Измерение сопротивления изоляции мегаомметром эс0202

Как пользоваться мегаомметром

Название этого прибора составлено из трех слов: «мега», обозначающее размерность величины измерения ( тысяча тысяч или 10 6 ), «ом» — единица электрического сопротивления, «метр» — сокращение от измерять. Сразу становится понятно техническое назначение прибора: измерение электрических сопротивлений в диапазоне мегаомов.

Часто знатоки русского языка исправляют это слово, исключая из него букву «а» под предлогом того, что две гласные подряд при произношении неблагозвучны. Но этот прием искажает заложенный в прибор смысл так же, как и сленг отдельных электриков — «мегер».

Принцип измерения сопротивления изоляции мегаомметром

В основу работы прибора положен знаменитый закон Ома для участка цепи I=U/R. Для его воплощения внутри корпуса у любой модификации встроены:

источник постоянного, откалиброванного напряжения;

Конструкция генератора напряжения может меняться в значительных пределах и создаваться на основе простых ручных динамо-машин, как в старых моделях, или за счет использования питания от встроенного либо внешнего источника.

Выходная мощность генератора, как и величина его напряжения, может включать несколько диапазонов или выполнятся единственной, фиксированной величиной.

На клеммы прибора подключаются соединительные провода, другой конец которых скоммутирован с измеряемой цепью. Для этих целей обычно используют зажимы типа «крокодил».

Встроенный внутрь электрической схемы амперметр замеряет проходящий по цепи ток. С учетом того, что напряжение генератора уже известно и откалибровано, то шкала измерительной головки проградуирована сразу в пересчитанных единицах сопротивления — мегаомах или килоомах.

Так выглядит шкала старого, проверенного пятидесятилетним сроком эксплуатации аналогового прибора серии М4100/5. Он позволяет выполнять замеры на двух пределах шкал:

Если мегаомметр создан по новым технологиям обработки цифровых сигналов, то на его дисплее тоже отображается сопротивление, но в более наглядном виде.

Как устроен мегаомметр

Рассмотрим этот вопрос на примере упрощенной электрической схемы аналогового прибора.

При ее анализе явно выделяются составные части:

генератор постоянного тока;

измерительная головка, собранная на основе принципа взаимодействия двух рамок (рабочей и противодействующей);

тумблер-переключатель пределов измерения, позволяющий коммутировать различные резисторные цепочки для изменения выходного напряжения и режима работы головки;

Довольно простая схема не содержит никаких лишних элементов. На герметичном, прочном диэлектрическом корпусе такого прибора размещены:

ручка для удобства транспортировки;

складная портативная рукоятка генератора, которую надо вращать для выработки напряжения;

рычаг тумблера переключения режимов измерения;

выходные клеммы для подключения соединительных проводов схемы.

Практически на всех конструкциях мегаомметров устанавливаются три выходные клеммы, которые называют:

Клеммы земли и линии используются при всех измерениях сопротивления изоляции относительно контура заземления, а экранный вывод предназначен для ликвидации влияния токов утечек при проведении замеров между двумя параллельными жилами кабеля или других аналогичных токоведущих частей.

Для его включения в работу необходимо применять один измерительный провод специальной конструкции с экранированными концами. Им всегда комплектуется прибор на заводе. У него на одном конце установлено две клеммы, одна из них промаркирована буквой Э. Этот вывод подключается на соответствующую клемму мегаомметра.

Пример подключения измерительных концов к прибору демонстрирует рисунок.

Здесь вместо клемм «Л» и «З» используются индексы «rx» и «-». Это просто новая маркировка, которая заменяет старую на современных приборах.

На картинке видно, что клемма «Э» применяется для подключения к экрану или кожуху. Пользуются ею для проведения специальных точных замеров. Мегаомметры, использующие питание для генератора от встроенных батареек или внешней сети. работают по этим же принципам. Только у них не надо крутить ручку. Для выдачи напряжения на испытываемую схему у них удерживают кнопку в нажатом состоянии. Причем у приборов, способных выдавать несколько комбинаций напряжений, используется не одна, а две, три кнопки или их сочетания.

Внутреннее устройство таких мегаомметров намного сложнее. Его здесь не рассматриваем, поскольку этот вопрос больше относится к ремонтным работам, а не к измерениям.

Напряжение, которое выдает генератор мегаомметров различных моделей, может быть одной из следующих величин: 100, 250, 500, 700, 1000, 2500 вольт. Причем одни приборы работают на одном диапазоне, а другие обладают несколькими.

Выходная мощность приборов, созданных для проверки изоляции промышленного высоковольтного оборудования может в несколько раз превышать характеристики моделей, предназначенных для работы в условиях бытовой электропроводки. Габариты таких устройств тоже будут отличаться.

По этой причине ориентирование на маленькие конструкции, которые можно держать в кармане куртки, не во всех случаях может быть оправдано.

На что обращать внимание при работах с мегаоометром

Повышенное напряжение прибора

Выходной мощности генератора мегаомметра вполне достаточно для того, чтобы не только определить появление микротрещин в слое изоляции, но и получить серьезную электрическую травму.

По этой причине правила безопасности разрешают пользоваться прибором только обученному и хорошо подготовленному персоналу, допущенному к работам в электроустановках под напряжением. А это минимум третья группа по ТБ.

Повышенное напряжение прибора во время замера присутствует на испытуемой схеме, соединительных проводах и клеммах. Для защиты от него применяются специальные щупы, установленные на измерительные провода с усиленной поверхностью изоляции.

На концах щупов предохранительными кольцами выделена запретная зона. К ней нельзя прикасаться открытыми частями тела. Иначе можно попасть под действие напряжения.

Для манипуляций с измерительными щупами руками берутся за поверхность рабочей зоны. Во время измерений для подключения к схеме используют хорошо заизолированные зажимы типа «крокодил». Применять другие провода и щупы запрещено.

Во время проведения замера на всем испытуемом участке не должно быть людей. Особенно это актуально при замерах сопротивления изоляции длинномерных кабелей, протяженность которых может составить несколько километров.

Наведенное напряжение

Проходящая по проводам линий электропередач энергия обладает большим магнитным полем, которое, изменяясь по синусоидальному закону, наводит во всех металлических проводниках вторичную ЭДС и ток I2. Его величина на протяженных изделиях может достигать больших величин.

Этот фактор необходимо учитывать по двум причинам, связанным с:

1. точностью выполнения замера;

2. безопасностью работающего персонала.

Первая причина заключается в том, что при сборке схемы для замера сопротивления изоляции через измерительный орган мегаомметра потечет ток неизвестной величины и направления, вызванный наводкой электрической энергии. Его значение добавится к показанию прибора от калиброванного напряжения генератора.

В итоге две неизвестных величины тока суммируются произвольным образом и создают неразрешимую метрологическую задачу. Измерение сопротивлений электрических цепей, находящихся под любым напряжением, а не только под наведенным, поэтому вообще лишено смысла.

Вторая причина объясняется тем, что работы под наведенным напряжением могут привести к получению электрических травм и требуют строгого соблюдения правил безопасности.

Остаточный заряд

Когда генератор прибора выдает напряжение в измеряемую сеть, то между шиной электрооборудования или проводом линии и контуром земли создается разность потенциалов и образуется емкость, которая получает заряд.

После разрыва цепи мегаомметра за счет отключения измерительного провода часть этого потенциала сохраняется: шина или провод обладают емкостным зарядом. Стоит только человеку прикоснуться к этому участку, как он получает электрическую травму от тока разряда через его тело.

По этой причине необходимо принимать дополнительные меры безопасности и постоянно пользоваться переносным заземлением с изолированной рукояткой для безопасного снятия емкостного напряжения.

Перед подключением мегаомметра к схеме, изоляция которой будет замеряться, всегда необходимо поверять отсутствие на ней напряжения или остаточного заряда. Делают это испытанным индикатором или поверенным вольтметром соответствующих номиналов.

После выполнения каждого замера емкостной заряд снимается переносным заземлением с использованием изолирующей штанги и других дополнительных защитных средств.

Обычно мегаомметром необходимо выполнять много замеров. Например, чтобы сделать вывод о качестве изоляции контрольного десятижильного кабеля требуется проверить ее относительно земли и каждой жилы и между всеми жилами поочередно. При каждом замере необходимо пользоваться переносным заземлением.

Для быстрой и безопасной работы один конец заземляющего проводника первоначально присоединяют к контуру заземления и оставляют в таком положении до полного завершения работ.

Второй конец провода прикрепляют к изоляционной штанге и с ее помощью каждый раз накладывают заземление для снятия остаточного заряда.

Основные правила безопасного использования мегаомметра

Поверка и испытания

Любую работу в электроустановках разрешается выполнять только исправными электрическими устройствами.

Применительно к мегаомметру это означат, что он должен отвечать одновременно двум требованиям и быть:

Испытание означает проверку сопротивления его собственной изоляции и всех комплектующих частей в электрической испытательной лаборатории повышенным напряжением. На основе ее проведения владельцу прибора выдается сертификат, разрешающий эксплуатацию мегаомметра на определенный, ограниченный срок.

Поверка выполняется специалистами метрологической лаборатории с целью определения класса точности прибора и нанесения на его корпусе клейма о прохождении контрольных замеров. Владелец обязан принимать меры к сохранности нанесенного клейма с датой и номером поверителя. Если оно исчезнет, то прибор автоматически считается неисправным.

Смотрите так же:  Провод для сети 220 вольт

Виды работ

Мегаомметр выбирают для каждого замера в первую очередь по величине выходного напряжения. Им можно выполнять два разных вида проверок:

1. испытания изоляции;

2. измерение сопротивления диэлектрического слоя.

Первый способ подразумевает создание экстремального случая для испытуемого участка. С этой целью на него подается не номинальное, а завышенное напряжение, предусмотренное технической документацией. Время испытаний тоже выбирают довольно большим. Это позволяет своевременно выявить все дефекты изоляции и исключить их проявление в процессе эксплуатации.

Второй метод использует более щадящий режим. Напряжение для него подбирается меньшего значения, а время замера определяется длительностью окончания емкостного заряда измерительного участка. У электродинамических приборов оно не превышает минуты (столько надо крутить ручку со скоростью 120÷140 об/мин), а у электронных — порядка 30 секунд (держать нажатую кнопку).

Например, измерение сопротивления изоляции определенной электрической цепи необходимо выполнять мегаомметром, выдающим 500 вольт на выходе. Тогда для ее испытания потребуется прибор на 1000 V.

Измерением изоляции занимается электротехнический персонал различных профессий, а функция испытания предоставляется только специалистам лаборатории службы изоляции. Довольно часто им возможностей мегаомметра для этих целей не хватает, и они включают в работу дополнительные установки и источники постороннего напряжения, обладающие более высокими мощностями и измерительными возможностями.

Знание особенностей проверяемой схемы

До подачи высокого напряжения на измеряемый участок необходимо принять меры, исключающие поломки и неисправности его компонентов. В современном электрооборудовании работает много полупроводниковых элементов, различных конденсаторов, измерительных и микропроцессорных приборов. Они не рассчитаны на условия эксплуатации, которые создает напряжение генератора мегаомметра.

Все подобные устройства необходимо защитить. Для этого их извлекают из схемы или шунтируют определенным образом.

После окончания замеров вся схема должна быть восстановлена и приведена в рабочее состояние.

Как выполнить измерение сопротивления изоляции

Технологический процесс рекомендуется разделить на три основных этапа:

1. подготовительную часть;

2. выполнение измерений;

3. заключительный этап.

Во время подготовки необходимо:

решить организационные мероприятия, определиться с исполнителями и их квалификацией;

ознакомиться со схемой электроустановки и предусмотреть меры, исключающие поломки ее составных частей;

подготовить защитные средства и исправные приборы измерения;

вывести участок электрооборудования из работы.

Перед началом работы с мегаомметром важно убедиться в его исправности. Для этого подключают к его выводам измерительные провода и закорачивают их выходные концы между собой. Затем подают напряжение от генератора и контролируют показание.

Исправный прибор должен измерить закороченную цепь и показать результат — 0. Затем концы разъединяют, отводят в стороны и выполняют повторный замер. На шкале должна отобразиться уже другая величина — ∞. Это сопротивление изоляции воздушного промежутка между разомкнутыми концами мегаомметра.

На основании этих двух показаний делается вывод о технической исправности прибора, целостности соединительных проводов и готовности к работе.

Выполнение непосредственного измерения сопротивления изоляции одного провода сводится к строгой последовательности действий:

1. подсоединение переносного заземления к контуру земли;

2. проверка и обеспечение отсутствия напряжения на испытуемом участке;

3. установка переносного заземления на время подключения прибора;

4. сборка схемы измерения мегаомметра;

5. снятие переносного заземления;

6. подача калиброванного напряжения на схему до момента выравнивания емкостного заряда и фиксация отсчета с последующим снятием напряжения;

7. наложение переносного заземления для снятия остаточного заряда;

8. отключение соединительного провода прибора со схемы;

9. снятие переносного заземления.

Замер сопротивления выполняется при наибольшем пределе МΩ. Когда его величина становится недостаточной, то переходят на более точный диапазон.

На всех последующих цепочках измерения эта последовательность должна строго соблюдаться. У некоторых моделей мегаомметров предусмотрен прерывистый режим, когда напряжение выдается в течение 1 минуты и после этого должна выдерживаться двухминутная пауза. Пренебрегать этим ограничением нельзя.

Электродинамические приборы со стрелочным индикатором предназначены для замеров при горизонтальной ориентации корпуса. Если нарушить это требование, то возникает дополнительная погрешность. Большинство цифровых современных мегаомметров лишены этого недостатка.

Все замеры записывают в заранее подготовленный протокол и скрепляют подписями ответственных работников. В нем отображаются условия проведения работы и заводские номера используемых приборов.

Заключительный этап

Все разобранные цепочки должны быть восстановлены. Шунты и закоротки, установленные для безопасного выполнения измерений, снимаются.

Схема приводится в готовность к подаче рабочего напряжения для ввода в работу.

На заключительном этапе заканчивается документальное оформление результатов измерения сопротивления изоляции.

Внимание! Материал статьи носит рекомендательный характер и предназначен для ознакомительных целей начинающим специалистам. Более точная трактовка правил пользования мегаомметрами изложена в соответствующей технической документации и действующих нормативах. Знание и выполнение их требований — профессиональная обязанность каждого электрика.

Измерения мегаомметром

Мегаомметр – крайне полезный прибор, используемый для измерения сопротивления изоляции электрических кабелей, обмоток трансформаторов, а также для проверки электроинструментов.

Параметры сопротивления изоляции имеют важнейшее значение для находящихся в эксплуатации электросистем и установок. Проверка данной характеристики входят в состав обязательных электроизмерений, проводимых для определения состояния, работоспособности и безопасности электрических сетей.

Виды и особенности мегаомметров

Сегодня на рынке представлены мегаомметры различных марок и типов, предназначенные для измерения изоляции с напряжением до 100, 500, 1000 и 2500 В, установленная величина напряжения генерируется самим измерительным устройством. На рисунке ниже представлена принципиальная схема мегаомметра ЭС0202.

Мегаомметры различаются между собой не только генерируемым напряжением, но также классом точности. К примеру, пользующийся большой популярностью у профессиональных специалистов прибор марки М4100, работает с погрешностью не более 1%. Для устройств Ф4101 нормальная погрешность составляет не более 2,5%. Чем выше значение исследуемой электросети или установки, тем более точным должен быть используемый для измерения мегаомметр. Питание измерительных средств может осуществляться от встроенных аккумуляторов или от сетей переменного тока напряжением 127-220 В.

Выбирать средство для испытаний электрической системы необходимо с учетом номинального сопротивления в сети, напряжения и других индивидуальных особенностей.

Чаще всего проводят испытания в сетях и устройствах с номинальным напряжением до 1000 В (электрические двигатели, цепи вторичной коммутации и другие). Для измерений в таких условиях необходимо использовать мегаомметры, рассчитанные на работу в цепях от 100 В до 1000 В. Если номинальные параметры сети выше 1000 В, необходимо использовать измерительные средства, работающие с напряжением до 2500 В.

Порядок проведения измерений

Измерения мегаомметром проводятся в несколько этапов. На рисунке ниже представлена схема подключения устройства в трехфазной цепи.

Сначала необходимо измерить сопротивление изоляции соединительных проводников, полученный результат должен соответствовать верхнему пределу измерительного устройства.

Далее следует установить предел измерений в соответствии со следующими рекомендациями:

  • установка наибольшего из возможных значений в случаях неизвестных параметров сопротивления изоляции;
  • устанавливать предел измерений следует с учетом того, что наибольшая точность полученных результатов достигается за счет отсчета показаний в пределах рабочей шкалы устройства.

При испытаниях электрики обязательно следует убедиться в отсутствии напряжения на проверяемом участке электрической цепи.

Когда все предварительные работы и проверки выполнены, необходимо закоротить или отключить от цепи все элементы и устройства с пониженными значениями сопротивления изоляции и с пониженным напряжением, к примеру, полупроводники, конденсаторы и другие.

Цепь на время проведения электроизмерительных работ необходимо заземлить.

Теперь можно подключить устройство к исследуемой цепи. Испытания проводятся путем вращения ручки генератора мегаомметра с постоянной скоростью в 120 оборотов в минуту. Измерения длятся в течение 60 секунд, после чего можно записать результаты.

При проведении электроизмерительных работ на приборах и системах с большой ёмкостью, фиксировать показания мегаомметра необходимо после того, как стрелка полностью успокоится.

В целях безопасности, после проведения испытаний, перед отсоединением мегаомметра от электрической цепи, необходимо снять остаточный электрический заряд с устройства путем его кратковременного заземления. На рисунке ниже представлена схема подключения цифрового измерителя для проверки изоляции проводки.

При проведении электроизмерений следует учитывать, что результаты исследования могут быть искажены из-за различных внешних факторов, к примеру, из-за увлажнения изолированных частей электросети или электрической установки, что приводит к возникновению токов утечки. В этом случае на изоляцию необходимо наложить токоотводящий проводник, присоединив его к зажиму «Э» мегаомметра.

Смотрите так же:  Схема электронного фильтра

Правила соединения мегаомметра с цепью через зажим «Э»:

  • при проверке изоляции электрического кабеля, изолированного от земли, зажим соединяют с броней провода через проводник;
  • при проверке сопротивления изоляции между обмоток зажим «Э» соединяют с корпусом электрической машины;
  • при измерении на обмотках трансформатора, зажим «Э» подключают к устройству под юбкой выходного изолятора.

Важно помнить, что измерение сопротивления изоляции в осветительных и силовых системах должно проводиться при включенных выключателях, отключенных электрических приемниках, отключенных плавких вставок и вывернутых лампах.

Ни в коем случае нельзя проводить испытания мегаомметром сетей, отдельные элементы которых располагаются в непосредственной близости от других электрических систем, находящихся под напряжением. Также запрещено проводить измерения на воздушных линиях электропередач при грозе.

КИП и АММИАЧНЫЕ ХОЛОДИЛЬНЫЕ УСТАНОВКИ

ПРИБОРЫ КИП ДЛЯ АХУ ЭЛЕКТРОМОНТАЖ НАЛАДКА ОБСЛУЖИВАНИЕ СРАВНЕНИЯ

Мегаомметр ЭС0202

Мегаомметр – прибор для измерения больших значений сопротивлений. Часть слова мега-, в названии прибора и указывает на то, что по отношению к обычному прибору (омметру), мегаомметр производит измерения в 10 6 раз больших значений. Т.е. мегаомметром можно производить измерения между:

  • фазными проводниками
  • фазными проводниками и нейтральными
  • фазными проводниками и землёй
  • нейтральными проводниками и землёй
  • для проверки электроинструментов

используя высокое напряжение. Мегаомметры различаются между собой не только генерируемым напряжением, но и классом точности. Измерять сопротивление изоляции в сетях и электроустановках с номинальным напряжением до 1000 В можно при помощи мегаомметра, рассчитанного на работу в цепях от 100 В до 1000 В. Если напряжение сети выше 1000 В, то необходимо использовать мегаомметры работающие с напряжением до 2500 В.

Рассмотрим измерение сопротивления изоляции на примере

Приведу некоторые характеристики прибора так как всегда необходимо знать с чем работаешь. Серия мегаомметров ЭС0202/1-Г, ЭС0202/2-Г предназначаются для проведения замеров сопротивления изоляции электроцепей, которые не находятся под напряжением. Серия 1-Г позволяет производить измерения сопротивления изоляции от 0 до 1000 МОм генерируемым встроенным генератором напряжением 100 – 500 В. Модификация 2-Г – от 0 до 10000 МОм напряжением до 2500 В. Скорость вращения рукояти генератора примерно два оборота в секунду. Нормальное рабочее положение прибора в пространстве, горизонтальное. Рабочий режим является прерывистым: после одноминутного измерения необходимо делать паузу в две минуты. Допустимая относительная основная погрешность, выраженная в процентах от измеряемого значения величины сопротивления, составляет 15%.

Ниже представлена схема МЕГАОММЕТРа ЭС0202.

Сопротивление изоляции, выраженное в омах, килооммах, мегаоммах, характеризует её состояние в данное время и не является постоянной. Зависит от температуры, влажности и естественно от физического состояния самой изоляции. Нормы сопротивления изоляции определяются стандартами на конкретные виды машин или цепей. К проверке допускаются лица прошедшие инструктаж и имеющие допуск к проведению работ. Более подробно читайте в «правилах по охране труда при эксплуатации электроустановок» №328н от от 24 июля 2013 года (с изменениями на 19 февраля 2016 года).

И так, у Вас есть допуск к проведению работ, Вы прошли инструктаж и расписались в соответствующем журнале, переоделись в рабочую одежду и Вам выдали необходимый инструмент для проведения работ. Первое, что необходимо сделать, это проверить наличие на инструменте дат проверки и соответствия. Многие монтажники упускают этот момент, что является грубейшим нарушением и приводит к неприятным последствиям. Второе, необходимо проверить инструмент на механические повреждения (сколы, трещины и т.п.). Далее обязательно сами проверяем работоспособность: правильно подсоединяем щупы к прибору (внимательно читайте инструкцию по применению и об этом Вас должны спросить и рассказать при инструктаже), не замыкая между собой щупы вращаем рукоять встроенного генератора, стрелка должна стремиться к бесконечности. Следующим шагом замкнём концы щупов между собой, вращаем рукоять генераторы, стрелка стремится к нулю. Не забываем, что на концах щупов высокое напряжение, а именно то, которое Вы выставили переключателем напряжения генератора. Собираем прибор в сумку, можно идти к месту проведения работ (измерений).

Далее Ваши действия зависят от вида проведения измерений, то есть для определения сопротивления изоляции двигателя это одни действия, а для замеров в цепях управления другие. Не будем вдаваться в подробности какие действия и в какой последовательности проводить, Вы это должны знать ещё перед тем, как приступить к работам. Напомню лишь, что необходимо предупредить персонал о проведении работ, выставить соответствующие таблички и знаки, отключиться от всех цепей питания (постоянных, резервных, аварийных) и только после этого приступать к работам.

На последок хочу обратиться к электрикам проводящим работы с любыми мегаомметрами. Всегда согласовывайте свои действия с рабочими эксплуатирующими электроустановку, монтажниками АСУТП и КИПовцами, это необходимо для предотвращения аварий, выхода из строя дорогостоящих приборов и просто несчастных случаев. Удачи Вам в работе.

Советы электрика

Как говорится “по многочисленным просьбам…” записал сегодня на видео пример измерения мегаомметром сопротивления изоляции токоведущих частей.

Мегаомметр- электромеханический, то есть с “крутилкой”, надо вращать ручку как на шарманке))

Лично мне такой больше по душе чем электронный, с тем у меня как то не сложились отношения…

На видео рассказываю как устроен мегаомметр, основные технические характеристики и правила применения- что куда подключать. как крутить и т.д.

Получилась своеобразная краткая инструкция по мегаомметру в видеоформате.

С видео опять у меня не очень… Когда уже начал просматривать- оказалось что стрелочный указатель совсем не видно. Эх, что ж делать, фотоаппарат у меня не справляется с поставленой задачей)))

В статье на фото все прекрасно видно- можно посмотреть.

У кого нет возможности смотреть видео- читайте статью.

Для чего предназначен мегаомметр? Для измерения сопротивления изоляции токоведущих частей. На выходе мегометра при вращении рукоятки появляется высокое напряжение и если изоляция плохая- ее начинает “прошивать”.

И чем хуже изоляция тем сильнее ее пробивает повышенным напряжением мегаомметра- тем ниже ее сопротивление.

Токоведущие части- это провода, шины и т.п. которые в нормальном режиме находятся под напряжением и по ним протекает электрический ток.

А вот как раз для того, что бы этот режим работы был нормальным, а не аварийным нам и надо иметь хорошую изоляцию токоведущих частей относительно земли, корпусов оборудования и всего того где не должно быть опасного потенциала.

Вообще в энергетике самый главный приоритет- это жизнь и здоровье человека. Железяку можно отремонтировать, заменить, а жизнь человека бесценна.

Электричество же представляет реальную угрозу здоровью, поэтому от него отделяются, отгораживаются- изолируются всеми возможными средствами.

В проводах это всевозможный нетокопроводящий материал, на подстанциях с высоким напряжением и громоздким оборудованием- соответствующий воздушный зазор, фарфоровая изоляция ну и т.д.

А вот что бы знать в каком состоянии у нас находится изоляция- и предназначен мегаомметр.

Все прекрасно знают и постоянно передают в новостях- сколько происходит пожаров от неисправной электропроводки- вот последствия нарушенной изоляции.

Параметры изоляции регламентируются в ПУЭ- правилах устройства электроустановок и измеряются естественно в Омах.

А так как сопротивление изоляции очень высокое и значения получаются иногда с девятью нулями то используют приставку МЕГА, то есть шесть нулей сокращается и значение например 9000000000 превращается в 9 тыс.МОм.

Это было небольшое вступление, а сейчас про мегаомметр.

Предназначен уже сказал для чего, технические характеристики кратко:

режим работы прерывистый, 1 мин. максимум можно измерять, 2 мин. перерыв и т.д.

режимы измерения повышенным напряжением 500, 1000, и 2500 Вольт

измерительная шкала- верхняя и нижняя.

По верхней измеряется очень высокое сопротивление от 50 до 10 тыс.МОм

По нижней- от 0 до 50 МОм

Скорость вращения рукоятки- 120-140 оборотов в минуту.

Рабочее положение- горизонтальное, при любом другом стрелочный индикатор будет давать погрешность измерения- немножко врать.

На корпусе имеется клемная колодка куда подключаются измерительные провода с щупами. Всего- три клеммы.

Клемма с буквой “Э” обозначает экран. Сюда подключается специальный третий провод из комплекта, идущего с мегаомметром.

Второй конец этого провода фиксируется на кожухе или экране. Это используется при измерении сопротивления изоляции между двумя токоведущими частями для устранения токов утечки, возникающих при этих измерениях.

Если же меряется изоляция относительно корпуса оборудования или “земли”- то подключать клемму “Э” не надо!

На одном из измерительных проводов на конце- две клеммы, одна- маркированная буквой “Э” подключается на на соответствующую клемму “Э” мегаомметра, вторая- на среднюю клемму.

Второй измерительный провод подключается на клемму со знаком минус.

Если экран не нужен- эту клемму провода просто не подключаем.

Смотрите так же:  Метр медного провода

Как работать мегаомметром?

Для начала надо убедиться что токоведущие части где будем измерять отключены- проверяем отключенные автоматы, рубильники и т.п.

Дальше проверяем отсутствие напряжения предварительно проверенным индикатором или прибором.

Затем заземляем токоведущие части и снимаем заземление только после подключения мегаомметра.

Измерительные щупы мегаомметра брать только за изолирующие рукоятки (при напряжении выше 1000Вольт кроме этого еще используют диэлектрические перчатки)

Когда измеряем- нельзя касаться токоведущих частей!

Делаем измерение изоляции и по окончании- снимаем заряд с токоведущих частей прикасаясь к ним кратковременно проводом заземления.

Снимаем заряд и с самого мегаомметра- прикасаемся измерительными щупами друг к другу.

Не забываем снять заземление с токоведущих частей! Иначе будет конкретное КЗ!

Основу вроде всю написал, если у вас есть что добавить- пишите в комментарии.

ЭС0202/2-Г Мегаомметр (ЭСО202/2Г)

Предназначен для измерения сопротивления изоляции электрических цепей, не находящихся под напряжением.

Мегаомметр ЭСО202/2-Г предназначен для измерения сопротивления изоляции электрических цепей, не находящихся под напряжением и могут использоваться во всех отраслях народного хозяйства.

Питание осуществляется от встроенного электромеханического генератора.

Мегаомметры ЭС0202 соответствуют требованиям ГОСТ 26104-89 “Средства измерений электронные. Технические требования в части безопасности. Методы испытаний” к изделиям класса защиты II; ГОСТ Р 51350 “Безопасность электрических контрольно-измерительных приборов и лабораторного оборудования. Часть 1. Общие требования”, категория монтажа (категория перенапряжения) II .

Класс точности мегаомметров ЭС0202, выраженный в виде относительной погрешности по ГОСТ 8.401-80, 15. Пределы допускаемых значений основной относительной погрешности равны ± 15 % от измеряемого значения.

Пределы допускаемых значений дополнительной погрешности мегаомметров ЭС0202, вызванной протеканием в измерительной цепи токов промышленной частоты 50 мкА для ЭС0202/1-Г и 500 мкА для ЭС0202/2-Г, не должны превышать пределов основной относительной погрешности.

Основные технические характеристики прибора ЭСО202/2Г:

Класс точности 2,5
Предел допускаемых значений основной относительной погрешности ± 15% от измеряемого значения
Диапазон измерени сопротивления, МОм 0,1…10
1…10
10…100
100…1000
1000…10000
Выходное напряжения, В 500 ± 50
1000 ± 100
2500 ± 250
Время установления показаний мегаомметра не превышает 15 с.

Режим работы мегаомметра прерывистый: измерение – 1 мин , пауза – 2 мин.

Питание мегаомметров осуществляется от встроенного электромеханического генератора.

Скорость вращения рукоятки генератора должна быть (120…144) оборотов в минуту.

Мегаомметры сохраняют работоспособность при температуре окружающего воздуха от минус 30 до плюс 50 ° С и относительной влажности 90 % при температуре плюс 30 ° С.

Методика измерение сопротивления изоляции электрических установок

При проведении испытаний применяются следующие средства измерения:

Мегоомметр ЭС0202/2 Технические да нные:

1. ОБЪЁМ ИСПЫТАНИЙ АППАРАТОВ НАПРЯЖЕНИЕМ ДО 1000 ВОЛЬТ.

Согласно ПУЭ, объем пуско-наладочных испытаний для аппаратов напряжением до 1000 В следующий:

1. Измерение сопротивления изоляции.

2. Испытание повышенным напряжением промышленной частоты

Количество операций при испытании контакторов и автоматов многократными включениями и отключениями

Величина испытательного напряжения изоляции аппаратов, их катушек и вторичных цепей со всеми присоединенными аппаратами принимается равной 1000 В Продолжительность приложения испытательного напряжения — 1 мин.

3. Проверка действия максимальных, минимальных или независимых

расцепи гелей автоматов с номинальным током 200 А и более. Пределы работы

расцепителей должны соответствовать заводским данным.

4. Проверка работы контакторов и автоматов при пониженном и

номинальном напряжениях оперативного тока. Величины напряжений и

количество операций при испытании контакторов и автоматов многократными

включениями и отключениями приведены в табл. 1.1.

Помимо испытаний, предусмотренных ПУЭ, в процессе пуско-иалалочпмх работ проводятся испытания, определяемые, конструкцией и назначением аппарата и условиями его работы, а также испытания для получения исходных данных. Методика этих испытаний рассматривается далее. Даны также рекомендации по проверке правильности выбора предохранителей и расцепителей автоматов.

2. ИЗМЕРЕНИЕ СОПРОТИВЛЕНИЯ ИЗОЛЯЦИИ.

Сопротивление изоляции Rиз — важная характеристика состояния изоляции электрических машин и аппаратов, и их измерение производится при всех проверках состояния изоляции. Измерения сопротивления изоляции производится с помощью мегаомметра. Наиболее широко в настоящее время используются электронные мегаомметры типа Ф-4100/2 номинальным напряжением 500, 1000 и 2500 В как наиболее современные. Однако в наладочных организациях все еще широкое применение находят мегаомметры типа М-4100/5 с номинальным напряжением 100, 250, 500, 1000, 2500 В, выпуск которых прекращен. Погрешность прибора Ф-4102 не превышает ±2,5%, а прибора М-4100 — 1% длины рабочей часта шкалы. Питание Ф-4102 осуществляется от сети 127 — 220 В переменного тока или от внешнего источника постоянного тока напряжением 12 В. Питание М-4100 осуществляется от встроенного генератора, приводимого во вращение рукой. Номинальное напряжение выхода приборов М-4100 и ЭСО-202/2 обеспечивается при вращении рукоятки с частотой 120 об/мин, но сохраняет свое значение и при большей частоте благодаря центробежному регулятору.

Структурная схема прибора ЭСО-202/2 представлена на рисунке.

Рис. Структурная схема мегаомметра ЭСО-202/2

В случае, когда результат измерения может быть искажен поверхностными токами утечки, на изоляцию объекта измерения накладывают электрод, присоединяемый к зажиму Э (экран) для исключения возможности прохождения токов утечки через рамку логометра, используемого в приборах в качестве измерительного органа. При измерении сопротивления изоляции между жилами кабеля таким экраном может служить металлическая оболочка кабеля.

Перед началом измерения прибор проверяется замыканием зажимов З и Л накоротко. Стрелка при измерении согласно заводской инструкции должна устанавливаться против деления шкалы 0. После удаления закоротки стрелка прибора должна установиться против деления ¥.

Если эти требования не соблюдаются, прибором пользоваться нельзя и его следует ремонтировать. Перед измерением объект заземляют на 2 — 3 мин для снятия остаточных зарядов, которые могут повлиять на показание прибора.

После подготовки объекта и проверки мегаомметра производится измерение. При измерении абсолютного значения сопротивления изоляции аппарата (машины) Rиз токоведущую часть ее присоединяют специальными проводами с усиленной изоляцией (например, типа ПВЛ) к выводу Л мегаомметра. Вывод 3 и корпус или конструкции, относительно которых производится измерение сопротивления изоляции, надежно заземляются через общий контур заземления. Сопротивление изоляция Rиз определяется показанием стрелки мегаомметра, установившейся по истечении 60 с после подачи нормального напряжения (у мегаомметров М-4100 это имеет место при частоте вращения рукоятки 120 об/мин).

Рис. 2.1 Рис. 2.2 Рис. 2.3

Рис. 2.1. Схема измерения мегаомметром сопротивления изоляции 1 относительно земли.

Рис. 2.2. Схема измерения мегаомметром сопротивления изоляции 1 между

токопроводящими жилами (стержнями).

Рис 2.3. Схема измерения мегаомметром сопротивления изоляции 1 между

токо проводящими жилами при исключении влияния токов утечки.

Рис. 2.4. Щуп для измерения Rиз мегаомметром:

1 — ручка из изоляционного материала (эбонита, текстолита, стекла и т.п.):

2 — зажим для присоединения провода от зажима Л мегаомметра;

3 — металлическое лезвие щупа

При измерении коэффициента абсорбции Кабс рекомендуется для точности измерения сначала обеспечить на мегаомметре нормальное напряжение, а потом быстро приложить вывод к заранее зачищенному месту токоведущей части измеряемого объекта и только после этого начинать отсчет времени. Первое показание прибора фиксируется через 15 с после начала измерения, второе — через 60 с. За результат измерения принимается отношение обоих измерений.

Измерения удобно производить с помощью щупов (рис. 2.4.), легко изготовляемых в мастерских. При измерениях сопротивления изоляции и коэффициента абсорбции должны строго соблюдаться осторожность и все правила техники безопасности, так как напряжение мегаомметра опасно для жизни человека.

Похожие статьи:

  • Советские автоматы электрические Про электрические аппараты защиты для "чайников": автоматические выключатели Многие помнят советские автоматические выключатели - пробки. Они вворачивались вместо обычных керамических пробок в щиток электросчётчика. Это было […]
  • Как паять провода зарядка Как спаять ПРОВОД зарядки от ноутбука Lenovo S10-2 ? Вот и первая поломка. Споткнулись хорошенько об зарядку ноутбука, и в результате порванный провод в месте коробки зарядного устройства. Оба конца провода видны. Но дело в том, что без […]
  • Заземление траверсы Заземляющий проводник ЗП-2 Чертеж заземляющего проводника ЗП-2(3.407.1-136.01.04) При строительстве линий электропередач в соответствии с нормативными документами (проектами, пуэ 7 издание 2015) требуется заземление всех […]
  • 220 вольт вакансии воронеж Список магазинов Воронеж, Кольцовская ул д.56 Пн-Пт 09:00-19:00, Сб-Вс 10:00-19:00 Как добраться до магазина На общественном транспорте: – Автобусы №: № 10а - Перхоровича (ул. Перхоровича) – Центр реабилитации; № 113 - Магазин (ул. […]
  • Заземление вл 10 квМ Заземление вл 10 квМ ЗАЗЕМЛЕНИЕ ВОЗДУШНЫХ ЛИНИЙ ЭЛЕКТРОПЕРЕДАЧИ Для повышения надежности работы линий электропередачи, для защиты электроаппаратуры от атмосферных и внутренних перенапряжений, а также для обеспечения безопасности […]
  • Непаяное заземление Концевые муфты ЭНЕРГО Типы установкиКонцевые муфты КВтп-10 предназначены для внутренней установки. Буква «В» в артикуле об этом свидетельствует. Муфты КНтп-10, предназначены для наружной установки, буква «Н», об этом свидетельствует. […]