 в углеводы, присущий всем растениям, был расшифрован только в середине XX века американским биохимиком Мэлвином Кальвином и его коллегами на примере одноклеточных зеленых водорослей (хлореллы и др.) и зеленых листьев шпината. Исследование этой проблемы продолжалось 10 лет – с 1946 по 1966 год. Вначале ученые вели поиск первичного акцептора CO2. После ряда экспериментов они установили, что первичную фиксацию CO2 осуществляет пятиуглеродный сахар – рибулозо-1,5-дифосфат РуДФ). Фиксация осуществляется следующим образом: сначала происходит присоединение CO2 к молекуле РуДФ. При этом образуется промежуточный продукт – очень неустойчивое шестиуглеродное соединение, из которого в присутствии воды образуются две молекулы трехуглеродного соединения – 3-фосфоглицериновой кислоты (3-ФГК). В этой реакции для связывания одной молекулы CO2 затрачивается три молекулы АТФ и две молекулы НАДФ·Н.

Схема первичной фиксации CO2

Реакцию фиксации углерода, открытую в 1948 году, катализирует очень крупный фермент из стромы хлоропласта – рибулозобисфосфаткарбоксилазаоксигеназа (сокращенно – РУБИСКО). Так как фермент РУБИСКО работает весьма медленно, необходимо, чтобы его молекул в хлоропластах было много. Действительно, этот фермент обычно составляет более 50 % общего количества белков хлоропластов. Многие исследователи утверждают, что это самый распространенный белок в живой природе.

Дальнейшие исследования лаборатории Кальвина способствовали установлению всех последующих реакций C3-пути фотосинтеза, обеспечивающих синтез углеводов.

За расшифровку механизма фиксации CO2 в процессе фотосинтеза М. Кальвин в 1961 году стал лауреатом Нобелевской премии по химии.

Цикл Кальвина

Цикл Кальвина состоит из трех стадий: карбоксилирования, восстановления и превращения.

Упрощенная схема цикла Кальвина – пути фиксации углерода при фотосинтезе

На первой стадии (карбоксилирование) фиксация углерода идет с участием ферментов и АТФ, полученной на световой фазе фотосинтеза; при этом образуются молекулы 3-фосфоглицериновой кислоты (3-ФГК). На второй стадии (восстановление) помимо АТФ используется НАДФ·Н. Здесь 3-ФГК восстанавливается до 3-фосфоглицеринового альдегида (З-ФГА), часть молекул которого идет на синтез 6-углеродного моносахарида (глюкозы или фруктозы). На третьей стадии (превращение) при повторении цикла другая часть молекул 3-ФГА используется для синтеза шестиатомного фосфорилированного моносахарида – фруктозо-1,5-дифосфата. Трехуглеродные фосфосахара вместе с множеством других продуктов метаболизма хлоропластов транспортируются в цитоплазму клетки, где образуют ди- и полисахариды (сахара, крахмал, целлюлозу или другие соединения).

В процессах темновой фазы фотосинтеза образуются углеводы – первичные органические вещества.

На определенном этапе темповой фазы фотосинтеза судьба трехуглеродных молекул 3-фосфоглицериновой кислоты может оказаться различной. Одни из них соединяются друг с другом и образуют шестиуглеродные сахара, которые, в свою очередь, могут полимеризоваться в крахмал, целлюлозу и др. Некоторые могут использоваться для синтеза аминокислот, карбоновых кислот, спиртов и пр. Но целый ряд молекул ФГК вовлекается в длинный ряд реакций, приводящих к превращению трехуглеродных молекул в молекулы пятиуглеродного сахара (РуДФ), которые могут снова ассимилировать углекислый газ и многократно повторять этот цикл до тех пор, пока растение живет и получает световую энергию. Все процессы темновой фазы фотосинтеза идут без непосредственного потребления света, но в них большую роль играют макроэргические соединения (АТФ и НАДФ·Н), образующиеся во время световой фазы фотосинтеза. Доказано, что для синтеза одной молекулы глюкозы в цикле Кальвина необходимы 12 молекул НАДФ·Н и 18 молекул АТФ, которые поставляются с тилакоидных мембран в результате фотохимических реакций световой фазы фотосинтеза.

Схема синтеза 3-фосфоглицеринового альдегида (ФГА) в хлоропласте

В процессе темновой фазы энергия макроэргических связей АТФ преобразуется в химическую энергию органических соединений – молекул углеводов. Это означает, что энергия солнечного света как бы консервируется в химических связях между атомами органических веществ, что имеет огромное значение для энергетики биосферы и жизнедеятельности всего населения нашей планеты.

Другие пути темновой фазы фотосинтеза

В настоящее время известны и другие пути ассимиляции углекислого газа наряду с системой его фиксации в цикле Кальвина (C3-пути фотосинтеза). Существует так называемый C4-путь ассимиляции углерода в фотосинтезе. Он может протекать при низких концентрациях CO2. Этот тип фиксации углекислого газа в фотосинтезе выработался в процессе эволюции у растений жарких, засушливых мест и наблюдается у кукурузы, сахарного тростника, проса, сорго, амаранта, лебеды, баклажанов и др., а также у растений, устойчивых к засолению почвы.

Существует и особый тип фотосинтеза у таких растений, как кактусы, молочаи, крассулы, каланхое, седумы и другие суккуленты, произрастающие в засушливых, безводных условиях. Эти растения запасают CO2 в виде органических кислот ночью, так как он поступает в клетки только тогда, когда открыты их устьица (днем они закрыты для предотвращения потери воды). Различные способы фиксации CO2 встречаются не только у растений. Особенности фотосинтеза у бактерий будут рассмотрены в следующем параграфе.

Факторы, влияющие на фотосинтез

На скорость фотосинтеза оказывают влияние многие факторы: количество (яркость) и продолжительность падающего света, его качественный состав; наличие влаги и минеральных веществ, поступающих в клетки; температура; концентрация CO2 и O2; суточные и сезонные ритмы; ветер и др.

У каждого вида растений при осуществлении ими фотосинтеза выработалась своя специфическая реакция на факторы внешней среды. При оптимальных условиях фотосинтез идет наиболее интенсивно. С ухудшением условий его темп обычно снижается. Например, для большинства высших растений умеренного пояса максимальная интенсивность фотосинтеза наблюдается при температуре 20–25 ºC. Однако, если концентрация CO2 в воздухе будет выше, температурный оптимум сместится до 35–38 ºC. Именно при этих температурах хорошо идут многие ферментативные реакции. Однако дальнейшее повышение температуры до 40–45 ºC приводит к резкому снижению скорости фотосинтеза. В то же время некоторые растения жарких пустынь способны осуществлять фотосинтез при температуре 58 ºC, а водоросли в слоевище лишайников в Антарктиде достигают максимальной интенсивности фотосинтеза при +5 ºC.

Оптимальные температурные условия для процесса фотосинтеза определяются прежде всего генотипом и условиями обитания растения. В летний день, в полуденные часы температура листьев может быть намного выше температуры воздуха. В таких условиях, как отмечает физиолог растений Сергей Семенович Медведев, у растений может наблюдаться «полуденная депрессия фотосинтеза» их клетки переполняются крахмалом, нарушается отток ассимилятов. От повреждений, наносимых солнечной радиацией, у растений имеется три уровня защиты. Первый – рассеивание энергии света в виде тепла. На втором уровне включается молекулярная система утилизации (каротиноиды, аскорбиновая кислота и др.) образующихся токсических продуктов. Если и второй уровень защиты не справляется, то токсические продукты вызывают повреждение в первую очередь тех молекул, которые особенно чувствительны к свету, например белка D1, входящего в состав фотосистемы II и обеспечивающего функции переносчика электронов из реакционного центра.

Смотрите так же:  Электрические схемы беговых дорожек

Лекция № 12. Фотосинтез. Хемосинтез

Фотосинтез

Фотосинтез — синтез органических веществ из углекислого газа и воды с обязательным использованием энергии света:

У высших растений органом фотосинтеза является лист, органоидами фотосинтеза — хлоропласты (строение хлоропластов — лекция №7). В мембраны тилакоидов хлоропластов встроены фотосинтетические пигменты: хлорофиллы и каротиноиды. Существует несколько разных типов хлорофилла (a, b, c, d), главным является хлорофилл a. В молекуле хлорофилла можно выделить порфириновую «головку» с атомом магния в центре и фитольный «хвост». Порфириновая «головка» представляет собой плоскую структуру, является гидрофильной и поэтому лежит на той поверхности мембраны, которая обращена к водной среде стромы. Фитольный «хвост» — гидрофобный и за счет этого удерживает молекулу хлорофилла в мембране.

Хлорофиллы поглощают красный и сине-фиолетовый свет, отражают зеленый и поэтому придают растениям характерную зеленую окраску. Молекулы хлорофилла в мембранах тилакоидов организованы в фотосистемы. У растений и синезеленых водорослей имеются фотосистема-1 и фотосистема-2, у фотосинтезирующих бактерий — фотосистема-1. Только фотосистема-2 может разлагать воду с выделением кислорода и отбирать электроны у водорода воды.

Фотосинтез — сложный многоступенчатый процесс; реакции фотосинтеза подразделяют на две группы: реакции световой фазы и реакции темновой фазы.

Световая фаза

Эта фаза происходит только в присутствии света в мембранах тилакоидов при участии хлорофилла, белков-переносчиков электронов и фермента — АТФ-синтетазы. Под действием кванта света электроны хлорофилла возбуждаются, покидают молекулу и попадают на внешнюю сторону мембраны тилакоида, которая в итоге заряжается отрицательно. Окисленные молекулы хлорофилла восстанавливаются, отбирая электроны у воды, находящейся во внутритилакоидном пространстве. Это приводит к распаду или фотолизу воды:

Ионы гидроксила отдают свои электроны, превращаясь в реакционноспособные радикалы •ОН:

Радикалы •ОН объединяются, образуя воду и свободный кислород:

Кислород при этом удаляется во внешнюю среду, а протоны накапливаются внутри тилакоида в «протонном резервуаре». В результате мембрана тилакоида с одной стороны за счет Н + заряжается положительно, с другой за счет электронов — отрицательно. Когда разность потенциалов между наружной и внутренней сторонами мембраны тилакоида достигает 200 мВ, протоны проталкиваются через каналы АТФ-синтетазы и происходит фосфорилирование АДФ до АТФ; атомарный водород идет на восстановление специфического переносчика НАДФ + (никотинамидадениндинуклеотидфосфат) до НАДФ·Н2:

2Н + + 2е — + НАДФ → НАДФ·Н2.

Таким образом, в световую фазу происходит фотолиз воды, который сопровождается тремя важнейшими процессами: 1) синтезом АТФ; 2) образованием НАДФ·Н2; 3) образованием кислорода. Кислород диффундирует в атмосферу, АТФ и НАДФ·Н2 транспортируются в строму хлоропласта и участвуют в процессах темновой фазы.

1 — строма хлоропласта; 2 — тилакоид граны.

Темновая фаза

Эта фаза протекает в строме хлоропласта. Для ее реакций не нужна энергия света, поэтому они происходят не только на свету, но и в темноте. Реакции темновой фазы представляют собой цепочку последовательных преобразований углекислого газа (поступает из воздуха), приводящую к образованию глюкозы и других органических веществ.

Первая реакция в этой цепочке — фиксация углекислого газа; акцептором углекислого газа является пятиуглеродный сахар рибулозобифосфат (РиБФ); катализирует реакцию фермент рибулозобифосфат-карбоксилаза (РиБФ-карбоксилаза). В результате карбоксилирования рибулозобисфосфата образуется неустойчивое шестиуглеродное соединение, которое сразу же распадается на две молекулы фосфоглицериновой кислоты (ФГК). Затем происходит цикл реакций, в которых через ряд промежуточных продуктов фосфоглицериновая кислота преобразуется в глюкозу. В этих реакциях используются энергии АТФ и НАДФ·Н2, образованных в световую фазу; цикл этих реакций получил название «цикл Кальвина»:

Кроме глюкозы, в процессе фотосинтеза образуются другие мономеры сложных органических соединений — аминокислоты, глицерин и жирные кислоты, нуклеотиды. В настоящее время различают два типа фотосинтеза: С3— и С4-фотосинтез.

С3-фотосинтез

Это тип фотосинтеза, при котором первым продуктом являются трехуглеродные (С3) соединения. С3-фотосинтез был открыт раньше С4-фотосинтеза (М. Кальвин). Именно С3-фотосинтез описан выше, в рубрике «Темновая фаза». Характерные особенности С3-фотосинтеза: 1) акцептором углекислого газа является РиБФ, 2) реакцию карбоксилирования РиБФ катализирует РиБФ-карбоксилаза, 3) в результате карбоксилирования РиБФ образуется шестиуглеродное соединение, которое распадается на две ФГК. ФГК восстанавливается до триозофосфатов (ТФ). Часть ТФ идет на регенерацию РиБФ, часть превращается в глюкозу.

Фотодыхание

Фотодыхание:
1 — хлоропласт; 2 — пероксисома; 3 — митохондрия.

Это светозависимое поглощение кислорода и выделение углекислого газа. Еще в начале прошлого века было установлено, что кислород подавляет фотосинтез. Как оказалось, для РиБФ-карбоксилазы субстратом может быть не только углекислый газ, но и кислород:

О2 + РиБФ → фосфогликолат (2С) + ФГК (3С).

Фермент при этом называется РиБФ-оксигеназой. Кислород является конкурентным ингибитором фиксации углекислого газа. Фосфатная группа отщепляется, и фосфогликолат становится гликолатом, который растение должно утилизировать. Он поступает в пероксисомы, где окисляется до глицина. Глицин поступает в митохондрии, где окисляется до серина, при этом происходит потеря уже фиксированного углерода в виде СО2. В итоге две молекулы гликолата (2С + 2С) превращаются в одну ФГК (3С) и СО2. Фотодыхание приводит к понижению урожайности С3-растений на 30–40% (С3-растения — растения, для которых характерен С3-фотосинтез).

С4-фотосинтез

С4-фотосинтез — фотосинтез, при котором первым продуктом являются четырехуглеродные (С4) соединения. В 1965 году было установлено, что у некоторых растений (сахарный тростник, кукуруза, сорго, просо) первыми продуктами фотосинтеза являются четырехуглеродные кислоты. Такие растения назвали С4-растениями. В 1966 году австралийские ученые Хэтч и Слэк показали, что у С4-растений практически отсутствует фотодыхание и они гораздо эффективнее поглощают углекислый газ. Путь превращений углерода в С4-растениях стали называть путем Хэтча-Слэка.

Для С4-растений характерно особое анатомическое строение листа. Все проводящие пучки окружены двойным слоем клеток: наружный — клетки мезофилла, внутренний — клетки обкладки. Углекислый газ фиксируется в цитоплазме клеток мезофилла, акцептор — фосфоенолпируват (ФЕП, 3С), в результате карбоксилирования ФЕП образуется оксалоацетат (4С). Процесс катализируется ФЕП-карбоксилазой. В отличие от РиБФ-карбоксилазы ФЕП-карбоксилаза обладает большим сродством к СО2 и, самое главное, не взаимодействует с О2. В хлоропластах мезофилла много гран, где активно идут реакции световой фазы. В хлоропластах клеток обкладки идут реакции темновой фазы.

Оксалоацетат (4С) превращается в малат, который через плазмодесмы транспортируется в клетки обкладки. Здесь он декарбоксилируется и дегидрируется с образованием пирувата, СО2 и НАДФ·Н2.

Пируват возвращается в клетки мезофилла и регенерирует за счет энергии АТФ в ФЕП. СО2 вновь фиксируется РиБФ-карбоксилазой с образованием ФГК. Регенерация ФЕП требует энергии АТФ, поэтому нужно почти вдвое больше энергии, чем при С3-фотосинтезе.

Строение С4-растений:
1 — наружный слой — клетки мезофилла; 2 — внут­ренний слой — клетки обкладки; 3 — «Кранц-анатомия»; 4, 5 — хлоро­пласты; 4 — много­числен­ные граны, крахмала мало; 5 — немного­числен­ные граны, крахмала много.

С4-фотосинтез:
1 — клетка мезофилла; 2 — клетка обкладки проводящего пучка.

Смотрите так же:  Асинхронный электродвигатель в разрезе

Где происходит световая фаза фотосинтеза, и где происходит темновая фаза?

Экономь время и не смотри рекламу со Знаниями Плюс

Экономь время и не смотри рекламу со Знаниями Плюс

Проверено экспертом

Фаза (световая)

1. Где происходит

Световая фаза фотосинтеза происходит в тилакоидах гран.

2.Процессы, происходящие в этой фазе

За счет световой энергии ппроисходит окисление хлорофилла. Восстановление происходит за счет, отбираемых у водорода электронов воды. Создается разность потенциалов между внутренней и наружной сторонами мембраны тилакоида и с помощью АТФ-синтетазы происходит восстановление НАДФ до НАДФ*Н2(никотиамидадениндинуклеотид фосфат восстановленная форма)

3. Результаты процесса

—фотолиз воды (разложение) при котором выделяется

—энергия света превращается в энергию химических связей АТФ и НАДФ*Н2

Фаза (темновая)

1. Где происходит

Темновая фаза фотосинтеза происходит в строме хлоропласта.

2.Процессы, происходящие в этой фазе

Происходит фиксация СО2(углекислого газа).

В реакциях цикла Кальвина происходит восстановление СО2 за счет АТФ и восстановительной силы НАДФ*Н2(никотиамидадениндинуклеотид фосфат восстановленная форма), образованных в световую фазу.

Науколандия

Статьи по естественным наукам и математике

Темновая фаза фотосинтеза

Темновая фаза фотосинтеза заключается в синтезе органических веществ за счет АТФ и НАДФ·H2, полученных в световую фазу. Более точно: в темновую фазу происходит связывание углекислого газа (CO2).

Процесс этот многоступенчатый, в природе существуют два основных пути: C3-фотосинтез и C4-фотосинтез. Латинская буква C обозначает атом углерода, цифра после нее — количество атомов углерода в первичном органическом продукте темновой фазы фотосинтеза. Так в случае C3-пути первичным продуктом считается трехуглеродная фосфоглицериновая кислота, обозначаемая как ФГК. В случае C4-пути первым органическим веществом при связывание углекислого газа является четырехуглеродная щавелевоуксусная кислота (оксалоацетат).

C3-фотосинтез также называется циклом Кальвина в честь изучившего его ученого. C4-фотосинтез включает в себя цикл Кальвина, однако состоит не только из него и называется циклом Хэтча-Слэка. В умеренных широтах обычны C3-растения, в тропических — C4.

Темновые реакции фотосинтеза протекают в строме хлоропласта.

Цикл Кальвина

Первой реакцией цикла Кальвина является карбоксилирование рибулозо-1,5-бифосфата (РиБФ). Карбоксилирование — это присоединение молекулы CO2, в результате чего образуется карбоксильная группа -COOH. РиБФ — это рибоза (пятиуглеродный сахар), у которой к концевым атомам углерода присоединены фосфатные группы (образуемые фосфорной кислотой):

Химическая формула РиБФ

Реакция катализируется ферментом рибулозо-1,5-бифосфат-карбоксилаза-оксигеназа (РуБисКО). Он может катализировать не только связывание углекислого газа, но и кислорода, о чем говорит слово «оксигеназа» в его названии. Если РуБисКО катализирует реакцию присоединения кислорода к субстрату, то темновая фаза фотосинтеза идет уже не по пути цикла Кальвина, а по пути фотодыхания, что в принципе является вредным для растения.

Катализ реакции присоединения CO2 к РиБФ происходит в несколько шагов. В результате образуется неустойчивое шестиуглеродное органическое соединение, которое тут же распадается на две трехуглеродные молекулы фосфоглицериновой кислоты (ФГК).

Химическая формула фосфоглицериновой кислоты

Далее ФГК за несколько ферментативных реакций, протекающих с затратой энергии АТФ и восстановительной силы НАДФ·H2, превращается в фосфоглицериновый альдегид (ФГА), также называемый триозофосфатом.

Меньшая часть ФГА выходит из цикла Кальвина и используется для синтеза более сложных органических веществ, например глюкозы. Она, в свою очередь, может полимеризоваться до крахмала. Другие вещества (аминокислоты, жирные кислоты) образуются при участии различных исходных веществ. Такие реакции наблюдаются не только в растительных клетках. Поэтому, если рассматривать фотосинтез как уникальное явление содержащих хлорофилл клеток, то он заканчивается синтезом ФГА, а не глюкозы.

Большая часть молекул ФГА остается в цикле Кальвина. С ним происходит ряд превращений, в результате которых ФГА превращается в РиБФ. При этом также используется энергия АТФ. Таким образом, РиБФ регенерируется для связывания новых молекул углекислого газа.

Цикл Хэтча-Слэка

У многих растений жарких мест обитания темновая фаза фотосинтеза несколько сложнее. В процессе эволюции C4-фотосинтез возник как более эффективный способ связывания углекислого газа, когда в атмосфере возросло количество кислорода, и РуБисКО стал тратиться на неэффективное фотодыхание.

У C4-растений существует два типа фотосинтезирующих клеток. В хлоропластах мезофилла листьев происходит световая фаза фотосинтеза и часть темновой, а именно связывание CO2 с фосфоенолпируватом (ФЕП). В результате образуется четырехуглеродная органическая кислота. Далее эта кислота транспортируется в хлоропласты клеток обкладки проводящего пучка. Здесь от нее ферментативно отщепляется молекула CO2, которая далее поступает в цикл Кальвина. Оставшаяся после декарбоксилирования трехуглеродная кислота — пировиноградная — возвращается в клетки мезофилла, где снова превращается в ФЕП.

Хотя цикл Хэтча-Слэка более энергозатратный вариант темновой фазы фотосинтеза, но фермент связывающий CO2 и ФЕП более эффективный катализатор, чем РуБисКО. Кроме того, он не вступает в реакцию с кислородом. Транспорт CO2 с помощью органической кислоты в более глубоколежащие клетки, к которым затруднен приток кислорода, приводит к тому, что концентрация углекислого газа здесь увеличивается, и РуБисКО почти не расходуется на связывание молекулярного кислорода.

Темновая фаза фотосинтеза

Локализация и условия

Реакции темновой фазы проходят в строме (матриксе) хлоропластов. Они не зависят от наличия света, т. к. необходимая для них энергия уже запасена в форме АТФ.

Для синтеза углеводов используется водород, полученный при фотолизе воды и связанный в молекулах НАДФН₂. Также необходимо наличие сахаров, к которым будет присоединяться атом углерода из молекулы СО₂.

Источником сахаров для прорастающих растений является эндосперм – запасные вещества, которые находятся в семени и получены от родительского растения.

Совокупность химических реакций темновой фазы фотосинтеза, ведущую к образованию глюкозы, открыл со своими сотрудниками М. Кальвин.

Рис. 1. Мелвин Кальвин в лаборатории.

Первым этапом фазы является получение соединений с тремя атомами углерода.

Для некоторых растений первым этапом будет образование органических кислот с 4 атомами углерода. Этот путь был открыт австралийскими учёными М. Хетчем и С. Слэком и называется С₄ – фотосинтезом.

Итогом С₄ – фотосинтеза также является глюкоза и другие сахара.

Связывание СО₂

За счёт энергии АТФ, полученной в световой фазе, в строме активируются молекулы рибулозофосфата. Он превращается в высокореакционное соединение рибулозодифосфат (РДФ), имеющее 5 атомов углерода.

Рис. 2. Схема присоединение СО₂ к РДФ.

Образуются две молекулы фосфоглицериновой кислоты (ФГК), имеющей три углеродных атома. На следующем этапе ФГК реагирует с АТФ и образует дифосфоглицериновую кислоту. ДиФГК взаимодействует с НАДФН₂ и восстанавливается до фосфоглицеринового альдегида (ФГА).

Все реакции происходят только под воздействием соответствующих ферментов.

ФГА образует фосфодиоксиацетон.

Образование гексозы

На следующем этапе путём конденсации ФГА и фосфодиоксиацетона образуется фруктозодифосфат, который содержит 6 атомов углерода и является исходным материалом для образования сахарозы и полисахаридов.

Рис. 3. Схема темновой фазы фотосинтеза.

Фруктозодифосфат может взаимодействовать с ФГА и другими продуктами темновой фазы, давая начало цепям 4-, 5-, 6-, 7-углеродных сахаров. Одним из устойчивых продуктов фотосинтеза является рибулозофосфат, который снова включается в цикл реакций, взаимодействуя с АТФ. Чтобы получить молекулу глюкозы проходит 6 циклов реакций темновой фазы.

Углеводы являются основным продуктом фотосинтеза, но также из промежуточных продуктов цикла Кальвина образуются аминокислоты, жирные кислоты, гликолипиды.

Таким образом, в организме растения многие функции зависят от того, что происходит в темновой фазе фотосинтеза. Вещества, полученные в этой фазе, используются в биосинтезе белков, жиров, дыхании и других внутриклеточных процессах.

Что мы узнали?

Изучая в 10 классе фотосинтез, мы разобрались какие процессы происходят в обеих его фазах. Темновая фаза характеризуется следующими признаками: образование органических веществ, превращение АТФ в АДФ и высвобождение энергии, поглощение углекислого газа. Ключевое значение в цикле Кальвина имеют: рибулозодифосфат, как акцептор СО₂, фруктозодифосфат, как первый шестиатомный углевод, включающий связанный атом углерода СО₂.

Смотрите так же:  Молниезащита и заземление здания

Темновая фаза фотосинтеза

За световой фазой следует темновая фаза фотосинтеза, во время которой происходит синтез моносахаридов (глюкозы) из углекислого газа с затратой энергии АТФ и восстановительных эквивалентов (НАДФН). Синтез глюкозы является результатом целого ряда последовательных ферментативных реакций, которые назвали циклом Кальвина. Как было сказано ранее в разделе «Кислородный этап энергетического обмена», в цикле Кребса в митохондриях от молекул органических кислот отрываются молекулы углекислого газа (CO2), промежуточные продукты цикла последовательно окисляются, отрываемые от них атомы водорода присоединяются к НАД + (т.е. образуется НАДН). В цикле Кальвина происходит все наоборот, к молекулам субстрата присоединяется молекулы углекислого газа (СО2), и они восстанавливаются за счет НАДФН (т.е образуется НАДФ + ).

Началом синтеза глюкозы является присоединение молекулы углекислого газа к молекуле пятиуглеродного сахара – рибулозо-1,5-бисфосфата. При этом образуется шестиуглеродная молекула, которая сразу же распадается на две молекулы трехуглеродной фосфоглицериновой кислоты, которая восстанавливается до трехуглеродных сахаров с затратой АТФ и НАДФН. В результате их дальнейших перестроек и конденсаций образуются рибулозомонофосфат и глюкоза — конечный продукт фотосинтеза. Рибулозомонофосфат фосфорилируется АТФ до рибулозобисфостата, который вновь вступает в цикл Кальвина. На образование одной молекулы глюкозы затрачивается 18 молекул АТФ и 12 молекул НАДФН, накопленных в процессе световой фазы фотосинтеза. Следовательно, для темновой фазы фотосинтеза можно представить следующее общее уравнение:

6СО2 + 12НАДФН + 12Н + + 18АТФ —> С6Н12О6 + 6Н2О + 12НАДФ + + 18АДФ + 18Фн

Даже если учесть частичные потери энергии на различных стадиях темновой фазы, общий КПД фотосинтеза остается очень высоким и составляет приблизительно 60%.

У некоторых растений (например, сахарного тростника или кукурузы) процесс фотосинтеза идет вначале не через трехуглеродные, а через четырехуглеродные соединения. Эти растения называются С4-растениями. В отличие от С3-растений им характерен быстрый рост и высокая эффективность фотосинтеза, который протекает даже при очень низких концентрациях углекислого газа. В этом случае углекислый газ присоединяется не к рибулозобисфосфату, а к одному из промежуточных продуктов гликолиза – фосфоенолпирувату. В результате образуются четырехуглеродные яблочная или аспарагиновая кислоты, которые диффундируют в клетки обкладки сосудистых пучков, где от них отщепляется СО2, вступая в цикл Кальвина. В этих клетках слабо выражено фотодыхание, связанное с окислением рибулозобисфосфата кислородом, поэтому энергозатраты на фотосинтез резко снижаются (на 50%). В последние годы благодаря необычайно высокой биологической продуктивности С4-растения привлекают внимание ученых как потенциальный источник органического сырья.

Происходит ли темновая фаза фотосинтеза в темноте?

Относится к разделам:

Мифы образования и учебы

Нередко в школьных учебниках, из уст учителей биологии и на просторах интернета можно встретить интересную фразу: у растений темновая фаза фотосинтеза происходит (или может происходить) в темноте. Эту фразу как попугаи повторяют и школьники, и студенты. Иногда даже договариваются до того, что темнота якобы совершенно необходима для осуществления темновой фазы. Попробуем разобраться, так ли это.
Свет нужен только для того, чтобы в хлоропластах шел синтез АТФ и НАДФН. Синтез этих веществ, а также образование молекулярного кислорода в результате фоторазложения воды являются итогами световой фазы.

Итогом темновой фазы является связывание углекислого газа и синтез глюкозы. Эти процессы могут происходить только потому, что в растительных клетках на свету произошёл синтез АТФ и НАДФН.

Если прекратить освещать хлоропласты, то приостанавливается и синтез глюкозы. Однако если в среду с хлоропластами в искусственно создаваемых условиях добавить АТФ и НАДФН, то синтез глюкозы возобновится и может идти в полной темноте.

Однако у зелёных растений в темноте темновая фаза фотосинтеза не происходит, так как очень быстро (за доли секунды) расходуются запасы АТФ и НАДФ (если вообще можно говорить о запасах этих молекул), которые синтезировались во время световой фазы.

В зелёном растении обе фазы зависят друг от друга поскольку для нормальной работы световой фазы необходимо возвращение в этот процесс переносчика водорода (НАДФ) и АДФ.

Итак, темновая фаза фотосинтеза в темноте не происходит. При затемнении растения она прекращается за доли секунды.

P.S. Вообще в биоэнергетике очень много мифов. Имеющий близкое отношение к теме миф — будто молекула АТФ является веществом, богатым энергией. Это не совмем так. Так, масса молекулы АТФ в несколько раз больше массы молекулы глюкозы. При этом, используя энергию одной молекулы глюкозы, можно синтезировать 38 молекул АТФ из АДФ, то есть образовать 38 макроэргических связей.

Дата публикации: 26-1-2011

Оценить статью можно после того, как в обсуждении будет хотя бы одно сообщение.

Где происходит темновая фаза

Б) фик­са­ция уг­ле­кис­ло­го газа

В) рас­щеп­ле­ние мо­ле­кул АТФ

Г) син­тез мо­ле­кул НАДФ · 2Н

Д) син­тез глюкозы

Запишите в ответ цифры, рас­по­ло­жив их в порядке, со­от­вет­ству­ю­щем буквам:

Фотосинтез — про­цесс об­ра­зо­ва­ния ор­га­ни­че­ских ве­ществ из уг­ле­кис­ло­го газа и воды за счет энер­гии света, при этом вы­де­ля­ет­ся кислород. Световая фаза про­ис­хо­дит толь­ко на свету в мем­бра­нах тилакоидов. Тем­но­вая фаза про­те­ка­ет в стро­ме хлоропласта. Для ее ре­ак­ций не нужна энер­гия света.

Све­то­вая фаза: фо­то­лиз воды, син­тез мо­ле­кул НАДФ · 2Н; темновая фаза: фик­са­ция уг­ле­кис­ло­го газа, рас­щеп­ле­ние мо­ле­кул АТФ, син­тез глю­ко­зы.

В ответе ошибка. Расщепление молекул АТФ происходит в световой фазе. Верный ответ: 12112.

Вы неправы. Синтез молекул АТФ происходит в световую фазу фотосинтеза за счет энергии возбужденных электронов хлорофилла квантами света. Расщепление молекул АТФ происходит в темновую фазу. В темновую фазу фотосинтеза синтезируется глюкоза. Источником энергии для синтеза глюкозы являются синтезируемые на первой стадии молекулы АТФ.

Похожие статьи:

  • Заземление в электротехнике это Что такое сопротивление заземления Заземляющее устройство обладает сопротивлением. Сопротивление заземления состоит из сопротивления, которое оказывает земля проходящему току (сопротивление растеканию), сопротивления заземляющих проводов […]
  • Марка многожильного медного провода Медный провод Что являет собой медный провод многожильный? Данное кабельно-проводниковое изделие используется для электрических установок при стационарной прокладке в силовых и осветительных сетях, а также для монтажа […]
  • Измерения сопротивления изоляции и коэффициента абсорбции Измерение сопротивления изоляции обмоток силовых трансформаторов Сопротивление изоляции обмоток силовых трансформаторов , имеющих параллельные ветви, производится между ветвями, если при этом параллельные ветви могут быть выделены в […]
  • Электрические монтажные схемы кранов Электрические схемы электроприводов мостовых кранов, управляемых с пола Схемы кранов и особенности защиты В промышленности при транспортно-складских работах невысокой интенсивности, в машинных залах и лабораторных помещениях используется […]
  • Термостойкие провода прка Термостойкий провод ПРКА Термостойкий монтажный провод ПРКА — провод с медной многопроволочной жилой, с изоляцией из кремний органической резины повышенной твердости. Провод ПРКА применяется в осветительных и тепловых приборах повышенной […]
  • Тепловые пушки электрические 220 вольт Тепловая пушка - проблема выбора. Посоветуйте тепловую пушку 5000 Вт и 220 вольт для ремонта автомобиля в железном гараже (4 на 6 метров) до -15 мороза. Мне не обязательно прогревать весь гараж, а только пространство вокруг себя (или […]