Грунт суглинок заземление

Оглавление:

Защитное заземление трансформаторной подстанции

Страницы работы

Содержание работы

6. Защитное заземление ТП.

Исходные данные для расчёта заземления по заданию:

1. Грунт – суглинок;

2. Длина вертикального электрода: lв = 2 м.;

3. Профиль заземляющего электрода – уголок 50´50 (№50).

Расчёт заземляющего устройства ведём по методике представленной в [1], п.. 14.2., стр. 239.

1. Устанавливаем необходимое по ПУЭ сопротивление заземляющего устройства равным Rз=4 Ом (по [1], стр. 238).

2. Определяем необходимое сопротивление искусственного заземлителя Rи с учётом использования естественного Rе , а также эквивалентного повторного заземлителя Rп , включенных параллельно, из выражения:

, (6.1)

Принимаем Rе = 0 , считая, что естественных заземлителей нет, а Rп = 0 Ом (по рекомендациям [1], стр. 238) т.к. на стороне 0,4 кВ нет ВЛ и ответвлений длиной более 200 м . Тогда:

, Ом

3. Определяем расчётное удельное сопротивление грунта с учётом повышающих коэффициентов, учитывающих высыхание грунта летом и промерзание его зимой по выражению

, (6.2)

где rтаб – значение удельного сопротивления грунта, для суглинка по ([1],

табл. 14.1) равно 100 Ом×м;

К – повышающий коэффициент, по рекомендациям ([1], стр. 240)

принимаем равным 1.6:

, Ом×м

4. Определяем сопротивление растеканию тока вертикального электрода по

, (6.3)

где lв – длина вертикального электрода, по заданию 2 м;

b – ширина полки уголка, по заданию 0,05 м;

t – глубина заложения вертикального электрода, равная расстоянию от

поверхности земли до середины электрода

, (6.4)

где tв – расстояние от поверхности земли до верхнего конца

электрода(см. рис. 6.1).

, м

, м

5. Определяем теоретическое число вертикальных электродов (без учёта влияния горизонтальной полосы связи и коэффициентов использования электродов):

,

nT принимаем равным 15.

6. Определяем длину горизонтальной полосы связи при расположении вертикальных электродов в ряд по выражению:

; (6.5)

где а – шаг между вертикальными электродами, принимаем равным 0,5lв =

, м

7. Определяем сопротивление полосы связи по выражению:

, (6.6)

где b – ширина полосы связи, м;

tГ – глубина заложения горизонтальной полосы, равная расстоянию от

поверхности земли до полосы. По [1],стр.242 tг = 0,6 м.

, Ом

8. Определяем коэффициенты использования вертикальных электродов hв и горизонтальной полосы hГ для вертикальных электродов расположенных в ряд:

, (6.7)

, (6.8)

где т = а/lв = 1/2 = 0,5

,

,

9. Определяем действительное число вертикальных электродов с учетом полосы связи и коэффициентов использования:

,

т.к. nД > nT , то к монтажу принимаем nД (28) и производим проверочный расчет. Принимаем а=2м.

, м

, Ом

,

где т = а/lв = 2/2 = 1

,

Удельное сопротивление грунта.

Основное влияние на величину сопротивления заземлителей оказывает верхний слой грунта на глубине до 20-25 м.
Для чего нужно знать приблизительное значение удельного сопротивления? —
Его необходимо знать при расчете и устройстве заземлений.
Как сопротивление грунта влияет на монтаж?
Ответ прост — чем меньше его значение, тем легче произвести установку заземления, соответственно с меньшими финансовыми и трудовыми затратами. Если ещё проще — в гунте с маленьким уд. сопротивлением потребуется заземлитель/ли гораздо меньшей длины, для достижения требуемого сопротивления растеканию тока, для заземления электроустановки, газового котла, молниезащиты и т.п..
Например, при выполнении работ по монтажу в сухой глине — потребуется гораздо меньшая длина заземлителя/лей чем в сухом песке.
Использование значений из таблиц может привести к неточному результату при расчётах. Для более точных показаний следует измерять удельное сопротивление грунта непосредственно на месте монтажа контура заземления.

Cредние значения (Ом*м) удельного сопротивления грунтов:

Базальт 2 000
Бетон 40 — 1 000
Вода
Вода морская 0,2
Вода прудовая 40
Вода равнинной реки 50
Вода грунтовая 20 — 60
Вечномёрзлый грунт (многолетнемёрзлый грунт)
Вечномёрзлый грунт — талый слой (у поверхности летом) 500 — 1000
Вечномёрзлый грунт (суглинок) 20 000
Вечномёрзлый грунт (песок) 50 000
Глина
Глина влажная 20
Глина полутвёрдая 60
Гнейс разложившийся 275
Гравий
Гравий глинистый, неоднородный 300
Гравий однородный 800
Гранит 1 100 — 22 000
Графитовая крошка 0,1 — 2
Дресва (мелкий щебень/крупный песок) 5 500
Зола, пепел 40
Известняк поверхностный 3 000 — 5 000
Ил 30
Каменный уголь 150
Кварц 15 000
Кокс 2,5
Лёсс (желтозем) 250
Мел 60
Мергель
Мергель обычный 150
Мергель глинистый (50 — 75% глинистых частиц) 50
Песок
Песок, сильно увлажненный грунтовыми водами 10 — 60
Песок, умеренно увлажненный 60 — 130
Песок влажный 130 — 400
Песок слегка влажный 400 — 1 500
Песок сухой 1 500 — 4 200
Супесь (супесок) 150
Песчаник 1 000
Садовая земля 40
Солончак 20
Суглинок
Суглинок, сильно увлажненный грунтовыми водами 10 — 60
Суглинок полутвердый, лесовидный 100
Суглинок при температуре минус 5 С° 150
Супесь (супесок) 150
Сланец графитовый 55
Супесь (супесок) 150
Торф
Торф при температуре 10° 25
Торф при температуре 0 С° 50
Чернозём 60
Щебень
Щебень мокрый 3 000
Щебень сухой 5 000

=2.2. В зависимости от состава (чернозем, песок, глина и т. п.), размеров и плотности прилегания друг к другу частиц, влажности и температуры, наличия растворимых химических веществ (кислот, щелочей, продуктов гниения и т. д.) удельное сопротивление грунтов изменяется в очень широких пределах.
=2.3. Наиболее важными факторами, влияющими на величину удельного сопротивления грунта, являются влажность и температура. На рис. 2.1 и 2.2 в качестве примера приведены кривые изменения удельного сопротивления красной глины в
зависимости от влажности и температуры.
=2.4. В течение года в связи с изменением атмосферных и климатических условий содержание влаги в грунте :и его температураизменяются, а следовательно, изменяется и удельное сопротивление.
Наиболее резкие колебания удельного сопротивления наблюдаются в верхних слоях земли, которые зимой промерзают, а летом высыхают.
Из данных измерений следует, что при понижении температуры воздуха от 0 до— 10°С удельное сопротивление грунта на глубине 0,3 м увеличивается в 10 раз, а на глубине 0,5 м — в 3 раза.
Согласно наблюдениям в большинстве областей северной и средней части страны при отрицательных температурах воздуха грунт имеет положительную температуру на глубине, начиная от 0,8 м. Влажность грунта на этой глубине и ниже при изменении температуры воздуха изменяется сравнительно мало. В южных районах глубина промерзания грунтов изменяется в пределах от 0,1 до 0,5 м.
=2.5. При проектировании и строительстве заземляющих устройств необходимо знать максимальную величину удельного сопротивления слоя грунта на глубине, приблизительно в три раза превышающей глубину закладки заземлителя. Например, при забивке вертикального заземлителя длиной 2 метра на глубину 3 м необходимо знать среднее удельное сопротивление слоя грунта толщиною до 9 метров.
=2.6. Величина удельного сопротивления грунта определяется путем измерений в месте устройства заземления с учетом коэффициентов влажности и применяются в следующих случаях:
— если измеренная величина сопротивления грунта соответствует минимальному значению (грунт влажный, перед измерением выпадало много осадков);
— если измеренная величина удельного сопротивления грунта соответствует среднему значению (грунт средней влажности, перед измерением выпадало немного осадков);
— если измеренная величина удельного сопротивления грунта соответствует наибольшему значению (грунт сухой, перед измерением выпадало совсем мало осадков).

Искусственное снижение удельного сопротивления грунта.

Общее сопротивление заземления зависит от сопротивления прилегающих к заземлителю слоев грунта. Поэтому можно добиться снижения сопротивления заземления понижением удельного сопротивления грунта лишь в небольшой области вокруг заземлителя. Искусственное снижение удельного сопротивления грунта достигается либо химическим путем при помощи электролитов, либо путем укладки заземлителей в котлованы с насыпным углем, коксом, глиной. Опыт показал, что максимальное уменьшение сопротивления заземления достигается при использовании электролитов, древесного угля и коксовой мелочи. Первый способ заключается в том, что вокруг заземлителей грунт пропитывается растворами хлористого натрия (обыкновенной поваренной соли), хлористого кальция, сернокислой меди (медного купороса) и т. д. Следует отметить, что указанным способом можно добиться сравнительно большого снижения величины сопротивления заземления,. однако на непродолжительный срок (2—4 года), после чего требуется вновь пропитывать грунт электролитом.
2.52. Практически можно рекомендовать следующие два способа искусственного снижения удельного сопротивления грунта: создание вокруг заземлителя зоны с пониженным удельным сопротивлением и обработка грунта солью.
2 53. Для создания вокруг заземлителя зоны с пониженным удельным сопротивлением в грунте делается выемка (котлован) радиусом 1,5—2,0 м и глубиной, равной длине забиваемого стержня. После заполнения выемки грунтом устанавливается заземлитель и грунт утрамбовывается. В качестве грунта-заполнителя может быть применен любой грунт, имеющий удельное сопротивление в 5—10 раз меньше, чем удельное сопротивление основного грунта. Например, если заземление устраивается в песчаном или каменистом (гранит) грунте, то заполнителями могут быть, глина, торф, чернозем, суглинок, шлак и т. п. Таким способом достигается снижение сопротивления заземления в среднем в 2,5—3 раза.

Смотрите так же:  Инверторы с чистой синусоидой 12 220 вольт

Дайджест — Промышленная безопасность

Navigation

Заземления в условиях плохо проводящих грунтов

Устройство заземлений в плохо проводящих грунтах— песчаных, скалистых, вечномерзлых — встречает большие затруднения.[ . ]

Для снижения сопротивления заземляющего устройства в плохо проводящих грунтах может быть рекомендовано одно из следующих мероприятий: а) применение глубинных заземлителей; б) специальная обработка грунта; в) устройство выносных заземлений. Независимо от использования этих мероприятий в первую очередь следует изыскивать возможность использования естественных заземлителей.[ . ]

Следует при этом учесть, что при глубинных зазем-лителях не требуется вводить в расчеты повышающие коэффициенты на промерзание или высыхание грунта. Погружение, электродов в песок успешно производится механизированным способом при помощи вибраторов легкого типа.[ . ]

В качестве обрабатывающего вещества в грунтах с большим удельным сопротивлением успешно применяется также шлак, смоченный водой. ?По своей эффективности он, однако, уступает соли. Хорошие результаты [Л. 73] получены при обработке грунта суспензиями глины (раствор глины в виде порядка 100 г на литр).[ . ]

Обработка солью дает значительный эффект также и в скалистых грунтах. По данным измерений И. В. Сте-цулы и Н. С. Сиунова [Л. 3] даже такие плотные породы, как уральский «орлец», увеличивают проводимость при пропитке однопроцентным раствором поваренной соли на 75%; гранит при такой же пропитке увеличивает проводимость в 1 200 раз. Заземлитель в виде трубы наружного диаметра 50 мм, длиной 3 м, заложенный в котлован, вырытый в скалистом грунте и засыпанный щебнем из того же грунта, имел сопротивление 889 ом. После засыпки котлована смесью кокса с солью сопротивление трубы снизилось до 235 ом, после промерзания оно увеличилось до 267 ом и после оттаивания снизилось до 127 ом.[ . ]

Чтобы наиболее целесообразно решить вопрос об устройстве заземлений в этих условиях, необходимо иметь данные о грунте в месте, где должно быть устроено заземление, — удельное сопротивление, влажность, температуры на разной глубине до 2 м в разное время года. Удельное сопротивление грунта должно быть замерено на глубине, где температура не снижается ниже примерно —10° С. При более низких температурах удельные сопротивления грунтов настолько повышаются, что устройство в них заземлений вызывает слишком большие трудности. При относительно не слишком высоких удельных сопротивлениях мерзлых грунтов (гли- на, суглинок с удельным: сопротивлением порядка до 10 • 104 ом см) устройство местных контуров заземления экономически целесообразно. Для таких устройств с целью их удешевления необходима обработка грунта солью или смесью соли со шлаком, как это было указано выше.[ . ]

По данным ВЭИ можно считать, что при отрицательных температурах сопротивление растеканию трубчатых заземлителей после обработки солью снижается по сравнению с сопротивлением растеканию тех же, но не обработанных солью заземлителей при положительных температурах в суглинке — примерно в 1,5 раза, в супеске—в 2 раза и песке — в 2,5 раза.[ . ]

Обработанный солью суглинок имеет значительно меньшее возрастание удельного сопротивления при отрицательных температурах, чем грунт необработанный.[ . ]

Верхний конец трубы должен находиться в слое, имеющем устойчивую температуру не ниже —10° С (практически — не менее 1 м от поверхности земли), длина трубы — не менее 2,5 м.[ . ]

Такое решение, уже выполненное в ряде установок, дает большой экономический эффект, и необходимо накопление опыта эксплуатации этих установок.[ . ]

ЭСИС Электрические системы и сети

Информационно-справочный электротехнический сайт

Главное меню

Удельное сопротивление грунта

Удельное сопротивление грунта

Расчетное удельное электрическое сопротивление грунта (Ом*м) – параметр, определяющий собой уровень “электропроводности” земли как проводника, то есть как хорошо будет растекаться в такой среде электрический ток от заземлителя.

Это измеряемая величина, зависящая от состава грунта, размеров и плотности
прилегания друг к другу его частиц, влажности и температуры, концентрации в нем растворимых химических веществ (солей, кислотных и щелочных остатков).

Использование в расчетах

Электрическое удельное сопротивление грунта является основным параметром для расчета заземления.

Чем меньший размер имеет эта величина, тем меньше будет сопротивление заземления смонтированного устройства.

Величины расчетного электрического удельного сопротивления грунта (таблица)

Грунт

Удельное сопротивление, среднее значение (Ом*м)

Сопротивление заземления для комплекта
ZZ-000-015, Ом

Сопротивление заземления для комплекта
ZZ-000-030, Ом

Сопротивление заземления для комплекта
ZZ-100-102, Ом

Требуются специальные мероприятия по уменьшению
удельного сопротивления грунта. Например, замена грунта
(подробнее на отдельной странице).

1 000 – 4 000

87 – 347

47 – 189

39 – 165

100

9

5

4

60

5

3

2

10 – 60

0,8 – 5

0,5 – 3

0,4 – 2

Сопротивление заземления для комплектов ZZ-000-015 и ZZ-000-030, указанное в таблице, может использоваться
при различных конфигурациях заземлителя – и точечной, и многоэлектродной.

Вместе с таблицей ориентировочных величин расчетного удельного сопротивления грунта предлагаем Вам
воспользоваться географической картой уже смонтированных ранее заземлителей на базе готовых комплектов заземления ZandZ
с результатами замеров сопротивления заземления.

Глина, суглинок, супесь (различия)

Рыхлые осадочные грунты, состоящие из глины и песка, классифицируются по содержанию в них глинистых частиц:

  • глина– более 30%. Глина очень пластичная, хорошо скатывается в шнур (между ладонями). Скатанный из глины шар сдавливается в лепешку без образования трещин по краям.
    • тяжелая – более 60%
    • обычная – от 30 до 60% с преобладанием глинистых частиц
    • пылеватая – от 30 до 60% с преобладанием песка
  • суглинок– от 10% до 30% глины. Этот грунт достаточно пластичен, при растирании его между пальцами не чувствуются отдельные песчинки. Скатанный из суглинка шар раздавливается в лепешку с образованием трещин по краям.
    • тяжелый – от 20 до 30%
    • средний – от 15 до 20%
    • легкий – от 10 до 15%
  • супесь (супесок) – менее 10% глины. Является переходной формой от глинистых к песчаным грунтам. Супесь наименее пластичная из всех глинистых грунтов; при ее растирании между пальцами чувствуются песчинки; она плохо скатывается в шнур. Скатанный из супеси шар рассыпается при сдавливании.

Зависимости от условий

Зависимость удельного сопротивления грунта (суглинок) от его влажности
(данные из IEEE Std 142-1991):

Зависимость удельного сопротивления грунта (суглинок) от его температуры

(данные из IEEE Std 142-1991):

На этом графике хорошо видно, что при температуре ниже нуля грунт резко повышает свое удельное сопротивление, что связано с переходом воды в другое агрегатное состояние (из жидкого в твердое) – почти прекращаются процессы переноса заряда ионами солей и кислотными/щелочными остатками.

Расчёт заземления

В программе использована методика расчёта системы заземления в двухслойном грунте состоящей из вертикальных заземлителей, приведённая в «Инструкции по расчёту и проектированию электрохимической защиты от коррозии магистральных газопроводов» (СТО Газпром 2-3.5-047-2006).

Пояснения к расчёту

R — общее сопротивление растеканию электрического тока

R1 — сопротивление вертикального заземлителя

R2 — сопротивление горизонтального заземлителя

ρ — удельное электрическое сопротивление грунта

ρ1 — удельное электрическое сопротивление верхнего слоя грунта

ρ2 — удельное электрическое сопротивление нижнего слоя грунта

n — количество вертикальных заземлителей

L1 — длина вертикального заземлителя

L2 — длина горизонтального заземлителя

L3 — длина соединительной полосы до ввода в здание

D — диаметр вертикального заземлителя

b — ширина полки горизонтального заземлителя

H — глубина верхнего слоя грунта

h1 — расстояние до середины вертикального заземлителя

h2 — расстояние до середины горизонтального заземлителя

k1 — климатический коэффициент для вертикальных заземлителей

k2 — климатический коэффициент для горизонтальных заземлителей

η — коэффициент использования для вертикальных электродов

Пожелания, замечания, рекомендации по улучшению раздела расчётов на нашем сайте просьба присылать по электронной почте [email protected]

Разрешается копирование java-скриптов при условии ссылки на источник.

Комплект заземления на основе стержней 14,2 мм*1,5 EZ 36 Суглинок

Комплект заземления представляет собой модульно-штыревую конструкцию, рабочее состояние которой не зависит от климатических условий. Высокая устойчивость к коррозии обеспечивается благодаря медному покрытию вертикальных заземлителей, использованию специальной токопроводящей пасты и изолирующей самоклеющей ленты. Срок службы комплекта заземления в грунте может достигать 70 лет. Простая конструкция позволяет произвести монтаж даже одному человеку и занимает минимальную площадь

Фирма МИЛОР116 предлагает готовые комплекты заземления, Российского производства, которые содержат все необходимые для монтажа детали, легко соединяемые друг с другом.

Основным элементом комплекта заземления является стальной стержень, покрытый электролитом меди, диаметром14,2 мм, длиной 1,5 метра или диаметром 17,2 мм, длиной 1,2 метра. На концах стержня имеется резьба для соединения стержней с латунными муфтами.

Смотрите так же:  Приборы для измерения сопротивления и емкости

Для уменьшения сопротивления грунта при установке заземления на первый стержень надевается наконечник.

Для соединения стержня с заземляющим проводником, в качестве которого может использоваться провод, пруток либополоса, используется зажим уневерсальный.

При монтаже комплекта заземления, с целью уменьшения электрического сопротивления между стержнями и муфтами, а также защиты от коррозии, на резьбу деталей обязательно наносится паста токопроводящая.

Изолирующая лента (изготовлена из нетканого материала, пропитанного специальным составом), используемая для зажима при установке заземления, обеспечивает защиту деталей от почвенной и электрохимической коррозии. Также лента полностью вытесняет влагу из мест соединений элементов комплекта заземления.

Для погружения заземлителя в грунт можно использовать перфоратор совместно с насадкой для перфоратора SDS-Max из легированной конструкционной стали. Ударная нагрузка от отбойного молотка на заземляющий электрод передается с помощью удароприёмной головки для омеднёного стержня.

Количество элементов, входящих в комплект заземления, зависит от:

— типа грунта, исходя из их удельного сопротивления;
— числа очагов, необходимых для организации контура заземления.

Комплекты заземления, размещенные на сайте, рассчитаны для идеальных условий. Наши специалисты помогутподобрать необходимый комплект заземления для Вашего случая.

Организация контура заземления

Если вы приобрели частный дом или построили его на своем участке, то вам обязательно следует организовать контур заземления. Во первых это следует сделать для улучшения собственной электросети и конечно же для того, что бы выполнить требования организаций энергосбыта, в противном случае вам просто не дадут подключить ваш дом. Построив свой дом и столкнувшись с этим пунктов в условиях подключения многие не знают каким образом все должно быть грамотно организованно. Давайте разбираться по порядку.

Немного теории о заземлении

Заземление — соединение участка сети или электроприбора с устройством заземления. Другими словами, если мы подключим корпус нашего щита к проводнику контура заземления — мы его заземлим.

Заземляющее устройство — это все части заземления собранные воедино. Включает в себя заземлители, заземляющий проводник,

Заземлитель — это часть заземляющего устройства, другими словами вся та часть заземляющего устройства, которая находится под землей. Это вертикальные штыри, вбиваемые в землю, полоса, которой они соединены между собой и заземляющая часть проводника, отходящая от полосы и находящаяся под землей.

Электрод заземлителя — Это вертикальная составляющая заземлителя. Чаще всего в качестве электрода используется металлический уголок. Так же в качестве электрода заземлителя может быть использован штырь, труба, металлическая сетка.

Сопротивление заземления

Правильно организованное заземление должно выполнять свои функции ровно так, как ему и положено, а для этого ему необходимо соответствовать определенным характеристикам. Сопротивления заземления — одна из основных его характеристик. Именно она определяет на сколько хорошо электрические токи от устройства перейдут в заземлитель. Лучшим показателем сопротивления будет ноль, но в реальных условиях эту величину получить трудно.

для частных домов величина сопротивления заземления с электросетью 220 и 380 Вольт в системе TN-C-S не более 30 Ом, а в системе TT не более 500 Ом.

Как же правильно организовать заземляющее устройство, что бы сопротивление заземления было как можно лучше и какие факторы влияют на эту величину.

  • площадь поверхности заземлителя. Другими словами чем больше поверхность заземлителя тем лучше. Для того, что бы увеличить площадь заземлителя мы можем соединить несколько заземлителей, увеличить длину вертикальных заземлителей, увеличить количество заземлителей. В нашем случае проще всего конечно же увеличить длину заземлителей.
  • сопротивление грунта. Каждый вид грунта имеет собственно сопротивление, у кого то больше, у кого то меньше. Лучшими в этом плане грунтами являются суглинок, глина и торф. А вот непригодными являются каменистые грунты. Если рассмотреть в идеальных примерах то лучшим грунтом будет являться морская вода, а худшим сухой песок.

Устройство заземления

Заземлитель — его роль может выполнять стальной уголок, труба, стальной пруток. Основные требования к вертикальному заземлителю следующие:

  • при использовании стального уголка, прямоугольного профиля и металлической полосы толщина их стенки должна быть не менее 5 мм, а площадь поперечного сечения не менее 100 мм. кв.
  • при использовании прутка его диаметр должен быть не менее 18 мм
  • при использовании трубы толщина ее стенок должна быть не меньше 3,5 мм, а диаметр не менее 32 мм.

Чаще всего при обустройстве контура заземления используется металлический уголок 50 х 50 х 5 мм и металлическая полоса 40 х 4 мм.

Для того, чтоб организовать контур заземления, нам необходимо произвести разметку на нашем участке. Представим себе равносторонний треугольник 3 х 3 х 3 метра. По периметру этого треугольника необходимо выкопать траншею глубиной в 80 см, а по углам нашего треугольника вбить уголки, длинной не менее 3 метров. Чем больше длинна вертикального заземлителя, тем меньше сопротивление заземления, а на больших глубинах почва более влажная, что способствует лучшей проводимости почвы. К тому же глубина промерзания редко доходит до глубин более 2 метров.

Если у нас нет возможности организовать такой треугольник, можно сделать прямую траншею, глубиной в 80 см и длинной 5 метров, в которой через каждый метр необходимо вбить вертикальный заземлитель.

После монтажа вертикальных заземлителей их необходимо обварить предварительно подготовленной полосой. Никаких других способов соединения не допускается — только качественная сварка!

Далее нашу полосу мы в земле подводим к дому и выводим вертикально в электрический щит. Как выше указывалось, чаще всего мы используем полосу 40 х 4 мм.

Если у вас нет возможности вывести стальную полосу непосредственно в щит, то вы можете вывести часть полосы вертикально закрепив ее на стене дома. Далее на нее необходимо наварить болт, к которому присоединяется проводник заземления. Проводником заземления может быть медный проводник, сечением не менее 10 кв. мм, алюминиевый, сечением не менее 16 кв. мм. и стальной, сечением не менее 75 кв. мм. Заземляющий проводник необходимо надежно закрепить на полосе и провести в электрический щит. В щите же расключить согласно вашей схеме.

Схемы подключения заземления в щите

В системе TN-C-S

В системе TT

Замер сопротивления заземления

Для того, чтобы убедиться в качестве выполненного заземления, необходимо произвести соответствующие замеры. Грамотно произвести замер вам может помочь организация, проводящая измерения или электромонтажная организация, которой вы поручите выполнить монтаж контура заземления. Заземление — очень ответственная часть вашей электрической сети и должна быть выполнена в соответствии со всеми нормативными документами. Правильно выполненное заземление защитит вас от поражения электрическим током.

На этом я заканчиваю статью о заземлении, если у вас появились вопросы, вы можете смело задавать — я обязательно отвечу. До новых встреч в следующих статьях.

Расчёт заземления и его особенности

Важнейшей функцией заземления является электробезопасность. Перед его установкой в частном доме, на подстанции и в других местах необходимо произвести расчёт заземления.

Как выглядит заземление частного дома

Электрический контакт с землёй создаёт погруженная в грунт металлическая конструкция из электродов вместе с подключёнными проводами – всё это представляет собой заземляющее устройство (ЗУ).

Места соединения с ЗУ проводника, защитного провода или экрана кабеля называются точками заземления. На рисунке ниже изображено заземление из одного вертикального металлического проводника длиной 2500 мм, вкопанного в землю. Его верхняя часть размещается на глубине 750 мм в траншее, ширина которой в нижней части составляет 500 мм и в верхней – 800 мм. Проводник может быть связан сваркой с другими такими же заземлителями в контур горизонтальными пластинами.

Вид простейшего заземления помещения

После монтажа заземлителя траншея засыпается грунтом, а один из электродов должен выходить наружу. К нему подключается провод над поверхностью земли, который идет к шине заземления в электрощите управления.

При нахождении оборудования в нормальных условиях на точках заземления напряжение будет нулевым. В идеальном случае при коротком замыкании сопротивление ЗУ будет равно нулю.

При возникновении в заземлённой точке потенциала, должно произойти его зануление. Если рассмотреть любой пример расчёта, можно увидеть, что ток короткого замыкания Iз имеет определенную величину и не может быть бесконечно большим. Грунт обладает сопротивлением растекания тока Rз от точек с нулевым потенциалом до заземлителя:

Решение задачи правильного расчёта заземления особенно важно для электростанции или подстанции, где сосредоточено много оборудования, работающего под высоким напряжением.

Величина Rз определяется характеристиками окружающего грунта: влажностью, плотностью, содержанием солей. Здесь также важными параметрами являются конструкции заземлителей, глубина погружения и диаметр подключённого провода, который должен быть таким же, как у жил электропроводки. Минимальное поперечное сечение голого медного провода составляет 4 мм 2 , а изолированного – 1,5 мм 2 .

Смотрите так же:  Раки узо

Если фазный провод коснётся корпуса электроприбора, падение напряжения на нём определяется величинами Rз и максимально возможного тока. Напряжение прикосновения Uпр всегда будет меньше, чем Uз, поскольку его снижают обувь и одежда человека, а также расстояние до заземлителей.

На поверхности земли, где растекается ток, также существует разность потенциалов. Если она высокая, человек может попасть под шаговое напряжение Uш опасное для жизни. Чем дальше от заземлителей, тем оно меньше.

Величина Uз должна иметь допустимое значение, чтобы обеспечить безопасность человека.

Снизить величины Uпр и Uш можно, если уменьшить Rз, за счёт чего также уменьшится ток, протекающий через тело человека.

Если напряжение электроустановки превышает 1 кВ (пример – подстанции на промышленных предприятиях), создаётся подземное сооружение из замкнутого контура в виде рядов металлических стержней, забитых в землю и соединённых сваркой между собой при помощи стальных полос. За счёт этого производится выравнивание потенциалов между смежными точками поверхности.

Безопасная работа с электросетями обеспечивается не только за счёт наличия заземления электроприборов. Для этого ещё необходимы предохранители, автоматические выключатели и УЗО.

Заземление не только обеспечивает разность потенциалов до безопасного уровня, но и создаёт ток утечки, которого должно хватать для срабатывания защитных средств.

Соединять с заземлителем каждый электроприбор нецелесообразно. Подключения производят через шину, расположенную в квартирном щитке. Вводом для неё служит провод заземления или провод РЕ, проложенный от подстанции к потребителю, например, через систему TN-S.

Расчёт заземляющего устройства

Расчёт заключается в определении Rз. Для этого необходимо знать удельное сопротивление грунта ρ, измеряемое в Ом*м. За основу принимают его средние значения, которые сводят в таблицу.

Определение удельного сопротивления грунта

Из приведённых в таблице значений видно, что значение ρ зависит не только от состава грунта, но и от влажности.

Кроме того, табличные величины удельных сопротивлений умножают на коэффициент сезонности Kм, учитывающий промерзание грунта. В зависимости от низшей температуры ( 0 С) его значения могут быть следующими:

Значения коэффициента Kм зависят от способа заложения заземлителей. В числителе приведены его значения при вертикальном погружении заземлителей (с заложением вершин на глубине 0,5-0,7 м), а в знаменателе – при горизонтальном расположении (на глубине 0,3-0,8 м).

На выбранном участке ρ грунта может существенно отличаться от средних табличных значений из-за техногенных или природных факторов.

Когда проводятся ориентировочные расчёты, для одиночного вертикально заземлителя Rз ≈ 0,3∙ρ∙ Kм.

Точный расчёт защитного заземления производят по формуле:

Rз = ρ/2πl∙ (ln(2l/d)+0.5ln((4h+l)/(4h-l)), где:

  • l – длина электрода;
  • d – диаметр прута;
  • h – глубина залегания средней точки заземлителей.

Для n вертикальных электродов, соединённых сверху сваркой Rn = Rз/(n∙ Kисп), где Kисп – коэффициент использования электрода, учитывающий экранирующее влияние соседних (определяется по таблице).

Расположение заземляющих электродов

Формул расчёта заземления существует много. Целесообразно применять метод для искусственных заземлителей с геометрическими характеристиками в соответствии с ПУЭ. Напряжение питания составляет 380 В для трёхфазного источника тока или 220 В однофазного.

Нормированное сопротивление заземлителя, на которое следует ориентироваться, составляет не более 30 Ом для частных домов, 4 Ом – для источника тока при напряжении 380 В, а для подстанции 110 кВ – 0,5 Ом.

Для группового ЗУ выбирается горячекатаный уголок с полкой не менее 50 мм. В качестве горизонтальных соединительных перемычек используется полоса сечением 40х4 мм.

Определившись с составом грунта, по таблице выбирается его удельное сопротивление. В соответствии с регионом, подбирается повышающий коэффициент сезонности Kм.

Выбирается количество и способ расположения электродов ЗУ. Они могут быть установлены в ряд или в виде замкнутого контура.

Замкнутый контур заземления в частном доме

При этом возникает их экранирующее влияние друг на друга. Оно тем больше, чем ближе расположены заземлители. Значения коэффициентов использования заземлителей Kисп для контура или расположенных в ряд, отличаются.

Значения коэффициента Kисп при разных расположениях электродов

Влияние горизонтальных перемычек незначительно и в оценочных расчётах может не учитываться.

Примеры расчёта контура заземления

Для лучшего освоения методов расчёта заземления лучше рассмотреть пример, а лучше – несколько.

Заземлители часто делают своими руками из стального уголка 50х50 мм длиной 2,5 м. Расстояние между ними выбирается равным длине – h=2.5м. Для глинистого грунта ρ = 60 Ом∙м. Коэффициент сезонности для средней полосы, выбранный по таблицам, равен 1,45. С его учётом ρ = 60∙1,45 = 87 Ом∙м.

Для заземления по контуру роется траншея глубиной 0,5 м и в дно забивается уголок.

Размер полки уголка приводится к условному диаметру электрода:

d = 0.95∙p = 0.995∙0.05 = 87 Ом∙м.

Глубина залегания средней точки уголка составит:

h = 0,5l+t = 0.5∙2.5+0.5 = 1.75 м.

Подставив значения в ранее приведённую формулу, можно определить сопротивление одного заземлителя: R = 27.58 Ом.

По приближенной формуле R = 0.3∙87 = 26.1 Ом. Из расчёта следует, что одного стержня будет явно недостаточно, поскольку по требованиям ПУЭ величина нормированного сопротивления составляет Rнорм = 4 Ом (для напряжения сети 220 В).

Количество электродов определяется методом приближения по формуле:

Здесь вначале принимается kисп = 1. По таблицам находим для 7 заземлителей kисп = 0,59. Если подставить это значение в предыдущую формулу и снова пересчитать, получится количество электродов n = 12 шт. Затем производится новый перерасчёт для 12 электродов, где опять по таблице находится kисп = 0,54. Подставив это значение в ту же формулу, получим n = 13.

Таким образом, для 13 уголков Rn = Rз/(n*η) = 27,58/(13∙0,53) = 4 Ом.

Нужно изготовить искусственное заземление с сопротивлением Rнорм = 4 Ом, если ρ = 110 Ом∙м.

Заземлитель изготавливается из стержней диаметром 12 мм и длиной 5 м. Коэффициент сезонности по таблице равен 1,35. Ещё можно учесть состояние грунта kг. Измерения его сопротивления производились в засушливый период. Поэтому коэффициент составил kг =0,95.

На основе полученных данных за расчётное значение удельного сопротивления земли принимается следующая величина:

ρ = 1,35∙0,95∙110 = 141 Ом∙м.

Для одиночного стержня R = ρ/l = 141/5 = 28,2 Ом.

Электроды располагаются в ряд. Расстояние между ними должно быть не меньше длины. Тогда коэффициент использования составит по таблицам: kисп = 0,56.

Находим число стержней для получения Rнорм = 4 Ом:

После монтажа заземления производятся измерения электрических параметров на месте. Если фактическое значение R получается выше, ещё добавляются электроды.

Если рядом находятся естественные заземлители, их можно использовать.

Особенно часто это делается на подстанции, где требуется самая низкая величина R. Оборудование здесь используется максимально: подземные трубопроводы, опоры линий электропередач и др. Если этого недостаточно, добавляется искусственное заземление.

Естественное заземление на даче через арматуру фундамента

Устройство размещается внутри фундамента, где шина для подключения выводится наружу.

Любой приведённый пример можно использовать как алгоритм расчёта. При этом для оценки правильности может быть применена онлайн-программа.

Как выглядит онлайн-программа, с помощью которой можно рассчитать заземление

Ошибки монтажа. Видео

Избежать ошибок в монтаже заземляющего устройства поможет это видео.

Самостоятельные расчёты заземления являются оценочными. После его монтажа следует произвести дополнительные электрические измерения, для чего приглашаются специалисты. Если грунт сухой, нужно использовать длинные электроды из-за плохой проводимости. Во влажном грунте поперечное сечение электродов следует брать как можно больше по причине повышенной коррозии.

Похожие статьи:

  • Номинальные токи сип Технология монтажа провода СИП-3 на опорах ВЛ 6-10кв. Протяженность ВЛ-6-10-20кв выполненных проводами СИП-3 с каждым годом растет. Называются такие линии сокращенно ВЛЗ — что означает воздушные линии с защищенными проводами. Не путайте с […]
  • Заземление вл 10 квМ Заземление вл 10 квМ ЗАЗЕМЛЕНИЕ ВОЗДУШНЫХ ЛИНИЙ ЭЛЕКТРОПЕРЕДАЧИ Для повышения надежности работы линий электропередачи, для защиты электроаппаратуры от атмосферных и внутренних перенапряжений, а также для обеспечения безопасности […]
  • Схема электронного полива Устройство автоматического полива - схема Устройство для автоматического полива представляет собой электронное реле на транзисторе VT1, база и эмиттер которого соединены с пластинами из токопроводящего материала, воткнутыми в почву на […]
  • Пример расчета заземление Пример расчета заземление Для выполнения расчета заземления и определения сезонных климатических коэффициентов для вертикальных и горизонтальных заземлителей в СНиП 23.01.99 Климатические условия Рисунок 1 таблица А1 можно найти […]
  • 45 квт сечение кабеля Какое сечение кабеля требуется для: 4,5; 6; 8; 12; 15 кВт на 380 В 4,5; 6; 8; 12; 15 кВт на 220 В Ответ: В соответствии с таблицей . Сечение медного кабеля В России подключать на 1 фазу 220 Вольт разрешается приборы мощностью до 4,5 кВт. […]
  • Наклейка 220 вольт над розеткой Наклейки на розетки 220 вольт Табличка безопасности "220В". Наклейка на розетку 220 вольт Изготавливаем как обычные так и светящиеся в темноте наклейки (таблички) на розетки 220 вольт. Размеры возможны любые от 1 см на 2см, 2см на 3см и […]