Измерение сопротивления изоляции обмоток электродвигателя

1.8.15. Электродвигатели переменного тока

1.8.15. Электродвигатели переменного тока

Электродвигатели переменного тока напряжением до 1 кВ испытываются по пп. 2, 4б, 5, 6.
Электродвигатели переменного тока напряжением выше 1 кВ испытываются по пп. 1-6.

1. Определение возможности включения без сушки электродвигателей напряжением выше 1 кВ.

Электродвигатели переменного тока включаются без сушки, если значение сопротивления изоляции и коэффициента абсорбции не ниже указанных в табл. 1.8.9.

Допустимые значения сопротивления изоляции и коэффициента абсорбции для обмоток статора электродвигателей

2. Измерение сопротивления изоляции.

Допустимые значения сопротивления изоляции электродвигателей напряжением выше 1 кВ должны соответствовать нормам, приведенным в табл.1.8.10.

Наименьшие допустимые значения сопротивления изоляции для электродвигателей (табл.1.8.9, пп.3, 4)

У синхронных электродвигателей и элекродвигателей с фазным ротором на напряжение 3 кВ и выше или мощностью более 1 МВт производится измерение сопротивления изоляции ротора мегаомметром на напряжение 1000 В. Измеренное значение сопротивления должно быть не ниже 0,2 МОм.

3. Испытание повышенным напряжением промышленной частоты.

Производится на полностью собранном электродвигателе.
Испытание обмотки статора производится для каждой фазы в отдельности относительно корпуса при двух других, соединенных с корпусом. У двигателей, не имеющих выводов каждой фазы в отдельности, допускается производить испытание всей обмотки относительно корпуса.
Значения испытательных напряжений приведены в табл.1.8.11. Продолжительность приложения испытательного напряжения 1 мин.

Испытательные напряжения промышленной частоты для обмоток электродвигателей переменного тока

Менее 1,0
От 1,0 и до 1000

От 1000 и более
От 1000 и более
От 1000 и более

_____________
* напряжение на кольцах при разомкнутом неподвижном роторе и номинальном напряжении на статоре.

4. Измерение сопротивления постоянному току.

Измерение производится при практически холодном состоянии машины.

а) Обмотки статора и ротора*

______________
* Сопротивление постоянному току обмотки ротора измеряется у синхронных электродвигателей и асинхронных электродвигателей с фазным ротором.

Измерение производится у электродвигателей на напряжение 3 кВ и выше. Приведенные к одинаковой температуре измеренные значения сопротивлений различных фаз обмоток, а также обмотки возбуждения синхронных двигателей не должны отличаться друг от друга и от исходных данных более чем на 2%.

б) Реостаты и пускорегулировочные резисторы
Для реостатов и пусковых резисторов, установленных на электродвигателях напряжением 3 кВ и выше, сопротивление измеряется на всех ответвлениях. Для электродвигателей напряжением ниже 3 кВ измеряется общее сопротивление реостатов и пусковых резисторов и проверяется целостность отпаек.
Значения сопротивления не должны отличаться от исходных значений более чем на 10%.

5. Проверка работы электродвигателя на холостом ходу или с ненагруженным механизмом.

Продолжительность проверки не менее 1 часа.

6. Проверка работы электродвигателя под нагрузкой.

Производится при нагрузке, обеспечиваемой технологическим оборудованием к моменту сдачи в эксплуатацию. При этом для электродвигателя с регулируемой частотой вращения определяются пределы регулирования. Проверяется тепловое и вибрационное состояние двигателя.

ПУЭ 7. Правила устройства электроустановок. Издание 7

Раздел 1. Общие правила

Глава 1.8. Нормы приемо-сдаточных испытаний

Электродвигатели переменного тока

1.8.15. Электродвигатели переменного тока до 1 кВ испытываются по п. 2, 4, 6, 10, 11. ¶

Электродвигатели переменного тока выше 1 кВ испытываются по п. 1-4,7,9-11. ¶

По п. 5, 6, 8 испытываются электродвигатели, поступающие на монтаж в разобранном виде. ¶

1. Определение возможности включения без сушки электродвигателей напряжением выше 1 кВ. Следует производить в соответствии с разд. 3 «Электрические машины» СНиП 3.05.06-85. «Электротехнические устройства» Госстроя России. ¶

2. Измерение сопротивления изоляции. Допустимые значения сопротивления изоляции электродвигателей напряжением выше 1 кВ должны соответствовать требованиям инструкции, указанной в п. 1. В остальных случаях сопротивление изоляции должно соответствовать нормам, приведенным в табл. 1.8.8. ¶

Таблица 1.8.8. Допустимое сопротивление изоляции электродвигателей переменного тока.

Напряжение мегаомметра, кВ

Обмотка статора напряжением до 1 кВ

Не менее 0,5 МОм при температуре 10-30 °С

Обмотка ротора синхронного электродвигателя и электродвигателя с фазным ротором

Не менее 0,2 МОм при температуре 10-30 °С (допускается не ниже 2 кОм при +75 °С или 20 кОм при +20 °С для неявнополюсных роторов)

Подшипники синхронных электродвигателей напряжением выше 1 кВ

Не нормируется (измерение производится относительно фундаментной плиты при полностью собранных маслопроводах)

3. Испытание повышенным напряжением промышленной частоты. Производится на полностью собранном электродвигателе. ¶

Испытание обмотки статора производится для каждой фазы в отдельности относительно корпуса при двух других, соединенных с корпусом. У двигателей, не имеющих выводов каждой фазы в отдельности, допускается производить испытание всей обмотки относительно корпуса. ¶

Значения испытательных напряжений приведены в табл. 1.8.9. Продолжительность приложения нормированного испытательного напряжения 1 мин. ¶

4. Измерение сопротивления постоянному току: ¶

а) обмоток статора и ротора. Производится при мощности электродвигателей 300 кВт и более. ¶

Измеренные сопротивления обмоток различных фаз должны отличаться друг от друга или от заводских данных не более чем на 2%; ¶

б) реостатов и пускорегулировочных резисторов. Измеряется общее сопротивление и проверяется целость отпаек. Значение сопротивления должно отличаться от паспортных данных не более чем на 10%. ¶

5. Измерение зазоров между сталью ротора и статора. Размеры воздушных зазоров в диаметрально противоположных точках или точках, сдвинутых относительно оси ротора на 90°, должны отличаться не более чем на 10% среднего размера. ¶

Таблица 1.8.9. Испытательное напряжение промышленной частоты для электродвигателей переменного тока.

Объем и нормы испытаний асинхронных двигателей

Все вводимые в эксплуатацию асинхронные двигатели обязательно необходимо подвергать приемосдаточным испытаниям, согласно ПУЭ, в следующем объеме.

1. Определение возможности включения асинхронных электродвигателей напряжением выше 1000 В без сушки.

2. Измерение сопротивления изоляции электродвигателей:

а) обмотки статора асинхронного электродвигателя напряжением до 1000 В мегомметром на напряжение 1000 В ( R 60 должно быть не менее 0,5 МОм при 10 — 30 °С),

б) обмотки ротора асинхронных электродвигателей с фазовым ротором мегомметром на напряжение 500 В (сопротивление изоляции должно быть не менее 0,2 МОм),

в) термодатчиков мегомметром на напряжение 250 В (сопротивление изоляция не нормируется),

4. Измерение сопротивления постоянному току:

а) обмоток статора и ротора асинхронных электродвигателей мощностью 300 кВт и более (разница между измеренными сопротивлениями обмоток различных фаз или между измеренными и заводскими данными допускается не более 2 %),

б) у реостатов и пускорегулировочных сопротивлений измеряется общее сопротивление и проверяется целость отпаек. Разница между измеренным сопротивлением и паспортными данными допускается не более 10 %.

5. Измерение зазоров между сталью ротора и статора. Разница между воздушными зазорами в диаметрально противоположных точках или точках, сдвинутых относительно оси ротора на 90°, и средним воздушным зазором допускается не более 10 %.

6. Измерение зазоров в подшипниках скольжения.

7. Измерение вибрации подшипников электродвигателя.

8. Измерение разбега ротора в осевом направлении для электродвигателей, имеющих подшипники скольжения (допустимо значение разбега 2 — 4 мм).

9. Испытание воздухоохладителя гидравлическим давлением 0,2 — 0,25 МПа (2 — 2,5 кгс/см2). Продолжительность испытания 10 мин.

10. Проверка работы асинхронного электродвигателя на холостом ходу или с ненагруженным механизмом. Значение тока холостого хода электродвигателя не нормируется. Продолжительность проверки не менее 1 ч.

11. Проверка работы асинхронного электродвигателя под нагрузкой. Производится при мощности, потребляемой электродвигателем из сети, обеспечиваемой технологическим оборудованием к моменту сдачи в эксплуатацию. При этом для электродвигателей с регулируемой частотой вращения определяются пределы регулирования.

При наладке электродвигателей также часто возникает необходимость в дополнительных испытаниях и измерениях.

Наладка асинхронных двигателей

Наладку асинхронных двигателей выполняют в следующем объеме:

• проверка механической части;

• измерение сопротивления изоляции обмоток относительно корпуса и между обмотками;

• измерение сопротивлений обмоток постоянному току;

• испытание обмоток повышенным напряжением промышленной частоты;

Внешний осмотр асинхронного двигателя начинают со щитка.

На щитке должны быть следующие данные:

• наименование или товарный знак завода-изготовителя,

• тип и заводской номер,

• номинальные данные (мощность, напряжение, сила тока, частота вращения, схема соединения обмотки, коэффициент полезного действия, коэффициент мощности),

• масса и ГОСТ на двигатель.

Ознакомление со щитком двигателя в начале работы является обязательным. Затем проверяют состояние внешней поверхности двигателя, его подшипниковых узлов, выходного конца вала, вентилятора и состояние клеммных выводов.

Если трехфазный двигатель не имеет составных и секционированных обмоток на статоре, то выводы обозначают в соответствии с табл. 1, а при наличии таких обмоток — выводы обозначают теми же буквами, что и простые обмотки, но с дополнительными цифрами впереди прописных букв. Для многоскоростных асинхронных двигателей впереди букв ставят цифры, указывающие на число полюсов данной секции.

Примечание: клеммы с нумерацией П — подключены к сети, С – свободны, З – закорочены

Маркировку щитков многоскоростных двигателей и способы их включения на разные скорости можно объяснить с помощью табл. 2.

При внешнем осмотре асинхронного двигателя особое внимание надо обращать на состояние коробки выводов и выводные концы, в которых очень часто встречаются различные нарушения изоляции, при этом измеряют расстояние между токоведущими частями и корпусом. Оно должно быть достаточно велико, чтобы не происходило перекрытия по поверхности. Не менее важной является величина выбега вала в осевом направлении, которая по нормам не должна превышать 2 мм (по 1 мм в одну сторону) для двигателей до 40 кВт.

Смотрите так же:  Проводка с заземлением в частном доме

Большое значение имеет величина воздушного зазора, так как оказывает существенное влияние на характеристики асинхронных двигателей, поэтому после ремонтов или в случае неудовлетворительной работы двигателя измеряют воздушный зазор в четырех диаметрально противоположных точках. Зазоры должны быть одинаковы по всей окружности и не должны отличаться в любой из этих четырех точек более, чем на 10% от среднего значения.

К асинхронным двигателям целого ряда станков, таких как резьбошлифовальные и зубошлифовальные, предъявляют особые требования с точки зрения биения и вибраций. На биение вала и вибрации электрических машин большое влияние оказывает точность обработки и состояние вращающихся частей машины. Особенно велики биения и вибрации при прогнутом вале двигателя.

Биение — отклонение от заданного (правильного) взаимного расположения поверхностей вращающихся или колеблющихся деталей типа тел вращения. Различают радиальные и торцовые биения.

Для всех машин биения нежелательны, так как при этом нарушается нормальная работа подшипниковых узлов и машины в целом. Величину биения измеряют с помощью часового индикатора, который позволяет измерять биения от 0,01 мм до 10 мм. При измерении биения вала наконечник индикатора упирают в вал, вращающийся с небольшой скоростью. По отклонению стрелки часового индикатора судят о величине биения, которая не должна превышать значений, указанных в технических условиях на станок или двигатель.

Изоляция электрической машины является важным показателем, так как от ее состояния зависит долговечность и надежность машины. Согласно ГОСТ сопротивление изоляции обмоток в МОм электрических машин должно быть не меньше

где U н— номинальное напряжение обмотки, В; P н — номинальная мощность машины, кВт.

Сопротивление изоляции измеряют перед пробным пуском двигателя, а затем в процессе эксплуатации периодически, кроме того, контролируют после длительных перерывов в работе и после каждого аварийного отключения привода.

Сопротивление изоляции обмоток относительно корпуса и между обмотками измеряют при холодных обмотках и в нагретом состоянии, при температуре обмоток, равной температуре номинального режима, непосредственно перед проверкой электрической прочности изоляции обмоток.

Если в двигателе выведены начало и конец каждой фазы, то сопротивление изоляции измеряют отдельно для каждой фазы относительно корпуса и между обмотками. У многоскоростных двигателей сопротивление изоляции проверяют для каждой обмотки в отдельности.

Для измерения сопротивления изоляции электродвигателей напряжением до 1000 В применяют мегомметры на 500 и 1000 В.

Измерение проводят следующим образом, зажим мегомметра «Экран» присоединяют к корпусу машины, а второй зажим гибким проводом с надежной изоляцией присоединяют к выводу обмотки. Концы проводников должны быть заделаны в ручки из изоляционного материала с металлическим штырем, заостренным на конце, для обеспечения надежного контакта.

Ручку мегомметра вращают с частотой, примерно равной 2 об/с. Двигатели небольшой мощности имеют небольшую емкость, поэтому стрелка прибора устанавливается в положение, соответствующее сопротивлению изоляции обмотки машины.

Для новых машин сопротивление изоляции, как показала практика, колеблется при температуре 20° С в пределах от 5 до 100 МОм. К двигателям малоответственных приводов небольшой мощности и напряжением до 1000 В «Правила устройств электроустановок» не предъявляют конкретных требований к величине R. Из практики известны случаи, когда двигатели, имеющие сопротивления менее 0,5 МОм, вводились в работу, их сопротивление изоляции повышалось и в дальнейшем они работали безотказно.

Снижение сопротивления изоляции в процессе эксплуатации вызывается поверхностной влажностью, загрязнением поверхности изоляции токопроводящей пылью, проникновением в толщу изоляции влаги, химическим разложением изоляции. Для уточнения причин снижении сопротивления изоляции необходимо произвести измерение с помощью двойного моста, например Р-316, при двух направлениях тока в контролируемой цепи. При разных результатах замеров наиболее вероятная причина — проникновение влаги в толщу изоляции.

Конкретно вопрос о включении асинхронного двигателя в работу должен решаться только после проведения испытания обмоток повышенным напряжением. Включение двигателя, имеющего малое значение сопротивления изоляции, без испытания повышенным напряжением допускается только в исключительных случаях, когда решается вопрос, что выгоднее: подвергнуть опасности двигатель или допустить простой дорогостоящего оборудования.

В процессе эксплуатации двигателя возможны повреждения изоляции, приводящие к снижению ее электрической прочности ниже допустимых норм . Согласно ГОСТ испытание электрической прочности изоляции обмоток по отношению к корпусу и между собой производят при отключенном от сети двигателе в течение 1 мин испытательным напряжением, величина которого должна быть не менее величины, приведенной в табл. 3.

Повышенное напряжение подают на одну из фаз, а остальные фазы присоединяют к корпусу двигателя. Если обмотки соединены внутри двигателя в звезду или треугольник, то испытание изоляции между обмоткой и корпусом проводят одновременно для всей обмотки. При выполнении испытаний напряжение нельзя прикладывать мгновенно. Испытание начинают с 1/3 испытательного напряжения, затем постепенно поднимают напряжение до испытательного, причем время подъема от половинного до полного испытательного напряжения должно составлять не менее 10 с.

Полное напряжение выдерживают в течение 1 мин, после чего его плавно снижают до 1/3Uисп и отключают испытательную установку. Результаты испытания считают удовлетворительными, если во время испытания не происходило пробоя изоляции или перекрытий по поверхности изоляции, при этом по приборам не наблюдались резкие толчки, свидетельствующие о частичных повреждениях изоляции.

Если при испытании произошел пробой, находят ею место и ремонтируют обмотку. Место пробоя можно найти путем повторного приложения напряжения с последующим наблюдением за появлением искр, дыма или легким потрескиванием при искрении, невидимом снаружи.

Измерение сопротивления обмоток постоянному току , которое проводят для уточнения технических данных элементов схемы, дает возможность в некоторых случаях определить наличие короткозамкнутых витков. Температура обмоток при измерении не должна отличаться от окружающей более чем на 5° С.

Измерения выполняют с помощью одинарного или двойного моста, по методу амперметра—вольтметра или методом микроомметра. Величины сопротивлений не должны отличаться от средней более чем на 20%.

Согласно ГОСТ при измерении сопротивления обмоток каждое сопротивление должно быть измерено 3 раза. При измерении сопротивления обмотки по методу амперметра—вольтметра каждое сопротивление должно быть измерено при трех различных значениях тока. За действительную величину сопротивления принимают среднее арифметическое из трех измерений.

Метод амперметра—вольтметра (рис. 1) применяют в тех случаях, когда не требуется большой точности измерения. Измерение методом амперметра—вольтметра основано на законе Ома:

где R х— измеряемое сопротивление, Ом; U — показание вольтметра, В; I — показание амперметра, А.

Точность измерения при этом методе определяется суммарной погрешностью приборов. Так, если класс точности амперметра 0,5%, а вольтметра — 1%, то суммарная погрешность составит 1,5%.

Для того чтобы метод амперметра—вольтметра давал более точные результаты, необходимо соблюдать следующие условия:

1. точность измерения в значительной степени зависит от надежности контактов, поэтому перед измерением рекомендуется контакты пропаять;

2. источником постоянного тока должна служить сеть или хорошо заряженная батарея напряжением 4—6 В, для того чтобы избежать влияния падения напряжения на источнике;

3. отсчет по приборам должен производиться одновременно.

Измерение сопротивления с помощью мостов применяется главным образом в тех случаях, когда необходимо получить большую точность измерения. Точность мостовых методов достигает 0,001%. Пределы измерений мостов колеблются от 10-5 до 106 Ом.

Микроомметром измеряют при большом числе замеров, например переходных сопротивлений контактов, межкатушечных соединений.

Рис. 1. Схема измерения сопротивления обмоток постоянному току по методу амперметра—вольтметра

Рис. 2. Схема измерении сопротивления обмотки статора асинхронного двигателя, соединенной в звезду (а) и в треугольник (б)

Измерения проводят быстро, так как отсутствует необходимость в регулировке прибора. Сопротивление обмотки постоянному току для двигателей до 10 КВт измеряют не ранее, чем через 5 ч по окончании его работы, а для двигателей более 10 кВт — не менее чем через 8 ч при неподвижном роторе. Если у статора двигателя выведены все шесть концов обмоток, то измерение проводят на обмотке каждой фазы отдельно.

При внутреннем соединении обмоток в звезду попарно измеряют сопротивление двух последовательно соединенных фаз (рис. 2, а). При этом сопротивление каждой фазы

При внутреннем соединении в треугольник измеряют сопротивление между каждой парой выводных концов линейных зажимов (рис. 2, б). Считая, что сопротивления всех фаз равны, определяют сопротивление каждой фазы:

Для многоскоростных двигателей аналогичные измерения проводят для каждой обмотки или для каждой секции.

Проверка правильности включения обмоток машин переменного тока. Иногда, особенно после ремонтов водные концы асинхронного двигателя оказываются непромаркированными, возникает необходимость определения начал и концов обмоток. Наиболее распространены два способа определения.

По первому способу сначала определяют попарно концы обмоток отдельных фаз. Затем собирают схему согласно рис. 3, а. «Плюс» источника присоединяют к началу одной из фаз, «минус» — к концу.

Условно принимают C1, С2, С3 за начало фаз 1, 2, 3, а С4, С 5 , С 6 — за концы 4, 5, 6. В момент включения тока в обмотках других фаз (2—3) индуктируется электродвижущая сила с полярностью «минус» на началах С2 и C3 и «плюс» на концах С5 и С6. В момент отключения тока в фазе 1 полярность на концах фаз 2 и 3 противоположна полярности при их включении.

Смотрите так же:  Расчет греющего провода для бетона

После маркировки фазы 1 источник постоянного тока присоединяют к фазе 3, если при этом стрелка милливольтметра или гальванометра отклоняется в ту же сторону, то все концы обмоток замаркированы правильно.

Для определения начал и концов по второму способу соединяют обмотки двигателя в звезду или треугольник (рис. 3, б), а на фазу 2 подают однофазное пониженное напряжение. В этом случае между концами C1 и С2, а также С2 н С3 возникает напряжение, несколько большее подведенного, а между концами C1 и С3 напряжение оказывается равным нулю. Если концы фаз 1 и 3 включены неправильно, то напряжение между концами С1 и С2, С2 и С3 будет меньше подведенного. После взаимного определения маркировки первых двух фаз аналогично определяют третью.

Первоначальное включение асинхронного двигателя. Для выяснения полной исправности двигателя испытывают его в режиме холостого хода и под нагрузкой. Предварительно вновь проверяют состояние механических частей, наполнение смазкой подшипников.

Легкость хода двигателя проверяют путем проворачивания вала вручную, при этом не должно быть слышно треска, скрежета и тому подобных звуков, свидетельствующих о соприкосновении ротора и статора, а также вентилятора и кожуха, затем проверяют правильность направления вращения, для этого двигатель включают кратковременно.

Продолжительность первого включения 1—2 с. Одновременно наблюдают величину пускового тока. Кратковременный пуск двигателя целесообразно повторить 2—3 раза, постепенно увеличивая продолжительность включения, после чего двигатель можно включить на более длительный период. За время работы двигателя на холостом ходу наладчик должен убедиться в хорошем состоянии ходовых частей: отсутствии вибраций, толчков тока, отсутствии нагрева подшипников.

При удовлетворительных результатах пробных пусков двигатель включают совместно с механической частью или подвергают испытанию на специальном стенде. Время проверки работы двигателя колеблется от 5 до 8 ч, при этом контролируют температуру основных узлов и обмоток машины, коэффициент мощности, состояние смазки подшипников узлов.

Большая Энциклопедия Нефти и Газа

Сопротивление — изоляция — электродвигатель

Сопротивление изоляции электродвигателей и кабелей также должно периодически измеряться и удовлетворять нормам. Изоляция обмоток статоров должна испытываться на пробой переменным напряжением 1 000 в при номинальном напряжении электродвигателя 380 б и 1 500 в при номинальном напряжении 500 а. Электрическая прочность изо-ляции обмоток роторов и реостатов должна проверяться напряжением, равным полуторному номинальному напряжению переменного тока на кольцах электродвигателя, но не ниже 1 000 в. Длительность испытания во всех случаях 1 мин. [1]

Сопротивление изоляции электродвигателя , измеренное между крепящими болтами и валом, а также между обмотками двигателя должно быть не менее 5 Мом. [2]

Сопротивление изоляции электродвигателей напряжением 3000 в и выше должно быть не ниже 1 Мам для обмоток статоров и 0 2 Мом для обмоток роторов. Помимо этого, измеряется коэффициент абсорбции, величина которого не нормируется. С помощью этого коэффициента определяются состояние изоляции и степень увлажненности обмоток двигателя. [3]

Сопротивление изоляции электродвигателей напряжением 3000 в и выше должно быть не ниже 1 Мом для обмоток статоров и 0 2 Мом для обмоток роторов. Помимо этого, измеряется коэффициент абсорбции, величина которого не нормируется. С помощью этого коэффициента определяются состояние изоляции и степень увлажненности обмоток двигателя. [4]

Сопротивление изоляции электродвигателей с напряжением до 500 в должно быть не ниже 0 5 мом у статорных обмоток и 0 2 мом у роторных как по отношению к корпусу, так и между фазами. [5]

Сопротивление изоляции электродвигателей напряжением до 1000 в должно быть не ниже 0 5 Мом. [6]

Сопротивление изоляции электродвигателя должно быть не менее i ком на 1 в рабочего напряжения. Коэффициент абсорбции берется из отношения значений сопротивления изоляции при различной длительности приложения напряжения. [7]

Сопротивление изоляции электродвигателей переменного тока до 1000 В проверяют мегаомметром на напряжение 1000 В. При этом измеряют сопротивление изоляции обмоток фаз статора относительно друг друга ( если выведены начала и концы обмоток всех трех фаз) и относительно корпуса. Если выведены только три конца обмотки статора, то сопротивление изоляции измеряют лишь относительно корпуса. У двигателей с фазным ротором производят также измерение сопротивления изоляции обмоток ротора на корпус и между обмотками статора и ротора. Величина сопротивления изоляции для электродвигателей до 1000 В Правилами не нормируется. [8]

Испытывают сопротивление изоляции электродвигателя и при необходимости просушивают его. [9]

Измерение сопротивления изоляции электродвигателя напряжением до 1000 в производится мегомметром на напряжение 1000 в после текущего и среднего ремонта, при этом сопротивление должно быть не ниже 0 5 ом. В случае резкого снижения сопротивления изоляции по сравнению с предыдущими замерами, необходимо выяснить причину и принять меры к его восстановлению. [10]

Величина сопротивления изоляции электродвигателей не нормируется. Сопротивление изоляции каждой цепи автоматики и вторичной коммутации должно быть не ниже 1 Мом. [11]

Величина сопротивления изоляции электродвигателей не нормируется. [12]

Величипа сопротивления изоляции электродвигателей напряжением до 500 в не нормируется. Для двигателей напряжением 3000 в и выше сопротивление изоляции статора должно быть не менее 1 мегома, а ротора — 0 2 мегома. [13]

При таких условиях сопротивление изоляции электродвигателей , кабелей, нагревателей компенсаторов объема и другого электротехнического оборудования снизится ниже разрешенного по техническим условиям из-за попадания влаги, поэтому после окончания дезактивации или срабатывания спринклерной установки необходимо измерять сопротивление изоляции указанного оборудования и кабелей. [14]

Систематически должно проверяться сопротивление изоляции электродвигателей . Сопротивление изоляции при температуре 60 С должно быть: для статора — не менее 1 МОм / кВ, для ротора — не менее 0 5 МОм. Объем чистого воздуха, используемого для предварительной продувки должен быть не менее пятикратного суммарного объема корпуса электродвигателя, воздуховодов и фундаментной ямы. В двигателях с разомкнутым циклом вентиляции продувка осуществляется внешним вентилятором, а в двигателях с замкнутым циклом вентиляции для продувки используется вентилятор подпитки, поэтому при эксплуатации электродвигателя необходимо следить за состоянием и работоспособностью вентиляторов. [15]

ProElectrika.com — Электрика своими руками

Электрика своими руками

Электрическое сопротивление изоляции электрооборудования

Изоляционные свойства отдельных составляющих действующего электрооборудования (к числу которых можно отнести обмотки электродвигателей, кабельные оболочки и т.п.) являются, как известно, важнейшим показателем их работоспособности.

При этом периодическая проверка состояния изоляции в качестве обязательной процедуры присутствует в составе большинства известных видов электрических испытаний. В самом общем случае такой проверке подвергаются следующие классы электрооборудования:

  • кабельные линии осветительных сетей;
  • все типы силовых кабелей (при любом способе их прокладки);
  • обмотки силовых трансформаторов;
  • обмотки электродвигателей, электрических машин и т. п.

Измерительные приборы для проведения замеров

Измерение сопротивления изоляции электрооборудования производится обычно с помощью специальных электроизмерительных приборов – мегомметров. В наши дни к наиболее распространённым типам мегомметров можно отнести следующие модели: М-4100, ЭСО202/2Г, MIC-2500, MIC-1000. Выбор того или иного типа измерительного устройства зависит от рабочих характеристик проверяемого объекта и определяется обычно исходя из условия соответствия предела измерений прибора значению действующего в исследуемой цепи напряжения. При выборе мегомметра по рабочему пределу измерений следует помнить о том, что точность этих измерений выше у того прибора, показания которого считываются с середины шкалы. В электроустановках с действующим напряжением выше 1 кВ рекомендуется использовать мегомметры, рассчитанные на номинальное напряжение 2500 Вольт (с верхним пределом измеряемого сопротивления порядка 10000—20000 Мом). При проведении испытаний в цепях с рабочим напряжением менее 1000 Вольт (обмотки двигателей, роторов или вторичные цепи) используются приборы для измерения сопротивления изоляции, рассчитанные на напряжение 1000, 500 и 100 Вольт.

Общий порядок проведения измерений

Все измерительные приборы этого класса комплектуются гибкими проводами длиной до 2 метров со специальными «оконцевателями» с одной стороны и с зажимами типа «крокодил» (с изолированными ручками) – с другой. Собственное сопротивление изоляции этих проводов должно быть достаточно большим (не менее 100 МОм). Непосредственно перед началом измерений с использованием мегомметров типа М-4100 и ЭСО202/2Г необходимо:

  1. Произвести контрольную проверку прибора, заключающуюся в снятии его показаний в следующих режимах:
    • при разомкнутых измерительных проводах; при этом стрелка должна расположиться поблизости от отметки «бесконечность»;
    • при замкнутых проводах; при этом стрелка прибора должна находиться около отметки «0».
  2. Убедиться, что на проверяемом кабеле отсутствует напряжение (проверка производится по стандартной методике с использованием испытанного ранее указателя напряжения).
  3. Произвести заземление рабочих жил испытываемого кабеля, что необходимо для удаления с них остаточного заряда (заземление допускается снимать только после подключения мегомметра).

Снятие показаний при измерениях следует производить при установившемся положении стрелки на шкале прибора. Для этого вам нужно вращать ручку генератора мегомметра со скоростью примерно 120 оборотов в минуту. При проведении измерений в сырую погоду заметное влияние на точность показаний прибора оказывают так называемые токи утечки, распространяющиеся по поверхности изоляции. Вот почему в этих случаях подключать измерительный прибор к обследуемому объекту необходимо с применением специального зажима «Э», обеспечивающего своеобразное экранирование утечки. При такой схеме включения оборудования токи утечки с поверхности изоляции будут отводиться непосредственно в землю (минуя обмотку измерителя).

Отметим ещё одну особенность организации подобных измерений. Дело в том, что сопротивление изоляции большинства электрических цепей сильно зависит от температуры окружающей среды и измеряется обычно при температуре не ниже + 5°С. (за исключением специально оговоренных случаев). При температурах ниже указанного значения результаты измерения могут не отражать истинной картины её состояния.

Требованиями ПУЭ предусматриваются определённые правила обращения с измерительным оборудованием этого класса во время поведения испытаний и по их окончании. Правила эти следующие:

  1. При наложении и снятии заземления необходимо пользоваться диэлектрическими перчатками.
  2. При работе с мегомметром прикасаться к токоведущим частям, к которым он присоединен, не допускается.
  3. По окончании измерительных процедур с испытываемого объекта необходимо снять накопившийся заряд путём кратковременного его присоединения к заземляющему проводнику.
Смотрите так же:  Магнитный пускатель 5 квт

Измерение эл.сопротивления изоляции электродвигателя

Замер сопротивления изоляционного материала электродвигателей постоянного тока производится в следующих рабочих зонах:

  • между катушками возбуждения и якорем;
  • между якорем, щётками, катушками возбуждения и корпусом.

Измерения должны проводиться на полностью отключённом от сети электродвигателе, а ещё до их начала между щётками и коллектором необходимо поместить специальную изолирующую прокладку. В асинхронных электродвигателях с короткозамкнутым ротором проверяют сопротивление изоляции всех обмоток статора по отношению к корпусу и между собой. Это справедливо для случая, когда на клеммную колодку выведены все шесть концов статорных обмоток. В том случае, когда на колодку выведены три её конца – измерение следует производить только относительно корпуса.

У электродвигателей с фазным ротором проверяется сопротивление между статором и ротором, а также изоляция графитовых щёток относительно корпуса двигателя. По результатам аналогичных испытаний устанавливается класс изоляции электродвигателя, свидетельствующий о его устойчивости к нагреву. Минимально допустимые сопротивления изоляции элементов электрооборудования с рабочим напряжением до 1кВ приведены в таблице (Приложении №1). Приложение №1

Cтатьи из категории: Электротехника

Специалисты, допущенные к работе с электрооборудованием, электроустановками и другими видами электрических сетей, кроме регулярных проверок, обязательно проходят различного уровня инструктажи по технике безопасности. Тем не менее, случаи поражения человека электрическим […]

Каждому потребителю электроэнергии полезно уметь рассчитывать нагрузку на бытовые розетки, установленные в доме или квартире. Согласно нормативному документу ПЭУ – правилам устройства электроустановок – каждая отдельная квартира имеет свой ввод […]

Заземлением принято называть преднамеренное соединение всех металлических частей электрооборудования (как бытового, так и промышленного назначения) со специальной конструкцией, носящей название устройство заземления и предназначенной для защиты от поражения электротоком обслуживающего […]

В современном технологическом обществе, использующем электроэнергию во всех сферах жизнедеятельности использование различных соединителей, таких как электрическая розетка, является обычным делом, не требующим от пользователя особых навыков. Но стоит заметить, что […]

В чем отличие автотрансформатора от обычного трансформатора И то, и другое изделие предназначены для питания силовых цепей, однако в отличии от обычного трансформатора, который имеет как минимум две обмотки – […]

Чтобы правильно рассчитать необходимое сечение проводов для той или иной полезной электрической нагрузки, для начала полезно разобраться – а зачем это нужно вообще делать?

Последствия поражения человека электрическим током могут быть разной тяжести и зависят от многих факторов. Сила тока, напряжение сети, конкретный путь прохождения электрического тока по телу пострадавшего, качество и количество одежды, […]

Генераторы переменного тока являются основными источниками переменного напряжения, используемого в промышленности и в аграрном секторе. Гидрогенераторы ГЭС и турбогенераторы ТЭЦ, выходящие на разветвленную сеть станций и систем линий ЛЭП, имеют […]

Испытания электродвигателей переменного тока: перечень работ, периодичность

Помимо проверки состояния механических элементов и смазки, при капитальных и текущих ремонтах электромоторов переменного тока производятся их электрические испытания, измеряются электрические характеристики.

Объем этих испытаний, условия их проведения, а также нормируемые предельные значения измеренных величин зависят от:

  • номинального напряжения;
  • мощности;
  • конструктивного исполнения и типа двигателей.

Рассмотрим по порядку, какие испытания проводятся, и ознакомимся с критериями исправности электродвигателей.

Измерение сопротивления изоляции электродвигателей

Такие измерения производятся не только при ремонте. Например, если в процессе эксплуатации требуется провести диагностику электродвигателя и питающего кабеля в случае отключения от защит. Также требуется измерять этот параметр перед пуском аппарата после его длительного простоя, особенно в неблагоприятных рабочих условиях.

Для измерения используется мегаомметр, напряжение которого зависит от номинального для испытуемого электродвигателя. Для аппаратов до 500 В используется мегаомметр на 500 В. Для номинала 500 — 1000 В — соответственно на 1000 В. Для высоковольтных электродвигателей используется мегаомметр, вырабатывающий напряжение 2500 В.

Для статоров низковольтных двигателей норма составляет 1 МОм, при этом температура испытуемого объекта находится в пределах 10-30˚С. При температуре 60˚С допустимая величина снижается до 0,5 МОм.

Аппараты напряжением выше 1000 В разделяются на две категории. Для мощностей обмотки статора 1 — 5 МВт предельные значения указаны в таблице.


Для более мощных, свыше 5 МВт, моторов, подход к процессу более ответственный. Измерения производятся в строгом соответствии с инструкциями изготовителя.

У асинхронных машин с фазным ротором, в том числе синхронных, имеющих обмотку возбуждения, тестируется и изоляция обмотки ротора. Но только у высоковольтных движков, имеющих мощность свыше 1 МВт. Используется мегаомметр на 1000 В. Предельное значение — 0,2 МОм.

Мощные электродвигатели для предотвращения появления паразитных токов в валах, замыкающихся на установочной раме, имеют изоляцию опор с подшипниками. Также подшипники изолируются от маслопроводов, осуществляющих их смазку при работе. Состояние этого вида изоляции проверяется мегаомметром на 1000 В.

Этот параметр контролируется после капитальных ремонтов, связанных с выемкой ротора. Сопротивление должно иметь значение, отличное от нуля, и не снизиться резко относительно ранее полученных результатов. Более точного значения правилами не предусмотрено.

Измерение коэффициента абсорбции

Параметр характеризует степень увлажненности изоляции электродвигателей. Он измеряется только у высоковольтных аппаратов. Для этого на обмотку статора подключают испытательное напряжение от мегаомметра, держат его в течение минуты, засекая значения через 15 и 60 секунд. Разделив шестидесятисекундное значение на пятнадцатисекундное, получают искомую величину.

Нормативы зависят от материала изоляции двигателя. Если она термореактивная, то коэффициент не должен быть ниже 1,3. Для микалентной компаундированной – ниже 1,2.

Малый коэффициент абсорбции, особенно – близкий к единице, указывает на влажную изоляцию. Обмотку требуется просушить.

Испытание повышенным напряжением

Испытание проводится после окончания капитального ремонта двигателя, а для аппаратов до 1000 В может не проводиться вовсе. Решение принимает технический руководитель, что закрепляется соответствующим приказом.

Испытание заключается в подаче повышенного напряжения промышленной частоты от постороннего источника. Для этого применяются переносные или передвижные испытательные установки. Одно из важных требований – они должны быть рассчитаны на повышенные токи утечки. Поэтому не все из них, пригодные к испытаниям изоляции распределительных устройств, годятся для электродвигателей. Испытательные напряжения указаны в таблице.

Напряжение выше номинального для изоляции является стрессом. Подъем его производится медленно и без рывков. Критерием исправности служит отсутствие разрядов внутри двигателя, наличие которых контролируется по показаниям миллиамперметра, включенного последовательно с испытуемым объектом. Сами же показания прибора не нормируются. Также не должно произойти срабатывания защиты установки.

При испытаниях схема соединения обмоток не разбирается, они испытываются относительно корпуса совместно. Но при пробое для поиска поврежденного участка придется не только разобрать схему звезды или треугольника, но и рассоединить все секции обмотки в поврежденной фазе. Неисправная секция меняется на новую.

Измерение сопротивления постоянному току

  • для статоров напряжением выше 3 кВ;
  • для роторов таких же аппаратов.

Для обмоток статоров значения, полученные для каждой фазы, не должны отличаться более, чем на ±2%. Во всех описанных случаях величины сопротивлений не должны различаться от измеренных ранее более, чем на ту же величину.

Для измерений используются микроомметры, рассчитанные на точное измерение малых величин сопротивления. Для исключения влияния сопротивления соединительных проводов и контактов в месте подключения используется мостовая (четырехпроводная) схема подключения прибора.

Для сравнения с предыдущими значениями, полученные данные нужно привести к той же температуре обмоток. Для чего ее, собственно, потребуется измерить. Формулы для приведения зависят от материала проводников обмоток.

Для меди формула выглядит так:

R2 = R1 (235 + t2)/(235 + t1).

Сопротивление R1 – измеренное при температуре t1. Сопротивление R2 – значение, приведенное к температуре t2.

Для алюминия меняется только числовой коэффициент:

R2 = R1 (245 + t2)/(245 + t1).

На основании измерений делается заключение о наличии витковых замыканий в проверяемой обмотке. При выявлении его наличия потребуется определить место замыкания и заменить поврежденный участок.

Похожие статьи:

  • Методика измерение сопротивления изоляции МЕТОДИКА ИЗМЕРЕНИЯ СОПРОТИВЛЕНИЯ ИЗОЛЯЦИИ Транскрипт 1 МЕТОДИКА ИЗМЕРЕНИЯ СОПРОТИВЛЕНИЯ ИЗОЛЯЦИИ 2 Оглавление. 1. Введение и область действия Цель измерений сопротивления изоляции Электробезопасность человека Противопожарная безопасность […]
  • Провода на автозаводской Автозаводская улица ЮАО Москвы - поставки светотехнического оборудования Первая Электротехническая компания специализируется на комплектации светотехнической и электротехнической продукцией строящихся объектов, оптово-розничной торговле […]
  • Как подключить провода на материнскую плату asus Как подключить внутренний USB-кардридер к материнской плате? …Как подключить картридер к мат. плате? Там 3 цвета (зеленый,белый,красный) + 1 черный. Не знаю куда втыкать… Системная плата Asus P4P800. На материнской плате найдите […]
  • Нексия электропроводка схема Нексия электропроводка схема СХЕМА ЭЛЕКТРООБОРУДОВАНИЯ АВТОМОБИЛЯ "DAEWOO NEXIA GL" На рисунке представлена принципиальная схема соединений электрооборудования автомобиля "Дэу-Нексия GL" в простейшей комплектации. При пользовании […]
  • Измерение сопротивления изоляции конденсатора Проведение периодических проверок, измерений и испытаний силовых конденсаторов - Испытания бумажно-масляных конденсаторов Проведение периодических проверок, измерений и испытаний силовых конденсаторов находящихся в эксплуатации. Нормы […]
  • Подключение электродвигателя 380 на 220 с конденсаторов Схема подключения электродвигателя 380 на 220 через конденсатор Раньше схема подключения электродвигателя 380 на 220 Вольт была популярна по простой причине, в продаже почти не было электродвигателей на 220… Разновидности схем […]