Измерение электрического сопротивления грунта

Оглавление:

Информационный банк

Измерение удельного сопротивления грунта

Чтобы заранее определить сопротивление грунта растеканию или полное электрическое сопротивление заземления измерение удельного сопротивления грунта должно производиться четырехэлектродным методом, позволяющим определить сопротивление на различной глубине (например, методом Веннера).

Информация о расстояниях между электродами представлена в Приложении N 2.2.1 Положения. Для применения данного метода разработано специальное оборудование.

Принцип измерения:

Между внешними электродами подается напряжение частотой до 150 Гц, после чего измеряется напряжение между внутренними электродами. Специальные инструменты сразу показывают значение сопротивления. Для устранения влияния других токов, которые могут присутствовать в грунте в месте измерения частота прикладываемого напряжения должна варьироваться.

Расчет производится по формуле E = 2..a.R, где a > 20 м e a / 20. R (Ом) — сопротивление по результатам измерений; E — в Ом·м, a и e — в метрах.

Удельное сопротивление грунтов:

Тип грунта Удельное сопротивление грунта rE (Ом·м)

Болотистый грунт 5-40

Мокрая почва, глина, перегной 20-200

Камень, рассыпанный под действием погодных условий, как правило 50000

Цемент (чистый) 50

1 часть цемента + 3 части песка 50-300

Разные уровни удельного сопротивления слоев грунта на разных глубинах влияют на общее сопротивление грунта.

Руководство Руководство по проектированию, строительству и эксплуатации заземлений в установках проводной связи и радиотрансляционных узлов

МИНИСТЕРСТВО СВЯЗИ СССР
ГЛАВНОЕ УПРАВЛЕНИЕ МЕЖДУНАРОДНОЙ ТЕЛЕФОННОЙ СВЯЗИ

РУКОВОДСТВО
по проектированию, строительству
и эксплуатации заземлений в установках проводной связи и радиотрансляционных

узлов

Издательство «связь»
МОСКВА 1971

1. Основные определения и общие положения . 2

2. Расчет заземлителей . 5

Удельное сопротивление грунта . 5

Расчетные формулы для определения сопротивления вертикальных заземлителей . 7

Расчет сопротивления горизонтальных заземлителей . 9

Расчет сопротивления многоэлектродных заземлителей . 12

Заземлители в двухслойных грунтах . 16

Глубинные заземлители . 21

Расчет сопротивления заземлителей, помещенных в коксовой мелочи . 24

Расчет сопротивления заземлителей при импульсных токах . 26

Срок службы рабочих заземлителей и способы продления этого срока . 27

Искусственное уменьшение сопротивления заземлений . 31

3. Устройство заземлений на воздушных линиях связи и радиотрансляционных сетях . 34

Общие замечания . 34

Вертикальные многоэлектродные заземлители . 39

Заглубленные и глубинные заземлители . 41

4. Устройство заземлений у абонентов воздушной линии связи и радиотрансляционной сети . 43

5. Устройство заземлений для телеграфных и телефонных станций, усилительных пунктов и радиотрансляционных узлов без применения коксовой засыпки электродов . 45

6. Устройство рабочих заземлений из электродов в коксовой мелочи и армированных заводских электродов . 48

7. Устройство заземлений в районах вечной мерзлоты .. 50

8. Измерения сопротивления заземляющих устройств и удельного сопротивления земли . 53

Общие замечания . 53

Измерение сопротивления заземлений прибором мс-08 . 53

Измерение удельного сопротивления грунтов прибором мс-08 . 56

Измерения сопротивления заземлений методом «вольтметра — амперметра» . 57

Измерение удельного сопротивления грунта методом вертикального электрического зондирования . 58

Определение электрических параметров грунта двухслойной структуры .. 60

Организация работ по вертикальному электрическому зондированию грунта на площадках . 64

9. Контроль за состоянием заземляющих устройств . 67

10. Указания по заземлению оболочек и брони междугородных кабелей связи . 68

11. Контрольно-измерительные пункты ( кип) 71

Приложение 1 Поставщики коксовой мелочи . 76

Приложение 2. Примеры определения действующего удельного сопротивления для грунтов с двухслойной структурой . 77

Приложение 3 Основные нормы для сопротивлений заземлений установок связи ( гост 464-68) 78

ПРЕДИСЛОВИЕ

С момента опубликования «Руководящих указаний по проектированию, строительству и эксплуатации заземлений в установках проводной связи и радиотрансляционных узлов» в 1953 г. появились новые разработки по вопросам заземляющих устройств в установках связи, изменились некоторые нормы на сопротивления заземления, возникла необходимость в дополнениях и уточнениях. Данное «Руководство» является полностью переработанным в соответствии с современными требованиями.

Составление новой редакции руководящих указаний проведено ЦНИИC при участии КФ ЦНИИС (М.И. Михайловым, С.А. Соколовым, К.К. Никольским, З.С. Вериной).

Главное управление междугородной телефонной

связи Министерства связи

Центральный научно-исследовательский
институт связи

1. ОСНОВНЫЕ ОПРЕДЕЛЕНИЯ И ОБЩИЕ ПОЛОЖЕНИЯ

1.1. Заземлителем называется проводник или группа проводников любой формы (труба, стержень, полоса, проволока, лист и т.п.), выполненная из проводящего материала и находящаяся в непосредственном соприкосновении с грунтом, с которым она создает электрическое соединение определенного сопротивления.

1.2. Заземляющим устройством (заземляющим контуром) называется совокупность заземлителей и соединяющих их проводников

1.3. Заземлением называется устройство, состоящее из заземляющего контура (заземлителей) и проводников, соединяющих заземлители с электрическими установками.

1.4. Сопротивление заземлителя, или сопротивление растеканию токов с заземлителя называется суммарное электрическое сопротивление переходного контакта от заземлителя к грунту и сопротивление прохождению (растеканию) токов в слоях грунта, прилежащих к заземлителю.

1.5. Удельным сопротивлением грунта называется электрическое сопротивление, оказываемое грунтом в форме куба объемом 1 м 3 при прохождении тока от одной грани этого куба к противоположной. Удельное сопротивление грунта обозначается через r и выражается в ом × м.

В зависимости от функции, которую выполняют заземления в установках связи и радиотрансляционных узлах, различают рабочее, защитное и линейно-защитное заземление.

1.6. Рабочим заземлением в технике сильных токов называется заземляющее устройство, предназначенное для обеспечения работы установки в нормальных или аварийных условиях (например, работы линий электропередачи постоянного тока по схеме «провод — земля» при аварийном отключении второго провода). В технике проводной связи рабочим заземлением называется устройство, предназначенное для соединения аппаратуры проводной связи и радиотрансляционных узлов с землей, служащей одним из проводников электрической цепи. Такое заземление применяется во всех однопроводных цепях или цепях «два провода — земля» телеграфной и телефонной связи, в цепях радиотрансляционной сети, дистанционного питания усилительных пунктов и в катодных установках при защите оболочек кабелей от коррозии.

1.7. Защитным заземлением называется устройство, предназначенное для соединения с землей молниеотводов, разрядников, а также металлических частей силового и технологического оборудования устройств проводной связи и радиотрансляционных узлов, которые нормально не находятся под напряжением, но могут оказаться под ним при повреждениях изоляции проводов, несущих рабочий ток. На АТС к защитному заземлению подсоединяется один из полюсов батарей с целью защиты от переходных токов в случае нарушения изоляции абонентских пар.

1.8. Линейно-защитным заземлением называется устройство, предназначенное для заземления металлических покровов оболочек и экранов по трассе кабелей и на станциях, куда они заводятся.

1.9. В технике проводной связи и радиовещания заземления обеспечивают нормальную работу аппаратуры связи, безопасность обслуживающего персонала и целость станционного и линейного оборудования.

1.10. При телеграфировании и телефонировании земля часто используется в качестве обратного провода и заземление составляет часть рабочей цепи.

1.11. При сближениях линий электропередач с линиями связи в последних могут возникнуть опасные напряжения. Мощные разрядники, устанавливаемые в этом случае на линии, обеспечивают защиту аппаратов связи и безопасность обслуживающего персонала, если заземление будет иметь малое сопротивление, соответствующее норме.

1.12. В населенных пунктах имеется опасность соприкосновения проводов связи с трамвайными и троллейбусными проводами. Величина сопротивления заземления разрядников, установленных на проводах связи, в данном случае определяет степень надежности защиты установок связи.

1.13. Деревянные опоры воздушных линий связи и радиовещания при ударах молнии разрушаются. Для защиты их от разрушения устанавливают молниеотводы. Степень надежности защиты зависит от величины сопротивления заземления молниеотвода.

1.14. Нормы сопротивления заземлений для различных установок проводной связи и радиотрансляционных узлов приведены в общесоюзном стандарте ГОСТ 464-68 (заземления для стационарных установок проводной связи и для радиотрансляционных узлов).

1.15. На рис. 1.1 показана приблизительная картина электрического поля в земле между двумя заземлителями А и Б. В зависимости от плотности тока поле может быть разделено на три области: в областях III плотность сравнительно велика; в области III она незначительна ввиду большой величины поперечного сечения земли, в которой проходит ток. На сопротивление заземлителя, главным образом, влияют области с большой плотностью тока, т.е. в данном случае области I и II . Область III практически не влияет на сопротивление заземлителя. Поэтому сопротивление заземления может быть измерено с помощью амперметра и вольтметра, включенных там, где плотность тока велики.

Рис. 1.1. Схема измерения сопротивления заземления (а) и поле токов в земле (б)

1.16. На рис. 1.2 показано изменение отношения потенциала точек земли Ux между заземлителями (см. рис. 1.1) к потенциалу одного из заземлителей U А в зависимости от расстояния х между данной точкой и заземлителем. При однородном строении земли и одинаковых заземлителях точка с нулевым потенциалом находится точно посредине между ними. Из кривой на рис. 1.2 видно, что величина потенциала указанных точек земли резко уменьшается вблизи заземлителя и на расстоянии 20 м от него становится равной приблизительно 2% от максимального значения. Точки, где потенциал земли равен 2% или менее от максимального значения, практически можно считать точками нулевого потенциала, или удаленными точками земли.

Рис. 1.2. Кривая изменения отношения к 1 потенциала точек земли между двумя заземлителями Ux к потенциалу заземлителя относительно нулевой точки в зависимости от расстояния х

1.17. На рис. 1.3 показано изменение отношения к2 разности потенциалов U А x между заземлителем и рассматриваемой точкой ах к потенциалу заземлителя U А в зависимости от расстояния х между этой точкой земли и заземлителем. Из этой кривой видно, что на величину потенциала заземлителя практически оказывает влияние только грунт, окружающий заземлитель в радиусе 20 ¸ 25 м.

Рис. 1.3. Кривая изменения отношения к2 (в процентах) разности потенциалов U А x между заземлителем и рассматриваемой точкой х к потенциалу заземлителя U А в зависимости от расстояния х

Электрическое сопротивление заземлителя (см. рис. 1.1) определяется отношением измеренного потенциала заземлителя по отношению к точке с нулевым потенциалом к току, стекающему с заземлителя в грунт, т.е.

где U — показания вольтметра, в; I — показания амперметра, а.

2. РАСЧЕТ ЗАЗЕМЛИТЕЛЕЙ

УДЕЛЬНОЕ СОПРОТИВЛЕНИЕ ГРУНТА

2.1. Основное влияние на величину сопротивления заземлителей оказывает верхний слой грунта на глубине до 20 ¸ 25 м, поэтому при расчете и устройстве заземлений необходимо знать его удельное сопротивление.

2.2. В зависимости от состава (чернозем, песок, глина и т.п.), размеров и плотности прилегания друг к другу частиц, влажности и температуры, наличия растворимых химических веществ (кислот, щелочей, продуктов гниения и т.д.) удельное сопротивление грунтов изменяется в очень широких пределах.

2.3. Наиболее важными факторами, влияющими на величину удельного сопротивления грунта, являются влажность и температура. На рис. 2.1 и 2.2 в качестве примера приведены кривые изменения удельного сопротивления красной глины в зависимости от влажности и температуры.

Рис. 2.1. Кривая изменения удельного сопротивления красной глины в зависимости o т ее влажности

Рис. 2.2. Кривая изменения удельного сопротивления красной глины в зависимости от ее температуры

2.4. В течение года в связи с изменением атмосферных и климатических условий содержание влаги в грунте и его температура изменяются, а следовательно, изменяется и удельное сопротивление. Наиболее резкие колебания удельного сопротивления наблюдаются в верхних слоях земли, которые зимой промерзают, а летом высыхают. Из данных измерений следует, что при понижении температуры воздуха от 0 до -10 °С удельное сопротивление грунта на глубине 0,3 м увеличивается в 10 раз, а на глубине 0,5 м — в 3 раза.

Согласно наблюдениям в большинстве областей северной и средней части СССР при отрицательных температурах воздуха грунт имеет положительную температуру на глубине, начиная от 0,8 м. Влажность грунта на этой глубине и ниже при изменении температуры воздуха изменяется сравнительно мало.

В южных районах СССР глубина промерзания грунтов изменяется в пределах от 0,1 до 0,5 м.

2.5. При проектировании и строительстве заземляющих устройств необходимо знать максимальную величину удельного сопротивления слоя грунта на глубине, приблизительно в три раза превышающей глубину закладки заземлителя. Так, например, при забивке вертикального заземлителя длиной 2 м на глубину 3 м необходимо знать среднее удельное сопротивление слоя грунта толщиною до 9 м.

2.6. Величина удельного сопротивления грунта определяется путем измерений в месте устройства заземления с учетом коэффициентов влажности, которые приведены в табл. 2.1 и применяются в следующих случаях:

к 1-1 — если измеренная величина сопротивления грунта соответствует минимальному значению (грунт влажный, перед измерением выпадало много осадков);

к 1-2 — если измеренная величина удельного сопротивления грунта соответствует среднему значению (грунт средней влажности, перед измерением выпадало немного осадков);

к 1-3 — если измеренная величина удельного сопротивления грунта соответствует наибольшему значению (грунт сухой, перед измерением выпадало совсем мало осадков).

Глубина заложения, м

Углубленные вертикальные (трубы, уголки, стержни)

0,8 (верхний конец заземлителя) 3 (нижний конец заземлителя)

Расчетное значение удельного сопротивления грунта определяется по формуле

(2.1)

где r изм — измеренное удельное сопротивление грунта, ом × м.

2.7. Коэффициенты промерзания грунта к1 и к2 , учитывающие сезонные колебания температуры для различных климатических зон, приведены в табл. 2.2. Коэффициент к1 используется в расчет ных формулах для стержневых электродов длиной 2 ¸ 3 м, вершина которых закладывается на глубину 0,5 ¸ 0,8 м. Коэффициент к 2 применяется для протяженных электродов, закладываемых на глубину 0,8 м.

Средняя многолетняя низшая температура (январь) ºС

Средняя многолетняя высшая температура (июль) ºС

Среднегодовое кол-во осадков, см

Продолжительность замерзания воды, дни

Примечание. Факторы, определяющие климатические зоны (температура, количество осадков и продолжительность замерзания воды) запрашиваются при изысканиях у местных метеорологических станций.

2.8. В исключительных случаях для оценки величины удельного сопротивления r при проектировании заземляющих устройств можно пользоваться средними величинами удельного сопротив ления грунта, приведенными в табл. 2.3. Однако в последующем при строительстве заземлений необходимо пересчитать сопротивление заземления, предварительно уточнив r путем контрольных измерений. За расчетную величину удельного сопротивления в этом случае принимают

, (2.2)

где r ср — среднее значение r , указанное в табл. 2.3;

1,75 — поправочный коэффициент, принимаемый одинаковым для всей территории СССР.

Среднее удельное сопротивление, ом × м

Среднее удельное сопротивление, ом × м

РАСЧЕТНЫЕ ФОРМУЛЫ ДЛЯ ОПРЕДЕЛЕНИЯ СОПРОТИВЛЕНИЯ ВЕРТИКАЛЬНЫХ ЗАЗЕМЛИТЕЛЕЙ

2.9. Сопротивление R трубчатого вертикального заземлителя, помещенного на глубине h от поверхности земли (рис. 2.3), определяется по формуле

, (2.3)

где l — длина трубы, м; d внешний диаметр трубы, м;

h расстояние от поверхности земли до верхнего конца трубы, м

r — удельное сопротивление земли, ом × м; к 1 — коэффициент промерзания, учитывающий сезонные колебания температуры грунта.

2.10. Сопротивление вертикального заземлителя, выполненного из уголка, определяется также по ф-ле (2.3), но при этом эквивалентный диаметр определяется из выражения

где b — ширина стороны уголка, м.

Наиболее целесообразно погружать трубу на такую глубину, чтобы верхний конец ее находился ниже глубины промерзания грунта и, во всяком случае на глубине 0,7 м от поверхности земли, при этом значительно уменьшится колебание сопротивления заземления в зависимости от времени года.

2.11. В тех случаях, когда глубоко лежащие слои земли имеют меньшее удельное сопротивление, следует погружать трубы на большую глубину, вплоть до 20 м.

2.12. При увеличении диаметра трубы свыше 5 см сопротивление заземления уменьшается незначительно, поэтому добиваться его уменьшения путем увеличения диаметра трубы нецелесообразно.

Аналогичный вывод может быть сделан относительно ширины и толщины стороны уголка.

Диаметр трубы и толщина стенки (или ширина и толщина стороны уголка заземлителя из угловой стали) выбираются такими, чтобы заземлитель обладал достаточной механической прочностью.

Рис. 2.3. Трубчатый заземлитель

Рис. 2.4. Кривые изменения сопротивления R a трубчатого заземлителя в зависимости от его длины l при различных диаметрах труб d и различных удельных сопротивлениях r грунта (при глубине закопки заземлителя, равной 0,7 м)

В грунтах средней плотности диаметр трубы может быть 2,5 ¸ 5 см, ширина стороны уголка заземлителя из угловой стали — 2,5 ¸ 5 см. В твердых грунтах могут быть использованы либо сплошной стержень диаметром 2,5 ¸ 5 см, либо труба диаметром 4 ¸ 6 см, либо уголок с шириной стороны 4 ¸ 6 см.

Смотрите так же:  Технические характеристики провода ввг

2.13. Изменение сопротивления вертикального заземлителя в зависимости от его длины при разных диаметрах труб и различных удельных сопротивлениях грунтов показано на рис. 2.4.

РАСЧЕТ СОПРОТИВЛЕНИЯ ГОРИЗОНТАЛЬНЫХ ЗАЗЕМЛИТЕЛЕЙ

2.14. Сопротивление заземлителя в виде вытянутой металлической полосы, помещенной на глубине h , м (рис. 2.5), определяется по формуле

(2.5)

где l — длина заземлителя, м; b — ширина полосы, м; h — глубина прокладки полосы, м; r — удельное сопротивление грунта, ом × м; к 2 — коэффициент промерзания грунта, учитывающий сезонные колебания температуры грунта.

Сопротивление заземлителя круглого сечения определяется по той же формуле с подстановкой вместо значения b величины 2 d :

(2.6)

Рис 2.5. Протяженные заземлители: а) полосовые; б) цилиндрические

Рис 2.6. Кривая изменения сопротивления протяженного проволочного заземлителя в зависимости от диаметра его проволок

2.15 Диаметр провода проволочного заземлителя или ширина полосы полосового заземлителя мало влияет на величину сопротивления заземления, что видно из кривой на рис. 2.6.

2.16. Для снижения сопротивления вытянутого заземлителя более целесообразно увеличить его длину, а не диаметр. На рис. 2.7 показано изменение сопротивления заземления стального провода диаметром d = 4 мм, уложенного в землю на глубину 0,7 м, в зависимости от длины его для различных удельных сопротивлений земли.

Рис. 2.7. Кривая изменения сопротивления протяженного проволочного заземлителя в зависимости от его длины при d = 4 мм и глубине закопки h = 0,5 ¸ 0,7 м для различных значений удельного сопротивления грунта

Увеличение длины заземлителя более 10 м, как видно из кривой, дает относительно небольшое уменьшение сопротивления. Кроме того, при дальнейшем увеличении длины заземлителя начинают сказываться собственные сопротивления и индуктивность провода, в результате чего сопротивление заземления не уменьшается.

Приведенные на рис. 2.7 данные практически могут быть использованы для проволоки любого диаметра от 2 до 6 мм. Для устройства вытянутого заземлителя рекомендуется применять оцинкованную стальную проволоку диаметром 4 или 5 мм. Глубина закопки такого заземлителя (из круглой проволоки или полосового) должна быть не меньше 0,7 м в южных районах страны и 1 м в остальных областях СССР.

2.17. В целях экономии места при устройстве заземления ленточному или проволочному заземлителю можно придать форму замкнутого кольца.

Сопротивление кольцевого ленточного заземлителя, помещенного в грунт на глубину h , м, может быть приближенно определено по формуле

, (2.7)

где r — удельное сопротивление грунта, ом × м; D — диаметр кольца заземлителя, м; b — ширина полосы, м; h — глубина закопки заземлителя, м.

Для проволочного кольцевого заземлителя сопротивление заземления определяется по той же формуле, но с заменой b н a 2 d .

, (2.8)

При одной и той же длине провода, полосы или ленты сопротивление кольцевого заземлителя всегда больше, чем сопро тивление вытянутого заземлителя (провод или лента, уложенные по прямой линии), и разница тем больше, чем меньше диаметр.

Рис. 2.8. Кривая изменения сопротивления кольцевого заземлителя в зависимости от радиуса кольца при d =4 мм, глубине закопки заземлителя h = 0,5 ¸ 0,7 м для различных значений удельного сопротивления грунта

На рис. 2.8 показана зависимость сопротивления кольцевого проволочного заземлителя от радиуса кольца при различном удельном сопротивлении грунта. По этой кривой, не делая расчетов, можно определить сопротивление кольцевого заземлителя для любых значений удельного сопротивления грунтов в пределах от 10 до 1000 ом × м.

Глубина закопки кольцевого заземлителя должна выбираться на тех же основаниях, что и для вытянутого заземлителя.

2.18. Сопротивление заземления пластинчатого заземлителя, представляющего собой круглую или прямоугольную пластину, заложенную на глубину h (рис. 2.9), можно определить по формуле

, (2.9)

где D — диаметр пластины, м; r — удельное сопротивление грунта, ом × м.

Рис. 2.9. Пластинчатый заземлитель

Для квадратной или прямоугольной пластины определяется эквивалентный диаметр по формуле

, (2.10)

где S — площадь пластины, м 2 .

Увеличение диаметра пластины свыше 125 см нецелесообразно, так как сопротивление заземления начинает уменьшаться медленно.

Рис. 2.10. График изменения сопротивления пластинчатых заземлителей в зависимости от удельного сопротивления грунта для пластины с эквивалентным радиусом, равным 0,55 м, при h = 0,5 ¸ 0,7 м

Для устройства заземления при помощи пластинчатых заземлителей рекомендуются оцинкованные листы железа размером 1,42 ´ 0,71 см, толщиной не менее 3,5 мм. Такие размеры листа эквивалентны круглой пластине диаметром около 1,13 м.

На рис. 2.10 приведен график изменения сопротивления пластинчатого заземлителя размером D = l , l м в зависимости от удельного сопротивления грунта. Этот график позволяет, не делая расчетов, получить необходимые сведения при проектировании заземлений.

РАСЧЕТ СОПРОТИВЛЕНИЯ МНОГОЭЛЕКТРОДНЫХ ЗАЗЕМЛИТЕЛЕЙ

2.19. В грунтах с большим удельным сопротивлением один заземлитель (труба, стержень, полоса, кольцо, пластина и т.п.) имеет большое сопротивление и для получения требуемой меньшей величины сопротивления приходится устраивать заземление из нескольких единичных заземлителей, включенных параллельно. Заземляющее устройство при этом называется многоэлектродным.

2.20. При параллельном соединении единичных заземлителей необходимо принимать во внимание эффект взаимного экранирования заземлителей, который сказывается в том, что общее сопротивление заземления уменьшается не пропорционально числу заземлителей соединенных параллельно, а несколько меньше. Экранирование сказывается тем больше, чем ближе друг к другу будут расположены единичные заземлители. Полное сопротивление R об параллельно соединенных заземлителей одинакового сопротивления определяется по формуле:

, (2.11)

где R — сопротивление единичного заземлителя, ом; п — число заземлителей; h — коэффициент использования, зависящий от конфигурации и расположения заземлителей.

2.21. Полное сопротивление нескольких вертикальных заземлителей одинакового сопротивления, соединенных параллельно с помощью горизонтальных заземлителей (полос или провода), определяется по формуле

, (2.12)

где R 1 — сопротивление горизонтального заземлителя (соединительной полосы, шины), ом; R 2 — сопротивление вертикального заземлителя, ом; h 1 — коэффициент использования протяженных заземлителей, которыми являются соединительные полосы или шины; h 2 — коэффициент использования вертикальных заземлителей; п — количество вертикальных заземлителей.

Примечание . Формулы ( 2.14) и ( 2.15) действительны для случая одинаковых сопротивлений каждого из вертикальных заземлителей, что обычно и принимается в расчетах.

Отношение расстояния между трубами (уголками) к их длине а/ l

Число труб (уголков ) n

Отношение расстояния между трубами (уголками) к их длине а/l

Число труб (уголков) п

2.22. Коэффициенты использования h для многоэлектродных заземлителей (без учета влияния соединительной полосы), состоящих из вертикальных стержней (труб или уголков), размещенных в ряд, приведены в табл. 2.4, а для тех же заземлителей, размещенных по замкнутому контуру, — в табл. 2.5. Коэффициенты использования параллельно уложенных полосовых заземлителей (ширина полосы b = 20 ¸ 40 мм, глубина заложения h = 30 ¸ 80 см) приведены в табл. 2.6.

2.23. Коэффициенты использования соединительной полосы в ряду из вертикальных заземлителей приведены в табл. 2.7, в замкнутом контуре — в табл. 2.8.

Длина каждой полосы, м

Число параллельных полос п

Коэффициенты использования при расстоянии между параллельными полосами, м

1 ) Данные приближенные.

Отношение расстояния между трубами (уголками) к их длине а/ l

Коэффициенты использования соединительной полосы при числе труб (уголков) п в ряду

Отношение расстояния между трубами (уголками) к их длине а/ l

Коэффициенты использования соединительной полосы при числе труб (уголков) п в контуре заземления

2.24 Коэффициенты использования для многолучевого заземления, состоящего из вытянутых протяженных одиночных заземлителей, расположенных в радиальном направлении, приведены в табл. 2.9.

Коэффициенты использования при числе лучей п

и при диаметре проводника луча, см

Примечания. 1. При применении для лучей полосовой стали эквивалентный диаметр принимается равным b /2, где b — ширина полосы.

2. Приведенные коэффициенты могут применяться для глубины заложения 0,3 ¸ 0,8 м.

2.25. Коэффициенты использования для многоэлектродных заземлений, состоящих из полосно-листовых заземлителей, запараллеленных между собой, приведены в табл. 2.10.

Пример расчета многоэлектродного заземления. Определить общее сопротивление заземления, состоящего из 20 вертикальных заземлителей, выполненных из угловой стали. Заземлители расположены прямоугольником и соединены между собой стальной шиной, расстояние между ними а = 2 l . Сопротивление каждого уголка, определенное по ф-ле ( 2.1), R 2 = 30 ом, сопротивление соединительной полосы R 1 = 15 ом. Расчет ведется по ф-ле ( 2.12):

.

Соответствующие значения h 1 и h 2 приведены в табл. 2.5 и 2.8: h 1 = 0,32, h 2 = 0,63. Подставляя в формулу данные R 1 , R 2 , h 1 и h 2 получаем

.

При параллельном соединении уголков между собой изолированным проводом общее сопротивление заземления определяется по формуле R об = R 2 / n h 2 = 30/20 × 0,63 = 2,38 ом

2.26. Сопротивление заземлителя, выполненного в виде многолучевой звезды, расположенной у поверхности земли, рассчитывается по формуле

, (2.13)

где l — длина луча, м; r — удельное сопротивление земли, ом × м; d — диаметр провода, из которого сделаны лучи, м; п — число лучей;

. (2.14)

В табл. 2.11 приведены значения функции N ( n ) при некоторых значениях п.

При n > 6 функция

ЗАЗЕМЛИТЕЛИ В ДВУХСЛОЙНЫХ ГРУНТАХ

2.27. Если грунт в месте установки заземления имеет ярко выраженную двухслойную структуру, то при расчете сопротивлений заземлении необходимо применять действующее удельное сопротивление грунта. Графики значений действующего удельного сопротивления грунта для трубчатых заземлителей приведены на рис. 2.11, а для горизонтальных заземлителей — на рис. 2.12 и 2.13 при различных значениях r 1 / r 2 и к = ( r 2 — r 1 )/( r 1 + r 2 ).

2.28. В табл. 2.12 и 2.13 приведены сопротивления соответственно трубчатых и полосовых заземлителей в неоднородном грунте при весьма распространенных на практике значениях отношения сопротивления верхнего слоя к сопротивлению нижнего слоя — 10 и 0,1 м. Глубина заложения полосы (верхнего конца трубы) — 0,5 м.

Рис. 2.11 Графики значений действующего удельного со противления грунта для трубчатых заземлителей

1 ; к = 0,98;

2 , к = 0,818;

3 , к = 0,667;

4 , к = 0,667;

5 , к = 0,500;

6 , к = 0,333;

7 , к = 0;

8 , к = -0,333;

9 , к = -0,500;

10 , к = -0,667;

11 , к = -0,818;

12 , к = -0,98;

Толщина верхнего слоя грунта, м

Длина электрода м

Отношение действующего удельного сопротивления к сопротивлению верхнего слоя

Действующее удельное сопротивление ом × м

Сопротивление заземлителя ом

Примечание . В числителе даны значения величин при удельном сопротивлении верхнего слоя грунта r 1 = 500 ом × м и отношении удельных сопротивлений слоев r 1 / r 2 = 10, а в знаменателе — при r 1 = 50 ом × м и r 1 / r 2 = 0,1.

Рис. 2.12. Графики значений действующего удельного сопротивления грунта для горизонтальных заземлителей при различных отношениях t / h и к > 0:

Рис. 2.13. Графики действующего удельного сопротивления грунта для горизонтальных заземлителей при различных отношениях t / h и к 6 ошибка по сравнению с расчетами по ф-ле ( 2.16) не превышает 3%, а при l / h = 1,5 она достигает 15%.

Рис. 2.15 Номограмма для определения длины глубинного заземлителя

Рис. 2.16. Зависимости веса и длины глубинного заземлителя от диаметра стержня при постоянном сопротивлении заземления

2.32. На рис. 2.15 построены номограммы для определения длины глубинного заземлителя по заданной величине R и известным величинам h , d , r 1 и r 2 . Порядок расчета следующий.

На правой ветви оси абсцисс отложены значения толщины верхнего слоя h . Восстанавливая перпендикуляр из точки, соответствующей известному значению h , до пересечения с соответствующей линией r 2 / r 1 , найдем величину А, отложенную по оси ординат. Далее, зная отношение r 2 / R и проведя из полученной точки на оси ординат прямую, параллельную оси абсцисс, до пересечения с соответствующей линией r 2 / R , найдем на левой ветви оси абсцисс искомое значение длины глубинного заземлителя l .

Таким образом, отыскание величины l сводится к проведению на графике трех линий, параллельных осям координат. Например, если h = 15 м, r 1 = 500 ом × м, r 2 = 100 ом × м и необходимо получить сопротивление R = 20 ом, по графику на рис. 2.15 найдем, что l = 18,5 м. Ход вычислений показан на рис. 2.15 пунктиром. При вычислении номограмм диаметр глубинного заземлителя принят равным 19 мм. Однако некоторое изменение диаметра не скажется на результатах расчетов.

2.33. Дополнительная экономия материала может быть получена при рациональном выборе диаметра прутка заземлителя. На рис. 2.16 приводится график веса прутка и его длины в зависимости от диаметра при неизменном сопротивлении заземлителя.

Практическое выполнение глубинных заземлителей рассматривается в гл. 7.

РАСЧЕТ СОПРОТИВЛЕНИЯ ЗАЗЕМЛИТЕЛЕЙ, ПОМЕЩЕННЫХ В КОКСОВОЙ МЕЛОЧИ

2.34. Сопротивление растеканию одиночного вертикального электрода в коксовой мелочи (рис. 2.17) определяется по формуле

(2.18)

где к1 — коэффициент промерзания, учитывающий сезонные колебания температуры грунта для вертикального заземления; r — удельное сопротивление грунта, ом × м; l в — длина вертикального электрода м; t в средняя глубина установки электрода, равная расстоянию от поверхности земли до середины электрода, м; d в наружный диаметр электрода, м (для электродов из угловой стали вместо диаметра d подставляется эквивалентная величина, равная ширине стороны b уголка с коэффициентом 0,95; d экв » 0,95 b ); r акт — удельное электрическое сопротивление коксовой мелочи, ом × м ; d акт — наружный диаметр коксовой засыпки, м.

2.35 Сопротивление растеканию одиночного горизонтального электрода или соединительной полосы в коксовой мелочи (рис. 2.18) при l г >> d г и t г Тв.

Для обеспечения условия Тг > Тв необходимо увеличить сечение соединительной полосы. Вместо полосы 40 ´ 4 мм примем полосу 60 ´ 5 мм, что незначительно изменит общее сопротивление контура. В этом случае получим Q ¢ г = 5 × 2,36 = 11,8 кг. Срок службы соединительной полосы будет равен

Пример 4. Рассчитать заземление с использованием армированных электродов заводского изготовления типа ЗКА-140 для НУП кабельной магистрали при следующих данных: тип кабеля — МКСБ 4 ´ 4 ´ 1,2; аппаратура уплотнения — К-60; расчетное значение удельного электрического сопротивления грунта — r г = 80 ом × м; удельное электрическое сопротивление коксовой мелочи — r акт = 2,05 ом × м.

Контур заземления будет эксплуатироваться в первой климатической зоне СССР, где коэффициент промерзания равен 1,8 ¸ 2,0.

1. Определим силу тока I , стекающего с рабочего заземления НУП:

.

2. Рассчитаем сопротивление растеканию электрода ЗКА-140, устанавливаемого вертикально. Длина электрода l в = 1,4 м, глубина закладки электрода 1,5 м от поверхности земли:

ом.

3. Определим количество вертикальных электродов аналогично приведенному выше примеру. Для этих условий сопротивление растеканию электрода не должно превышать 10,7 ом × м, т. е n в = 55,6/10,7 = 5,2 » 6 электродов.

4. Рассчитаем сопротивление растеканию многоэлектродного заземлителя, R ¢ в = R общ = R в / n в h в = 55,6/0,87 × 6 = 10,6 ом, что обеспечивает нормируемое ГОСТ 464-67 сопротивление растеканию контура заземления 10,7 ом.

5. Определим вес стальных электродов контура заземления, т.е. Q в = 6 × 1,4 × 2,98 = 25 кг.

6. Найдем срок службы контура заземления: Тв = 0,3 × 25/1,12 = 6,7 года.

ИСКУССТВЕННОЕ УМЕНЬШЕНИЕ СОПРОТИВЛЕНИЯ ЗАЗЕМЛЕНИЙ

2.48. Для устройства заземления малого сопротивления в плохопроводящих грунтах (песок, гравий, камень и т.п.) требуются десятки, а иногда и сотни стальных труб, длиной каждая 2 ¸ 2,5 м, располагаемых на большой территории.

2.49. С целью удешевления заземляющих устройств в местах с высоким удельным сопротивлением земли применяют различные методы искусственного снижения удельного сопротивления грунта. При этом уменьшаются количество заземлителей и размеры территории, на которой должны располагаться заземлители.

2.50. Общее сопротивление заземления зависит, как указывалось выше, от сопротивления прилегающих к заземлителю слоев грунта. Поэтому можно добиться снижения сопротивления заземления понижением удельного сопротивления грунта лишь в небольшой области вокруг заземлителя.

2.51 Искусственное снижение удельного сопротивления грунта достигается либо химическим путем при помощи электролитов, либо путем укладки заземлителей в котлованы с насыпным углем, коксом, глиной.

Опыт показал, что максимальное уменьшение сопротивления заземления достигается при использовании электролитов, древесного угля и коксовой мелочи. Первый способ заключается в том, что вокруг заземлителей грунт пропитывается растворами хлористого натрия (обыкновенной поваренной соли), хлористого кальция, сернокислой меди (медного купороса) и т.д.

Следует отметить, что указанным способом можно добиться сравнительно большого снижения величины сопротивления заземления, однако на непродолжительный срок (2 — 4 года), после чего требуется вновь пропитывать грунт электролитом.

2.52 Практически можно рекомендовать следующие два способа искусственного снижения удельного сопротивления грунта: создание вокруг заземлителя зоны с пониженным удельным сопротивлением и обработка грунта солью.

Рис. 2.21 Создание вокруг заземлителя зоны с пониженным удельным сопротивлением

2.53. Для создания вокруг заземлителя зоны с пониженным у дельным сопротивлением в грунте делается выемка (котлован) радиусом 1,5 ¸ 2,0 м и глубиной, равной длине забиваемого ст ержня. После заполнения выемки грунтом (рис. 2.21) устанавливается заземлитель и грунт утрамбовывается.

В качестве грунта-заполнителя может быть применен любой грунт, имеющий удельное сопротивление в 5 ¸ 10 раз меньше, чем удельное сопротивление основного грунта. Например, если заземление устраивается в песчаном или каменистом (гранит) грунте, то заполнителями могут быть, глина, торф, чернозем, суглинок, шлак и т.п. Таким способом достигается снижение сопротивления заземления в среднем в 2,5 ¸ 3 раза.

Сопротивление растеканию тока R з в случае окружения заземлителя грунтом с другим удельным сопротивлением находится по формуле

, ом, (2.32)

где r — удельное сопротивление основного грунта, ом × м; r н — удельное сопротивление грунта-заполнителя, ом × м; r — радиус стержня заземлителя, м; r — радиус выемки котлована, м; l — глубина котлована, приблизительно равная длине заземлителя, м.

Смотрите так же:  Центральный офис 220 вольт санкт-петербург

Рис. 2.22 Относительное снижение сопротивления заземления в случае применения насыпного грунта при различных радиусах выемки

На рис. 2.22 приведены кривые изменения (в процентах) отношения сопротивления R з заземлителя, помещенного в котлован с насыпным грунтом, к сопротивлению R зн заземлителя, помещенного в основной грунт, в зависимости от отношения удельного сопротивления основного грунта r к удельному сопротивлению насыпного грунта r н . Эти кривые построены для котлованов с радиусом r = 0,25 ¸ 10 м

2.54. Эффективным и дешевым способом снижения сопротивления заземлений является обработка грунта поваренной солью. Действие последней сводится не только к понижению удельного сопротивления грунта, но и к понижению температуры его замерзания.

2.55 Существуют разные способы укладки соли близ заземлителя. В практике Министерства связи СССР распространена укладка около трубчатого заземлителя соли слоями так, как это показано на рис. 2.23 а . Соль может также укладываться вся на глубине возле трубчатого заземлителя (рис. 2.23 б ) или на небольшом расстоянии от него (рис. 2.23 в ). Последний способ является более удобным в том отношении, что коррозия заземлителя в этом случае будет минимальной.

Рис 2.23 Способы укладки соли около вертикального заземлителя

Количество соли, требующееся для обработки заземления, зависит от длины электрода: от 1,5 до 10 кг на 1 м заземлителя.

Иногда солью заполняется пространство внутри заземлителя, выполненного в виде полой трубы с отверстиями, через которые раствор соли выходит в окружающий грунт (рис. 2.23г).

На рис. 2.24 показан способ укладки соли около протяженного заземлителя.

Рис 2.24 Укладка соли около протяженного горизонтального заземлителя

2.56 Так как соль со временем вымывается, то срок действия обработки грунта ограничен и через 2 — 4 года ее приходится повторять. Эффективность обработки неодинакова и с течением времени меняется. В первый год, когда соль еще не успевает распространиться вокруг заземлителя, сопротивление снижается сравнительно мало. Оптимальные условия наступают на втором-третьем году и затем начинают идти на убыль.

Стойкость обработки зависит от строения грунта, влажности, количества осадков.

2.57 К недостаткам указанных способов обработки грунтов относятся: необходимость возобновления пропитки грунтов примерно через 2 — 4 года и возможность разрушения заземлителей от химического воздействия на них солей или соляных растворов, вследствие чего требуется замена их новыми заземлителями.

Делались попытки устранить эти недостатки. Так, в Германии, например, был предложен способ, по которому в грунт вокруг заземлителя вводятся металлы в тонкоизмельченном виде, как, например, в коллоидных растворах, или в виде мелкой металлической стружки. Если при этом тонко измельченные металлы выбраны так, чтобы не могли возникать гальванические пары с самим заземлителем, то последний корродировать не будет.

Однако коллоиды не более устойчивы в грунте, чем соли и соляные растворы. Они постепенно вымываются из близлежащих к заземлителю слоев дождевой водой, вследствие чего достигнутое уменьшение сопротивления заземлителя с течением времени пропадает. В США предложен способ задержания вымывания соляных растворов из грунта путем смешивания соляного раствора (например, медного купороса) с нерастворимой в воде пластмассовой смесью и впрыскивания их в грунт под большим давлением. Этот способ является дорогим и продолжительность его действия не определялась.

Из других способов искусственного снижения сопротивления заземлителей, предложенных в различных странах, в первую очередь заслуживает внимания шведский способ — обработка грунта вокруг заземлителя при помощи электролитов, образующих гель.

В результате смешения концентрированного раствора сернокислой меди с эквивалентным количеством концентрированного раствора соли щелочного синеродистого железа получается нерастворимый в воде продукт реакции — железистосинеродистая медь, которая при известных условиях образует однородный электропроводящий гидрогель.

Электрические и физические свойства гидрогеля не меняются сколь-либо существенно от длительного воздействия воды и являются устойчивыми при колебаниях температуры в пределах от -60 до +60 °С. Однако он эффективен при снижении очень высоких сопротивлений заземлений (порядка 400 ¸ 600 ом) и малоэффективен при величинах сопротивлений порядка 20 ¸ 30 ом.

3. УСТРОЙСТВО ЗАЗЕМЛЕНИЙ НА ВОЗДУШНЫХ ЛИНИЯХ СВЯЗИ И РАДИОТРАНСЛЯЦИОННЫХ СЕТЯХ

ОБЩИЕ ЗАМЕЧАНИЯ

3.1. Заземляющие устройства на линиях связи и радиотрансляционных линиях оборудуются у:

— вводных кабелей и кабельных вставок;

— вводных устройств на телефонных и телеграфных станциях и усилительных пунктах;

— понизительных трансформаторов абонентской радиотрансляционной сети.

3.2. Защита деревянной опоры от расщепления ее молнией производится молниеотводом, т.е. проводником, проложенным вдоль опоры сверху донизу и заземленным на конце.

3.3. Молниеотводы устанавливают:

— на всех угловых, переходных, кабельных, разрезных, контрольных опорах, а также на трансформаторных опорах фидерных и абонентских радиотрансляционных линий;

— на пяти ближайших опорах магистральных воздушных линий связи (включая и вводную кабельную опору) при подходе их к оконечным и промежуточным усилительным пунктам, а также па двух ближайших опорах фидерных и абонентских воздушных радиотрансляционных линий при подходе их к станции или подстанции;

— на радиотрансляционных абонентских столбовых линиях, расположенных в населенных пунктах, через каждые два пролета (100 м) и на ближайшей к абонентской установке опоре при длине абонентского ввода более одного пролета (50 м);

— на поврежденных когда-либо молнией опорах, а также па новых опорах, установленных взамен поврежденных.

3.4 Сопротивление заземлений молниеотводов, выполняющих различные функции в зависимости от удельного сопротивления грунтов, должно быть не более величин, приведенных в ГОСТ 464-68.

3.5. Молниеотводы выполняют из стальной оцинкованной проволоки диаметром 4 ¸ 5 мм (или двумя проволоками диаметром 3 мм), которую прикрепляют к столбу скобами, расположенными на расстоянии 30 см друг от друга (рис. 3.1). Изгибы проволоки по столбу не допускаются.

Рис 3.1 Устройство молниеотвода на опоре (молниеотвод крепится скобами вплотную к столбу)

Рис 3.2 Устройство молниеотвода с искровым промежутком

3.6. На опорах линий связи и радиотрансляционных, подверженных влиянию линий высокого напряжения (ВЛ), молниеотводы устраивают с искровым промежутком (рис. 3.2).

3.7. Заземление молниеотводов в зависимости от удельного сопротивления грунта и требуемой нормами величины сопротивления заземления может быть выполнено в виде:

— спуска молниеотвода, направленного вдоль подземной части столба (рис. 3.3);

— вытянутого горизонтального луча (являющегося продолжением молниеотвода), закопанного в землю вдоль линии на глубине 0,5 ¸ 0,7 м (рис. 3.4);

— нескольких вытянутых горизонтальных лучей из стальной проволоки, заложенных в земле на глубине 0,7 м (рис. 3.5);

— вертикальных электродов (рис. 3.6, 3.7, 3.10).

3.8. При устройстве заземления молниеотвода в виде вытянутого горизонтального луча сопротивление заземления в зависимости от длины вытянутой проволоки и грунтов будет иметь значения, приведенные на кривой R = j (l) (см. рис. 2.7).

Рис. 3.3. Заземление молниеотвода вдоль комельной части столба

Рис. 3.4. Заземление молниеотвода в виде горизонтального луча

Рис. 3.5. Заземление молниеотвода в виде горизонтальных лучей:

а) двухлучевого; б) трехлучевого; в) четырехлучевого

Как видно, один вытянутый проволочный заземлитель длиной 6 м имеет сопротивление растеканию токов от 1,5 до 150 ом при колебании удельного сопротивления грунта от 10 до 1000 ом × м.

Рис. 3.6. Опора с заземлением из одной трубы

Рис. 3.7. Устройство заземления из одной трубы

3.9. В случае, когда при данном удельном сопротивлении грунта величина сопротивления одиночного заземлителя не удовлетворяет требуемой норме, устраивается многоэлектродный (многолучевой) заземлитель (см. рис. 3.5б, в) с количеством лучей п, определяемым по формуле

, (3.1)

где R 1 — сопротивление единичного лучевого заземлителя, ом;

R об — общее сопротивление многоэлектродного лучевого заземления, которое должно удовлетворять требованиям ГОСТ 464-68, ом;

a — импульсный коэффициент;

h — коэффициент использования заземлителей.

Пример . Сопротивление заземления молниеотвода на опоре с понижающим трансформатором радиотрансляционной сети при r = 500 ом × м должно быть равно согласно ГОСТ 464-68 (табл. 9) 55 ом. Требуется рассчитать число лучей заземлителя молниеотвода, если при его устройстве использованы проволочные вытянутые заземлители длиной l = 5 м и диаметром d = 4 мм.

Из кривой R = j ( l ), приведенной на рис. 2.7, находим, что при r = 500 ом × м сопротивление вытянутого заземлителя длиной 5 м равно 150 ом. Следовательно, в данном случае потребуется многоэлектродное (многолучевое) заземление. Количество заземлителей определяется по ф-ле ( 3.1).

Поскольку коэффициенты h и a , входящие в ф-лу ( 3.1), сами зависят от числа заземлителей, которое мы должны определить, то расчет ведут следующим образом.

Сначала определяем число заземлителей без учета коэффициентов h и a . В нашем случае R 1 = 150 ом, R об = 55 ом, следовательно, n 1 = R 1 / R об = 150/55 = 2,72 » 3 электрода. По табл. 2.14 и 2.9 находим, что a 2 = 0,5 и h = 0,76.

Подставив указанные значения в полную формулу для п, получим п = (150 × 0,5)/(55 × 0,76) » 2 заземлителя. После этого можно более точно определить сопротивление заземляющего устройства, состоящего из двух вытянутых заземлителей: R об = (150 × 0,5)/(2 × 0,76) = 75/1,5 = 50 ом.

3.10. Сопротивления заземляющего устройства, состоящего из вертикальных стальных электродов, указаны на рис. 2.4. Из приведенного на этом рисунке графика видно, что сопротивление одного вертикального заземлителя, в зависимости от его диаметра и длины, а также удельного сопротивления грунта, изменяется в пределах от 1 до 1000 ом.

Когда при данном удельном сопротивлении грунта величина сопротивления одиночного заземлителя не удовлетворяет требуемой норме, устраивают многоэлектродный заземлитель с количеством заземлителей, определяемым по ф-ле ( 3.1).

Пример . Требуется рассчитать заземление для молниеотвода, установленного на кабельной опоре в грунте с r = 300 ом × м при норме общего сопротивления Ro б = 7 ом. Сопротивление единичного вертикального заземлителя длиной 1,5 м и диаметром d = 4 мм согласно кривой R = j ( l ) на рис. 2.4 при r = 300 ом × м равно 148 ом.

Прежде чем выбрать из табл. 2.14 и 2.9 величины коэффициентов использования заземлителей и величины импульсных коэффициентов, предварительно определим количество заземлителей без учета этих коэффициентов, т.е. при R 2 = 148 ом и R об = 7 ом n 2 = R 2 / R o б = 21. Определив по табл. 2.9 и 2.14, что h 2 = 0,6 и a 1 = 0,6, по общей ф-ле ( 3.1) находим n 2 = (148 × 0,6)/(7 × 0,6) = 21.

Примечание . Такое количество заземлителей потребуется, если соединительные провода будут изолированы от грунта.

3.11. При заземлении кабельных ящиков с мощными разрядниками и кожухов трансформаторов радиотрансляционной сети два провода, идущие от заземления, прокладывают по поверхности столба (под общими скобами). На высоте кабельного ящика (или ящика с мощными разрядниками, или кожуха трансформатора радиотрансляционной сети) один из этих проводов присоединяют к заземляющему зажиму указанных объектов, а другой — прокладывают дальше до вершины столба. Этот провод будет являться молниеотводом для защиты столба от разрушения при ударе молнии в линию.

ВЕРТИКАЛЬНЫЕ МНОГОЭЛЕКТРОДНЫЕ ЗАЗЕМЛИТЕЛИ

3.12. Устройство заземления из одной трубы или одного уголка показано на рис. 3.6 и 3.7. При устройстве заземлении из нескольких электродов последние в зависимости от местных условий могут быть забиты в ряд (см. рис. 3.8а) либо в форме креста (см. рис. 3.8б), круга (рис. 3.8в) или прямоугольника (см. рис. 3.8г).

3.13. Перед вбиванием электродов в грунт к каждому из них должна быть приварена или припаяна стальная проволока диаметром 4 ¸ 5 мм. Приварка или припайка проволоки к трубе может производиться следующим образом: на расстоянии 50 и 80 мм от края в электроде просверливают сквозные отверстия; наружную поверхность электрода на длине примерно 30 мм по обе стороны верхнего отверстая очищают и залуживают; конец проволоки на длине не менее 100 см залуживают и пропускают через верхнее отверстие в трубе или в сторону уголка на длину 50 см; залуженной частью проволоки делают пять оборотов вокруг электрода по обе стороны верхнего отверстия (см. рис. 3.7); верхний конец проволоки закрепляют хомутом из проволоки диаметром 2 мм, а нижний конец — пропускают через нижнее отверстие и загибают; место соединения проволоки с трубой тщательно приваривают или пропаивают и покрывают асфальтовым лаком или каким-либо другим кислотоупорным составом.

Рис. 3.8 Расположение трубчатых заземлителей при устройстве многоэлектродных заземлений

а) в ряд; б) в форме креста; в) в форме круга, г) в форме прямоугольника

Рис. 3.9. Стальной вкладыш для забивки труб

3.14. Чтобы не повредить края трубы при забивке в грунт, в верхний конец ее вставляют стальной вкладыш с головкой, которая опирается своими заплечиками на срез трубы (см. рис. 3.9).

3.15. Нижний конец трубы, забиваемый в грунт, предварительно сплющивают, как показано на рис. 3.7.

3.16. Трубы многоэлектродного заземлителя объединяют между собой при помощи соединительной полосы или проволоки, привариваемой или припаиваемой к верхней части каждой трубы.

3.17. Перед забивкой заземлителей в грунт для каждого из них копают яму глубиной 0,8 м. Заземлитель забивают в грунт в центре ямы так, чтобы верхний конец возвышался над уровнем дна ямы на 10 см (рис. 3.10).

Между электродами прорывают траншею шириной 20 ¸ 30 см, глубиной 0,7 м. На дно этой траншеи укладывают соединительную проволоку, как это показано та рис. 3.10.

3.18. После забивки электродов соединительные проводники от заземлителей свивают между собой с шагом скрутки 0,1 ¸ 0,25 м. При устройстве рабочих заземлений во всех грунтах, а защитных — в агрессивных соединительные провода на всем протяжении до выхода на поверхность изолируют от земли двухслойным покрытием асфальтового лака. После выполнения указанных работ траншею засыпают землей. Вместо проводов могут использоваться соединительные полосы или шины (см. рис. 5.1).

3.19. К спуску от кабельных ящиков или защитных коробок и устройств на глубине 0,5 м от поверхности земли поочередно припаивают подводящие провода от заземлителей (см. рис. 3.10).

Рис. 3.10. Соединение трубчатых заземлителей проводами

ЗАГЛУБЛЕННЫЕ И ГЛУБИННЫЕ ЗАЗЕМЛИТЕЛИ

3.20. Заглубленные (от 3 до 10 м) и глубинные заземлители (свыше 10 м) устраиваются в тех случаях, когда посредством многоэлектродного заземления невозможно добиться требуемой величины сопротивления заземления.

Иногда с помощью многоэлектродных заземлений можно обеспечить необходимую величину сопротивления заземления, однако глубинные и заглубленные заземлители требуют меньших затрат ручного труда и материалов.

Расчет заглубленных и глубинных заземлителей осуществляется согласно пп. 2.29 — 2.33.

3.21. Заземлители из прутка длиной до 10 м целесообразно погружать в землю неразрезными посредством ввертывания. Для ввертывания используются переносные вращательные станки, например, двигатель от пилы «Дружба», электрические сверлилки, электродрель с редукторной приставкой и т.д. Для облегчения ввертывания конец прутка специальным образом видоизменяется (рис. 3.11 ).

Рис. 3.11. Нижний конец прутка при ввертывании глубинных заземлителей

Рис. 3.12. Сварка секций глубинных заземлителей с помощью отрезка уголка

3.22. Заземлители длиной от 10 до 15 м выполняются секционными. Длина каждой секции 1,5 ¸ 2,5 м. Работа начинается с забивки первого электрода, затем к нему присоединяется второй электрод и т.д. Для забивки используется вибромолот типа ВМ-2, изготовляемый Комбинатом производственных предприятий треста «Межгорсвязьстрой».

При забивке стержней в твердых грунтах вибромолот должен быть усилен. С этой целью проделываются следующие операции:

— обмотки статора заливаются эпоксидной смолой;

— к наголовнику привариваются дополнительные ребра жесткости;

— закрепляющее устройство электрода усиливается.

Возможны и другие средства вибропогружения.

Соединение секций осуществляется либо сваркой (рис. 3.12 ) (в случае электродов из уголков), либо свинчиванием (пруток). В последнем случае секции заранее снабжаются резьбой. При сочленении секций для обеспечения их надежного электрического соединения внутрь засверленного отверстия закладывается свинец. При забивке заземлителя свинец растекается по поверхности, обеспечивая механическое соединение и надежный контакт. Наиболее целесообразно применять пруток диаметрам 18 ¸ 20 мм. Секция, погружаемая первой, имеет заостренный нижний конец, на верхний конец надевается съемный боек, предохраняющий торец секции от расплющивания.

Рис. 3.13 Устройство глубинных заземлений в районах вечной мерзлоты

3.23. Способы, изложенные в пп. 3.21 и 3.22 , пригодны для сравнительно мягких грунтов с удельным сопротивлением до 1000 ом × м.

В каменистом или скальном грунте установка глубинных заземлителей возможна лишь после предварительного бурения бурильным агрегатом СБУ-150 ЗИФ или СБУ-300 ЗИФ, устанавливаемым на автомашинах типа ЗИЛ, станком ударно-канатного бурения БУ-20-2М, агрегатом АВБ-ТМ-100 на гусеничном ходу и т.д.

Для уменьшения затраты металла обсадная труба устанавливается только в самом начале скважины (на длине примерно 3 м), а заземлитель выполняется из стальной полосы сечением 4 ´ 40 мм 2 , которая опускается в скважину под действием груза в виде удлиненной болванки весом 40 ¸ 50 кг, укрепленной на конце полосы (рис. 3.13). Сама скважина заполняется тонкодисперсной смесью глины и 10 ¸ 15% соли. Влажность смеси доводится до такой степени, при которой еще не теряется свойство сыпучести.

Смотрите так же:  Прокладка провода в штробе расценка

4. УСТРОЙСТВО ЗАЗЕМЛЕНИЙ У АБОНЕНТОВ ВОЗДУШНОЙ ЛИНИИ СВЯЗИ И РАДИОТРАНСЛЯЦИОННОЙ СЕТИ

4.1. Для защиты абонентов воздушных линий связи от опасных напряжений у каждого из них устанавливают разрядники. Сопротивления заземлений для таких разрядников должны быть не больше величин, приведенных в ГОСТ 464-68.

4.2. В случае, когда одно заземление используется для разрядников нескольких абонентов, сопротивление этого заземления в зависимости от числа проводов также не должно превышать величин, указанных в ГОСТ 464-68.

4.3. Для защиты абонентов радиотрансляционных линий разрядники устанавливают в следующих пунктах (см. «Правила строительства и ремонта воздушных линий связи и радиотрансляционных сетей», ч. IV ):

— на опорах абонентской линии через каждые два пролета (80 ¸ 120 м);

— на опорах, имеющих отводы в помещения с большим скоплением людей (школы, ясли, больницы, клубы, сельсоветы и др.), а также в помещения животноводческих ферм;

— на ближайшей к абонентской установке опоре, если длина отвода превышает один пролет (50 м).

Сопротивление заземления разрядников должно быть не больше величины, указанной в ГОСТ 464-68.

4.4. Заземление у абонентов линий связи и абонентов радиотрансляционных сетей может быть выполнено с помощью стального оцинкованного провода, уложенного в землю (рис. 4.1), или труб. Допускается также использование для заземлений разрядников, установленных у абонентов, водопроводной сети (рис. 4.2).

Рис. 4.1. Устройство заземления с использованием в качестве заземлителя водопроводной трубы

Рис. 4.2. Устройство заземления у абонентского пункта СТС

4.5. Выбор типа заземлителя для устройства заземления у абонентов зависит от местных условий. В городах укладка протяженного заземлителя связана с рытьем канавы, что часто сопряжено с некоторыми трудностями. Поэтому в городских условиях целесообразно использовать для заземления стальные вертикальные электроды — трубы или уголки.

Трубы и уголки закапывают в грунт и делают вывод проводника от заземлителя так же, как было показано выше.

4.6. Заземление из стального провода, уложенного в землю, (следует применять там, где имеется возможность рыть канаву, т.е. на всей сети СТС и радиотрансляционной абонентской ce ти.

4.7. При использовании для заземления на абонентских пунктах водопроводной сети подводящий проводник присоединяют к водопроводной трубе в соответствии с рис. 4.1. Для создания хорошего контакта трубу, хомутик и свинцовые прокладки предварительно зачищают до металлического блеска.

Водомер должен быть зашунтирован перемычкой, включенной между двумя контактными хомутиками, установленными по обе его стороны.

5. УСТРОЙСТВО ЗАЗЕМЛЕНИЙ ДЛЯ ТЕЛЕГРАФНЫХ И ТЕЛЕФОННЫХ СТАНЦИЙ, УСИЛИТЕЛЬНЫХ ПУНКТОВ И РАДИОТРАНСЛЯЦИОННЫХ УЗЛОВ БЕЗ ПРИМЕНЕНИЯ КОКСОВОЙ ЗАСЫПКИ ЭЛЕКТРОДОВ

5.1. На каждой телеграфной, телефонной станции и усилительных пунктах с собственными источниками питания устраивают три обособленных заземления: рабочее и два измерительных. При нормальной эксплуатации все три заземления соединяют параллельно друг с другом. Станции и подстанции радиотрансляционных узлов оборудуются одним защитным заземлением.

5.2. Общее сопротивление параллельно соединенных заземлений должно удовлетворять нормам, приведенным в ГОСТ 464-68.

Для станций и подстанций радиотрансляционных узлов сопротивление заземлений должно быть не более 10 ом. Величины сопротивлений отдельных заземлений не должны отличаться друг от друга более чем в два раза.

5.3. Расстояние между отдельными заземлениями, а также между подводящими проводами от заземляющих устройств, находящимися в грунте, должно быть не менее 20 м.

5.4. Для заземления телеграфных и телефонных станций, усилительных пунктов и радиотрансляционных узлов используют преимущественно вертикальные заземлители. В некоторых случаях допускается применение листовых заземлителей.

5.5. Каждое заземление из вертикальных заземлителей должно соответствовать указаниям разд. 3. Между собой электроды одного и того же заземления после забивки их в грунт соединяют стальной полосой сечением не меньше 40 ´ 4 мм 2 , которую при помощи накладок приваривают к трубам (рис. 5.1). Соединительную полосу укладывают в траншею глубиной 0,1 ¸ 1,2 м.

5.6. Вывод от заземления в здание станции делают жгутом из стальных проволок или стальным канатиком, изолированным от земли асфальтовым или каким-либо другим изолирующим и водостойким лаком. В качестве подводящего провода может быть использована также шина, привариваемая к трубам.

Допускается применение кабелей в пластмассовой оболочке.

5.7. К соединительной полосе подводящий канатик или жгут из проводов может быть присоединен одним из следующих способов:

1. На жгут или канатик надевают стальной наконечник, который сжимают двумя хомутами. Место соединения канатика или жгута с наконечником пропаивают; наконечник прикрепляют к соединительной полосе хомутом и приваривают к ней (рис. 5.2).

Рис. 5.1. Соединение стальной полосой трубчатых заземлителей после забивки их в грунт

Место пайки наконечника, а также подводящего канатика или жгута дважды покрывают асфальтовым лаком на всем протяжении прокладки в земле.

2. Непосредственно сваркой.

3. Берут стальную полосу длиной 1 м и сечением 30 ´ 10 мм, один конец которой залуживают на расстоянии 90 мм. Затем из готавливают удлиненный алюминиевый наконечник под кабель необходимого сечения. Залуженные полосу и наконечник стягивают тремя болтами и место стыка пропаивают. На месте монтажа контура заземления стальную полосу приваривают к соединительной полосе данного контура, а в наконечник вставляют жилы кабеля и спрессовывают пресс-клещами в 5 — 6 местах.

По окончании стыковки место стыка стальной полосы и наконечника помещают в чугунную муфту МЧ-70 и заливают гудроном.

Последовательность выполнения стыка стальной полосы с наконечником и необходимые размеры приведены на рис. 5.3.

Рис. 5.2. Присоединение подводящего канатика или жгута из проволок к соединительной полосе

Рис. 5.3. Устройство стыка стальной полосы и наконечника

5.8. Изолированный от земли канатик или жгут из стальных проволок при прокладке вверх по стене здания защищается от механических повреждений на высоте до 2,5 м над поверхностью земли. Для защиты используют угловое железо, которое должно быть опущено в землю на глубину не менее 0,5 м.

5.9. Изолированные от земли подводящие проводники вводят в здание через отверстие в стене. При этом проводники не должны касаться металлических частей зданий и при прокладке через стены зданий должны быть защищены шлангом из изолирующего материала (резиновая трубка, эбонитовая и т.п.). Внутри здания они должны быть также изолированы. К стене проводники крепят через каждые 30 см.

5.10. Провода от отдельных заземляющих устройств, заведенные в здание станции или усилительного пункта с собственными источниками питания, присоединяют к трем установленным на одном щитке однополюсным рубильникам с закороченными на станционной стороне клеммами.

От щитка заземлений «землю» подводят к точкам заземления установок связи, силовому оборудованию для присоединения к нетоковедущим частям, к экранам, разрядникам и т.п. (см. «Рекомендации по вопросам оборудования заземлений и заземляющих проводок ЛАЦ и НУП»).

5.11. При размещении телефонных и телеграфных станций в высотных зданиях с массивным стальным каркасом, присоединенным к заземлению с малым сопротивлением (0,25 ¸ 0,3 ом), не требуется особых заземлений для установок связи, так как все заземляемые точки станций присоединяют к заземлению каркаса здания.

В том случае, когда металлический каркас высотного здания представляет собой одно целое с точки зрения электрической проводимости, он может быть использован в качестве подводящего провода от заземляющего контура.

5.12. Размещение заземляющих устройств около усилительных пунктов, питаемых дистанционно, см. в «Рекомендациях по вопросам оборудования заземлений и заземляющих проводок в ЛАЦ н НУП».

6. УСТРОЙСТВО РАБОЧИХ ЗАЗЕМЛЕНИЙ ИЗ ЭЛЕКТРОДОВ В КОКСОВОЙ МЕЛОЧИ И АРМИРОВАННЫХ ЗАВОДСКИХ ЭЛЕКТРОДОВ

6.1. При устройстве рабочих заземлений НУП, дистанционно питаемых по системе «провод — земля», анодных заземлений установок катодной защиты от коррозии линейно-кабельных сооружений связи, а также других заземлений, находящихся в процессе эксплуатации под положительным потенциалом относительно земли, т.е. подвергающихся в процессе эксплуатации растворению вследствие электролиза, между электродами и землей целесообразно укладывать слой коксовой мелочи.

6.2. Применение стальных электродов в коксовой засыпке, а также армированных электродов типа ЗКА-140 заводского изготовления исключает необходимость использования для снижения величины сопротивления заземления соли, которая разрушающе действует на стальные электроды.

6.3. Целесообразность использования коксовой засыпки или армированных заводских электродов определяется конкретными условиями устройства заземлений в каждом отдельном случае, исходя из величины удельного электрического сопротивления грунта, требуемой величины сопротивления заземления, необходимого срока службы заземления без замены электродов на основе технико-экономических расчетов.

6.4. Устройство заземлений с использованием коксовой мелочи выполняется по расчетам и чертежам проектной организации.

6.5. Земляные работы по устройству заземлений в коксовой мелочи могут быть выполнены ручным или механизированным способом. Для рытья траншей предусмотрены траншейные экскаваторы типа ЭТЦ-161 и роторные экскаваторы типа ЭТР-132, ЭТР-141 и ЭР-6.

Для бурения вертикальных скважин могут быть использованы буровые установки типа БГМ-2 на автомашине ЗИЛ-157, БКМА-1/35 на ЗИЛ-164, БМА-157 на ЗИЛ-157, БМУ-2 на ГАЗ-63Л, а также разработанная КФ ЦНИИС машина типа ЭНСКЗ-2, имеющая специальные приспособления для забивки электродов.

6.6. Монтаж и установка заземлителей выполняются в соответствии со строительными нормами и правилами по устройству заземлений (СНиП III-Е1-62) при строгом соблюдении правил техники безопасности и противопожарной охраны.

6.7. Устройство одиночного вертикального заземлителя (см. рис. 2.17) производится в следующем порядке.

В конце траншеи, подготовленной для соединительного кабеля, шины или провода, на глубине 0,7 м механизированным или ручным способом бурится скважина глубиной 2,5 м и диаметром 0,25 м. На дно скважины насыпается слой коксовой мелочи высотой 15 см. В скважину, по центру, опускается электрод и засыпается коксовой мелочью, которая затем утрамбовывается через каждые 30 см. К верхнему концу электрода приваривается соединительный кабель или провод. Место подключения кабеля к электроду тщательно изолируется изоляционной массой (черт. М-618.01.20 — «Гипросвязь»).

Выступающая из скважины верхняя часть электрода засыпается коксовой мелочью с таким расчетом, чтобы высоты засыпки была не менее 10 см. Незаполненная часть скважины засыпается землей и утрамбовывается.

6.8. Устройство горизонтального электрода (см. рис. 2.18) производится в следующем порядке.

Механизированным или ручным способом роется траншея шириной 0,25 м и глубиной 1,2 м до места соединения с подводящим кабелем пли проводом. (Длина траншеи определяется длиной горизонтально устанавливаемого электрода). На дно траншеи насыпается слой коксовой мелочи высотой 15 см и утрамбовывается. По центру траншеи укладывается металлический электрод (полоса), к концу которого с помощью сварки подключается соединительный кабель или провод. Место подключения соединительного кабеля к электроду тщательно изолируется изоляционной массой.

Уложенный в траншею электрод (полоса) засыпается коксовой мелочью высотой 10 см, которая затем утрамбовывается. Незаполненная коксовой мелочью траншея засыпается землей и также утрамбовывается.

6.9. Устройство многоэлектродных заземлений (см. рис. 2.19) производится в следующем порядке.

Механизированным или ручным способом по периметру контура заземления роется траншея глубиной 0,7 м и шириной 0,23 м. В местах установки вертикальных электродов в траншее бурятся скважины глубиной 2,5 м и диаметром 0,25 м. В скважины засыпается слой коксовой мелочи высотой 15 см, который затем утрамбовывается. В подготовленные скважины по центру опускаются вертикальные электроды. Установив последние так, чтобы их верхние концы выступали в траншее на 15 см, в скважину засыпают коксовую мелочь, которую затем утрамбовывают через каждые 30 см.

До укладки соединительной полосы в траншею засыпается коксовая мелочь слоем 15 см и утрамбовывается. Поверх коксовой мелочи укладывается соединительная стальная полоса, которая путем сварки соединяется с вертикальными электродами. Контур заземления при помощи сварки подключается к соединительному кабелю. Подключение заземления рекомендуется выполнять в месте соединения вертикального электрода с соединительной полосой. Места подключения соединительной полосы к вертикальным электродам и соединительного кабеля к контуру заземления тщательно изолируются изоляционной массой.

После подключения соединительного кабеля к контуру заземления и изоляции мест подключения в траншею досыпается слой коксовой мелочи высотой 10 см и утрамбовывается. Оставшаяся незасыпанная часть траншеи также засыпается и трамбуется.

6.10. Устройство многоэлектродных заземлений из вертикально устанавливаемых армированных электродов заводского изготовления (см. рис. 2.20) производится в следующем порядке.

По периметру контура заземления механизированным или ручным способом роется траншея глубиной 0,7 м и шириной 0,25 м. В траншее в местах установки вертикальных электродов на глубину 2,3 м бурятся скважины диаметром 0,25 м. В скважины опускаются электроды. Образовавшиеся зазоры между электродом и скважиной засыпаются грунтом и трамбуются.

После установки электродов в траншею к каждому из них при помощи сварки подключаются изолированные медные проводники, общее сечение которых должно быть не менее 16 мм 2 и которые соединяются между собой пайкой. Узлы соединения проводов необходимо тщательно изолировать слоем битума, затем липкой поливинилхлоридной лентой в два слоя и снова битумом. Соединительный кабель подключается к узлу соединения контура заземления. Место его подключения тщательно изолируется битумом и двумя слоями липкой поливинилхлоридной ленты. После подключения соединительных проводов и кабеля скважины и траншея засыпаются землей и утрамбовываются.

6.11. По окончании работ по устройству контура заземления измеряется его сопротивление. Измеренная величина не должна превышать расчетную с учетом коэффициента промерзания.

7. УСТРОЙСТВО ЗАЗЕМЛЕНИЙ В РАЙОНАХ ВЕЧНОЙ МЕРЗЛОТЫ

7.1. В районах вечной мерзлоты на сопротивление заземлений влияют следующие факторы, действующие на температурный режим грунта:

1. Растительность, в особенности мох, который мешает прохождению тепла в глубь почвы летом и не препятствует проникновению низких температур зимой. На местности, покрытой растительностью, граница вечной мерзлоты близка к поверхности земли.

2. Снеговой покров, который имеет такое же теплоизолирующее значение для почвы при промерзании, как слой песка в два-три раза большей толщины, поскольку теплопроводность снега ничтожна. Высота снегового покрова в большей степени определяет температуру почвы, чем средняя годовая температура воздуха.

Если площадка над заземлителем лишена снега, то сопротивление заземлений зимой увеличивается по сравнению с летним в 15 — 25 раз. Своевременное нанесение снега толщиной 30 см позволяет свести это увеличение до 5 раз, а при слое снега толщиной 60 см указанное сопротивление увеличивается зимой в три раза. Такого же эффекта можно достигнуть, применяя настилы из теплоизолирующего материала (например, древесных опилок, шлака и т.д.).

3. Водоемы, являющиеся резервуарами тепла и сильно изменяющие термический режим грунтов. Сопротивление заземления, строенного в дне незамерзающего водоема, имеет наименьшие колебания — увеличивается зимой примерно в 1,5 ¸ 2 раза.

4. Здания, оказывающие экранирующее действие и изменяющие температурный режим земли, прилегающей к зданию с севера и с юга. С северной стороны граница мерзлоты поднимается, а с южной — опускается по сравнению с обычным уровнем вечной мерзлоты в данном районе.

5. Влажность и концентрация ионов солей.

6. Удельное сопротивление основы грунта.

7.2. Мерзлые грунты обладают высоким удельным сопротивлением. Верхние слои земли в районах вечной мерзлоты в летние месяцы оттаивают на глубину от 1 до 3 м. В табл. 7.1 и 7.2 приведены ориентировочные значения удельных сопротивлений грунтов в районах вечной мерзлоты при различной температуре и влажности 10 ¸ 40%.

Похожие статьи:

  • Фарфоровые пробки электрические Если перегорели пробки Плавкий предохранитель (рис.1А) ("пробка керамическая") является простейшим устройством для защиты электроустановок от перегрузок и коротких замыканий. Пробки перегорают при коротком замыкании в электрической цепи […]
  • Два бесконечно длинных прямых провода скрещены Два бесконечно длинных прямых провода скрещены Электромагнетизм § 21. Магнитное поле постоянного тока Условия задач и ссылки на решения по теме: 1 Два параллельных бесконечно длинных провода, по которым текут в одном направлении токи 60 […]
  • Запас на провис провода Нормы для учёта расхода проводов на провес, вязку, соединение проводов и нормативные отходы при монтаже воздушной линии Добавлено 3 марта 2015 года в 12:20, Вт Расход (запас длины) проводов и тросов определяется умножением строительной […]
  • Плоская рамка из провода сопротивлением 5 ом находится в однородном магнитном поле Решения из методички Чертова: 4. Электромагнетизм Бесплатные решения контрольных работ из методички Чертова 1987 г. издания для студентов-заочников. Смотрите также решения задач по электромагнетизму в "большом" задачнике Чертова (c […]
  • Можно ли включить в сеть с напряжением 220 в потенциометр на котором написано можно ли включить в сеть напряжением U=220В реостат, на котором написано: R=30 Ом, I=5 А. Почему? проверим на какое напряжение рассчитан реостат U=IR=5*30=150 B Ответ включать нельзя U=150 Подпишись Не упусти важного - подключи Знания […]
  • Солнечная панель 220 вольт Солнечные панели для дома (1 кВт, 220 Вольт) Код товара: 0800014 Наличие: на удаленном складе в Москве по Москве — от 500 руб. по России — от 500 руб. самовывоз — по предзаказу Солнечная электростанция SA-1000 представляет […]