Измерение выходного сопротивления генератора

Измерение выходного сопротивления генератора

Измерение основных параметров усилителя

Прежде чем проверять динамики, колонки или наушники, убедитесь в том, что ваш усилитель (или стационарный, или встроенный в активные колонки, или звуковой карты компьютера) имеет достаточно хорошие технические характеристики (параметры). Т.е. насколько прямолинейна и широка его АЧХ, может ли он выдавать все частоты с одинаковым уровнем, без завала по низким частотам (чем часто грешат усилители низкого качества).

Заодно можно определить, развивает ли он заявленную изготовителем максимальную мощность (Pmax) и какое выходное сопротивление (Rвых) имеет.

Методика проверки амплитудно-частотной характеристики

Для измерения амплитудно-частотной характеристики (АЧХ) в один из каналов (левый или правый) вместо колонки в качестве нагрузки усилителя проводниками подключите резистор любого типа, сопротивлением 5-10ом. Парал­лельно резистору подключите вольтметр пере­менного тока (цифровой в данном случае удобнее стрелочного), и, подав с компьютера сигнал генератора звуковых частот (объём архива 22Кб.) на частоте 1000 герц регулятором громкости установите выходное напряжение, например 1вольт (1000 милли­вольт), далее, не меняя уровень сигнала, уменьшайте частоту генератора (в диапа­зоне 1000-100 герц кнопкой «-100», в диапазоне 100-20 герц кнопкой «-10») начиная от 1000гц. и до 20гц. включительно (при этом регуляторы тембра на усилителе должны стоять в среднем положении или отключены, т.е. его АЧХ должна быть прямолинейна (горизон­тальна).

Напряжение на выходе усилителя НЕ ДОЛЖНО меняться более чем на ±2 децибела (или в 1,25 раза), но чем меньше, тем лучше (в нашем случае, оно должно находиться в пределах между 0,8-1,25 вольт, или 800-1250 милли­вольт). Идеальный вариант — все частоты выдаются с одинаковым уровнем.

Ну а если завал напряжения по низким частотам составит 2 и более раз, что соответ­ствует 6 децибел и более (т.е. напряжение опустится до 0,5 вольт и менее), то ваши колонки никогда не смогут звучать во всей своей красе. К тому же, при нелинейной характеристике усилителя вы не сможете точно определить резонансную частоту динамиков. Пример такой нелинейной АЧХ показан на рисунке слева (см. синюю кривую).

Точно также проверяется и второй канал усилителя. В случае значительного спада сигнала на низких частотах желательно поменять усилитель на более качественный.

Измерение выходного сопротивления усилителя

От величины выходного сопротивления зависят коэффициент демпфирования и интер­модуляционные искажения, также оно напрямую влияет на общую добротность системы. Выходное сопротивление усилителя мощности должно находиться в пределах 1/10-1/1000 от сопротивления нагрузки и у современных усилителей имеет величину порядка 0,01-0,1 Ом.

Для его измерения в качестве нагрузки усилителя проводниками подключите резистор любого типа, сопротивлением 4 или 8ом соответствующей мощности. Параллельно выходу усилителя подключите вольтметр переменного тока (цифровой в данном случае удобнее стрелочного), и, подав с компьютера сигнал генератора звуковых частот (объём архива 22Кб.) на частоте 1000 герц регулятором громкости установите выходное напряжение в пределах от 1 до 5 вольт.

Вначале нужно замерить выходное напряжение усилителя на холостом ходу (без нагрузки). Потом проделать то же самое, нагрузив его на резистор. Все величины, включая Rнагр, нужно измерять как можно точнее. Выходное сопротивление вычисляется по формуле
Rвых=[(Uхх/Uнагр)-1]×Rнагр или
Rвых=[(Uхх-Uнагр)/Uнагр]×Rнагр. пример: [(5-4,9)/4,9]×8=0,163ом.

Таким образом можно определить выходное сопротивление и на втором канале, и на любой частоте.

Измерение максимальной мощности

Некоторые пользователи хотят знать, какую мощность реально выдают их усилители в нагрузку, не доверяя характеристикам, заявленным производителями. Это можно сделать, но вам понадобятся:

  1. мощный нагрузочный резистор
  2. генератор звуковых частот
  3. вольтметр переменного напряжения
  4. осциллограф.

Самое сложное, это купить или самостоятельно изготовить мощный нагрузочный резистор и найти осциллограф. В крайнем случае, в качестве осциллографа можно использовать компьютер или ноутбук с программой «Виртуальный осциллограф» из архива (объём 0,3 Мб.). Подробное описание его работы и схема адаптера (делитель напряжения для согласования входа звуковой карты компьютера с источником исследуемого напряжения) имеются в справке программы. Резистор можно изготовить из спирали древнего утюга, электрической плитки или тепловентилятора.

В один из каналов (левый или правый) вместо колонки в качестве нагрузки усилителя проводниками подключите резистор любого типа, сопротивлением, соответствующим расчётному сопротивлению нагрузки вашего усилителя. Оно указывается в инструкции на аппаратуру и обычно составляет 8 или 4ом. Мощность резистора должна быть достаточной, чтобы он не сгорел во время работы, т.е. не меньше предполагаемой выходной мощности усилителя (если усилитель заявлен на 100 ватт на канал, мощность резистора должна быть 100 ватт и больше).

Параллельно резистору подключите вольтметр переменного тока (лучше стрелочный, он показывает действующее значение напряжения), а также осциллограф и, подав с компьютера сигнал генератора звуковых частот (объём архива 22Кб.) на частоте 1000 герц регулятором громкости установите выходное напряжение, например 1 вольт (1000 милли­вольт). Наблюдайте форму сигнала на осциллографе, далее, не меняя частоту, увеличивайте амплитуду сигнала.

Синусоида будет увеличиваться по высоте, не искажая свою форму, но в какой-то момент произойдёт её клиппирование, она как бы упрётся в «потолок и пол», вместо закруглённой, её верхняя и/или нижняя части станут горизонтальными, как на рисунке справа, т.е. начнётся ограничение сигнала по амплитуде. Уменьшите амплитуду таким образом, чтобы сигнал был на грани клиппирования (ещё сохранял закругленную форму). Напряже­ние, показанное в этот момент на вольтметре, равно Umax. По формуле P=U²/R рассчитайте максимальную мощность усилителя.

Например, Umax=21v. R=4om. Pmax=21²/4=110ватт. Если R=8ом, то Рmax=55ватт.

Таким же способом можно проверить максимальную выходную мощность на нижней частоте АЧХ усилителя (20 герц.), или на нижней частоте частотного диапазона, указанного для ваших колонок, например 40, 45 или 50 герц. Ограничение синусоиды по амплитуде в идеале должно происходить строго симметрично, на обоих полуволнах сигнала.

Аналогично замерьте мощность во втором канале усилителя.

Как по характеристикам генератора определить его внутреннее активное и индуктивное сопротивления

Если имеются в наличии скоростные характеристики генератора: зависимость ЭДС от оборотов, напряжения на нагрузке от оборотов и тока от оборотов, то нетрудно определить сопротивление обмоток генератора r и его реактивное (индуктивное) сопротивление X. Индуктивное сопротивление обмоток растет с ростом частоты вырабатываемого напряжения, т.е. с ростом числа оборотов. Ветряк может работать в диапазоне ветров 2,5 – 12 м/с и реактивное сопротивление может изменяться в 5 раз. Достаточно вычислить реактивное сопротивление для одной частоты вращения генератора. Для других скоростей вращения сопротивление пересчитывается пропорционально изменению скорости вращения.

Эквивалентная схема генератора состоит из источника ЭДС и двух сопротивлений: X и r, которые расположены внутри генератора. R – это сопротивление нагрузки.

Активное r и реактивные X сопротивления складываются не арифметически, а геометрически. Их сумма равна гипотенузе треугольника, катеты которого активное и реактивное сопротивления. Реактивное сопротивление в генераторе также, как и аиктвное, препятствует прохождению тока. На нем также происходит падение напряжения (но со сдвигом фазы). Отличие реактивного сопротивления от активного в том, что на реактивном сопротивлении не теряется мощность. При большом внутреннем активном сопротивлении генератора падает КПД. А большое реактивное сопротивление даже полезно в определенных случаях. Оно несколько стабилизирует выходное напряжение при изменении нагрузки и ограничивает ток короткого замыкания.

Для расчета надо иметь данные для двух частот вращения генератора.

Ток, протекающий в цепи при первой частоте вращения равен:

Ток, протекающий при второй, более высокой частоте вращения:

Из этих двух уравнений несложно найти X1 и r

В формулах n1 и n2 – первая и вторая частота вращения генератора. Можно подставлять в об/мин или об/с. Важно, чтобы в одной формуле единицы были одинаковы.

Индуктивное сопротивление X рассчитано для первой, нижней, частоты вращения. Для любой другой частоты вращения его легко пересчитать

В качестве примера рассчитаем внутренние сопротивления двух генераторов. ВГБЖ – 02(64)/28,5-200-02 и Г303В.

При скорости вращения 120 об/мин E1 = 23 В, U1 = 19,5 В, I1 = 2,75 А.

При скорости вращения 500 об/мин E2 = 95 В, U2 = 71 В, I2 = 9 А.

Величина реактивного сопротивления при 120 об/мин.

Ом.

Если E2, U2, I2 подставить для частоты в 300 и 400 об/мин, то значение X120 получатся 1,51 и 1,57 Ом. Среднее значение 1,56 Ом. Точность получается очень хорошая. Но для скорости вращения в 180 об/мин расчет дает отрицательное значение под корнем. На кривой тока видно, что при 180 об/мин точка смещена вверх от плавного хода кривой. Погрешность при измерении характеристик оказалась слишком большой. Для надежного расчета точки надо брать далеко друг от друга по оси скорости вращения.

Посчитать внутреннее активное сопротивление генератора не получается. Сопротивление нагрузки на графиках указано 14 Ом. Но если разделить напряжение на ток, то при 120 и 500 об/мин получится: 19,5/2,75 = 7,1 Ом. 71/9 = 7,9 Ом. Сопротивление нагрузки указано ошибочно. Скорее всего, генератор испытывался под нагрузкой 7 Ом. Повышение величины нагрузочного сопротивления с ростом оборотов связано с тем, что либо сопротивление раскалилось и возросло от нагрева или же сопротивление намотано в катушку и на высоких частотах приобретает заметную индуктивную составляющую. Можно принять сопротивление нагрузки равным 7,5 Ом, тогда внутреннее активное сопротивление генератора равно

Смотрите так же:  Обрыв телефонного кабеля куда звонить

Ом.

С учетом неопределенности сопротивления нагрузки, внутреннее сопротивление лежит в пределах 0,32 – 1,12 Ом.

Индуктивное сопротивление при 500 об/мин, а такие обороты реальны для ветряка, возрастает до 1,56*500/120 = 6,5 Ом и заметно влияет на величину тока в нагрузке. Поэтому его необходимо учитывать при расчетах. Иначе ошибка может быть значительна. Внутреннее активное сопротивление генератора имеет малую величину, и даже такая большая погрешность в его определении мало скажется на величине тока в нагрузке.

На этом графике не показаны кривые тока. Но ток легко вычислить, разделив напряжение на нагрузке, на сопротивление. При сопротивлении наргузки 10 Ом и оборотах 360 и 2000 об/мин получится

Ом

Ом

Реактивное сопротивление на высоких оборотах у этого генератора будет тоже большим. Этот генератор высокооборотистый. Номинальные обороты около 6000 об/мин. При 2000 об/мин. X2000 = 1,74*2000/360 = 9,7 Ом. При 6000 об/мин. X6000 = 1,74*6000/360 = 29 Ом

Терминология: Сопротивление выходное

Когда говорят о выходном сопротивлении, подразумевают модель выхода как линейной электрической цепи, в которой сопротивление RВЫХ включено последовательно с идеальным источником напряжения U (источником ЭДС), как показано на рисунке. Собственно, идеальный источник напряжения в данной эквивалентной схеме и отличает выход от входа, и отличает понятие выходного сопротивления от входного сопротивления. Также наличие активного источника напряжения или тока отличает активную цепь от пассивной.

Идеальный источник напряжения называется идеальным потому, что он обладает нулевым внутренним сопротивлением (это способность отдать сколь угодно большой ток нагрузки IВЫХ при неизменности напряжения U). А выходное сопротивление RВЫХ вносит неидеальность, присущую всем физически реализуемым (реальным) выходам напряжения и тока, и ограничивает максимальный ток нагрузки IВЫХ значением тока короткого замыкания IВЫХ = IКЗ = U / RВЫХ .

Отметим, что применённые выше два термина выходное сопротивление и внутреннее сопротивление эквивалентны. Обычно термин выходное сопротивление применяют к объектам, для которых можно применить понятие «выход». Термин внутреннее сопротивление носит более общий характер и может быть применим к входам, выходам и любым пассивным или активным объектам.

Практически, если значение выходного сопротивления выхода неизвестно, то его можно оценить простым методом двух измерений с использованием вольтметра и резистора с известным номиналом RН (желательно близким к номинальному сопротивлению нагрузки для данного выхода или хотя бы предположительно соответствующим номинальному сопротивлению нагрузки).

Первое измерение: Измерить вольтметром напряжение холостого хода на выходе (без нагрузки) U.

Второе измерение: Подсоединить к выходу резистор RН и измерить на резисторе напряжение UH.

Метод применим и для выходов напряжения переменного тока, если вольтметр способен измерять средневадратическое значение (СКЗ) напряжения при данной частоте сигнала, тогда RВЫХ будет иметь физический смысл модуля импеданса выходного сопротивления на данной частоте сигнала.

Но есть ограничение: данный метод нельзя применять к выходам, для которых отсутствие нагрузки является нерабочим режимом. Например, для выходов генераторов тока этот метод неприменим.

Для выходов тока применяют обычно модель с идеальным источником тока (это источник тока, способный сохранить ток неизменным при бесконечном увеличении сопротивления нагрузки) и параллельным резистором RВЫХ, делающим этот источник тока неидеальным, как показано на рисунке ниже.

Для выходов генераторов тока применима схожая методика двух измерений, но основанная на измерении амперметром тока короткого замыкания и тока назгрузки при включенении в цепь резистора с известным сопротивлением RН.

Когда употребляют термин низкоомный источник сигнала, то, в зависимости от динамики протекания электрических процессов (в том контексте, в котором этот термин употрелён) может подразумеваться как низкое сопротивление по постоянному току, так и малый импеданс в широкой полосе частот, начиная с нулевой частоты. Приведём три поясняющих примера.

Пример 1. Когда говорят о низкоомности источников сигнала для АЦП с входным коммутатором канала, то подразумевают низкий импеданс датчика, включая кабель от него. — На столько низкий импеданс, чтобы переходный процесс от переключения коммутатора успел полностью затухнуть за период времени T переключения коммутатора. Таким образом, оценочно, малый импеданс должен соблюдаться, как минимум, в полосе частот от 0 до 1/T [Гц], а не в полосе частот полезного сигнала от датчика.

Пример 2. Когда говорят о низкоомности выхода ICP датчика (порядка 100 Ом), то низкое выходное сопротивление оговаривается, как правило, до верхней частоты полосы частот пропускания датчика (порядка 10 кГц).

Пример 3. Когда говорят о низкоомности электронного ключа, управляющего включением-выключением неполяризованного электромеханического реле, то подразумевают, как правило, выходное сопротивление ключа по постоянному току, которое существенно для режима долговременного удержания реле в активном состоянии.

В заключение добавим, что понятия источник ЭДС, источник тока, активный и пассивный двухполюсник, а также выходное сопротивление генератора явлются базовыми понятиями Теории линейных электрических цепей в курсе ТОЭ. В частности, к этим понятиям впрямую относится метод эквивалентного генератора:

«По отношению к выделенной ветви (электрической цепи) двухполюсник можно заменить эквивалентным генератором, ЭДС которого равна напряжению холостого хода на зажимах выделенной ветви, а внутреннее сопротивление равно входному сопротивлению двухполюсника» ( Бессонов Л. А. ТОЭ. Электрические цепи, §2.26, стр. 64 ).

Измерение выходного сопротивления генератора

Измерение выходной мощности усилителей звуковой частоты.

Возьмём обычный усилитель НЧ с напряжением питания +12 Вольт, сопротивлением нагрузки 4 Ом, присоединим к нагрузке осциллограф, а к входу — генератор синусоидального сигнала, (рис.1)

включим всё и наблюдаем на экране осциллографа «весёлые картинки» — синусоиду, пока она не достигнет видимых искажений (рис.2а). (Примечание Учёного кота: менее 3% искажения простым глазом не заметны. О том, что такое искажения, поговорим в другой статье.)

Площадь, занимаемую синусоидой, можно вычислить (или измерить) и заменить эквивалентным напряжением постоянного тока той же площади (рис.2б).

Это напряжение называется СреднеКвадратичным напряжением — СКВ (англоязычная аббревиатура — RMS), в просторечии — «эффективным». Таким образом можно найти эквивалентное напряжение для любой формы тока (рис.2в,г,д).

Для треугольного, прямоугольного, синусоидального, экспоненциального тока есть математические выражения для эквивалентного преобразования. Для простоты понимания на рисунках изображены половины периодов симметричных сигналов. Появление компьютерной регистрации позволяет выполнить численное интегрирование любой функции без поиска его математического выражения. Для чего всё это надо? Найденный эквивалентный постоянный ток будет производить ту же тепловую работу, что и наш исследуемый ток.

Любой переменный ток можно характеризовать следующими видами напряжения:
Амплитудное — синие стрелки (понятно из названия и рисунков);
Среднее — среднеарифметическое всех мгновенных значений сигнала за измеряемый период (на рисунках не показано);
Среднеквадратичное — красные стрелки (рассмотрено выше).
Для облегчения понимания указанных видов напряжения можно нарисовать их на миллиметровке и самостоятельно просуммировать численные значения напряжения (для синусоидального, прямоугольного и треугольного напряжения ). Большинство вольтметров переменного напряжения имеют схему выпрямления переменного тока, соответствующую среднему напряжению — как самую простую, а градуировку показывающей шкалы — в СКВ. При измерении синусоидальных токов и напряжений это не вызывает никаких затруднений, а если ток или напряжение отличаются от синусоиды — придётся вводить поправочные коэффициенты.

Теперь вспомним начала начал — Закон Ома: I=U/R, а также формулы для вычисления мощности постоянного тока — P=U*I=I2R=U2/R.
Для синусоидального тока (и напряжения) формула вычисления мощности по измеренному осциллографом амплитудному напряжению будет выглядеть так:
P = (0,707U) 2 /R н = U 2 /2R н
где 0,707- коэффициент перевода амплитудного напряжения U синусоидального тока в эквивалентное напряжение постоянного тока.
Мы пришли к практическому способу измерения выходной мощности усилителя с помощью измерения амплитуды сигнала на экране осциллографа (рис.2б). Механическая мощность — это работа за 1 секунду. Электрическая мощность не содержит параметра времени в явном виде; подразумевается (но не соблюдается, причём именно при измерении мощности усилителей низкой частоты), что это — тоже 1 секунда. Например, для меандра частотой 100 Гц за время 10 мс в любой момент СКВ напряжение равно его амплитудному значению (рис.2в)
А кто мешает распространить такой подход и к синусоидальному сигналу? Для части синуса 100Гц за время 1мс (рис.2е) получим практически прямоугольник, для которого коэффициент перевода амплитудного напряжения в СКВ равен 1, и соответственно мгновенную мощность в два раза больше, чем за целый полупериод 10 мс.
Но это ещё не всё! Можно измерить размах напряжения при переходе от минимального до максимального значения (рис.2ж) за очень небольшой период времени и получить мощность ещё больше! Вот они — десятки ватт от бумбокса и сотни ватт от бытового усилителя!

Сведём полученные результаты в таблицу.

Смотрите так же:  Как проверить вольты мультиметром

Среднеквадратическое напряжение Uскв=2в. Мощность на Rн 4 ом Рвых = 1 ватт

Амплитудное U=2.83в. Мощность на Rн 4 ом Рвых=2 ватта

Размах (двойная амплитуда)U=5.66в. Мощность на Rн 4 ом Рвых=8 ватт

Среднеквадратическое Uскв= 3,54в. Мощность на Rн 4 ом Рвых=3.12 ватт

Амплитудное U=5в. Мощность на Rн 4 ом Рвых=6,25 ватт

Размах (двойная амплитуда) 10 вольт. Мощность на Rн 4 ом Рвых=25 ватт

Среднеквадратическое Uскв=10в. Мощность на Rн 6 ом Рвых=16,7 ватт

Амплитуда U=14,14в. Мощность на Rн 6 ом Рвых=33,3 ватт

Размах (двойная амплитуда) 28,3 вольт. Мощность на Rн 6 ом Рвых=133,2 ватт

Мы рассмотрели измерение мощности на активной нагрузке (например, на мощном проволочном резисторе), обычно применяемой при испытании усилителей. Внимательный радиолюбитель, измеряя сопротивление динамика цифровым омметром, обнаружит, что оно окажется меньше, чем 4 ома, например, 3,8 ом. «Ага, значит, я получу больше, чем указано в таблице!» — воскликнет он — и будет прав, но не совсем. Дело в том, что динамик имеет две составляющие сопротивления — активную, которую можно измерить любым омметром, и индуктивную — зависящую от числа витков катушки динамика и его магнитных свойств (измеряемую измерителем RCL). Возьмём для примера динамик 3ГД-32-75 с номинальным сопротивлением катушки по постоянному току R=4 Ома; индуктивностью L=150 микроГенри. Полное сопротивление Z динамика состоит из двух компонент — активной R x и индуктивной X L . Рассчитаем их для двух частот:

Частота

1000 Гц

10 кГц

Индуктивное сопротивление рассчитывается по формуле

Полное сопротивление — по формуле

Видим, что на 10 кГц сопротивление реальной нагрузки выросло в 2,5 раза, а мощность, отдаваемая в эту нагрузку, соответственно уменьшилась в те же 2,5 раза (рис.3 б). А теперь вспомним, что на входе усилителя (и на выходе) присутствует конденсатор.

Предположим R вх =100 кОм, ёмкость конденсатора С вх = 0,1 мкФ. На частоте 1 кГц его сопротивление будет 1,6 кОм; на частоте 100 Гц — 16 кОм; на частоте 10 Гц — 160 кОм, т.е. напряжение, поступающее на вход первого каскада усилителя, уменьшится в 0,38 раза, а пропорционально этому — и выходная мощность (рис.3в).
Аналогичный расчёт для влияния выходной ёмкости С вых = 1000 мкФ даёт: 1 кГц — 0,16 Ом; 100 Гц — 1,6 Ом; 10 Гц — 16 Ом. В последнем случае на нагрузку 4 Ом будет поступать всего 0,2 выходного напряжения, и отдаваемая мощность снизится до 1/25 от максимально возможной (рис.3г). Поэтому не ленитесь рассчитать минимально необходимые ёмкости входного и выходного конденсаторов для получения заданной частотной характеристики в области низких частот.
Но это опять таки ещё не всё! Если наш громкоговоритель -двух- или трёхполосный- поведение полного сопротивления громкоговорителя из-за влияния индуктивностей, конденсаторов и резисторов разделительных фильтров предсказать достаточно сложно, проще провести измерения (рис.3е). (Примечание премудрого кота. Да, в общем, это не слишком то и нужно.)
Подведём итоги.

1.Измерение выходной мощности лучше всего проводить, наблюдая синусоидальный не ограниченный сигнал на экране осциллографа, и пересчитать измеренное значение амплитудного напряжения в СКВ (для получения синусоидальной мощности), либо оставить как есть (для пиковой мощности). Измерение напряжения вольтметром переменного тока нежелательно, поскольку мы не увидим искажения сигнала при мощности, близкой к максимальной, и обычно не знаем, по какой схеме собран и проградуирован вольтметр. Измерение амплитудной пиковой мощности вызывает сомнение — её можно получить и чисто расчётным путём. Формула для прикидочного расчёта мощности синусоидального сигнала выглядит следующим образом: Р = (U п :3) 2 /R н , где U п — напряжение питания, R н -сопротивление нагрузки на заданной частоте. Ревнители точности могут вычесть из U п падение напряжения на выходных транзисторах и учесть просадку U п при нестабилизированном питании.

2.Теперь мы знаем, как относиться к мощности, заявленной на шильдике «крутого» домашнего кинотеатра: «суммарная мощность всех каналов составляет 400 ватт» при мощности, потребляемой от сети -100 ватт.

3.Наиболее правильно будет говорить так: измеренная мощность усилителя — Х ватт при коэффициенте гармоник Y% и частоте Z герц на нагрузке R Ом. (Для любознательных — старые ГОСТы подразумевали коэффициент гармоник 1% при номинальной мощности и 10%- при максимальной). О коэффициенте гармоник (будем говорить позже, сейчас мне нужно питание в виде рыбы, а не электрического тока! — примечание голодного кота).

4.«Но это опять таки ещё не всё!» (Хозяин, можешь говорить без употребления рекламных слоганов? примечание грамотного кота). Мощность, рассеиваемая на оконечных транзисторах усилителя, величина непостоянная (для наиболее распространённых усилителей класса АВ), и достигает максимума в диапазоне 0,25..0,5 выходной мощности. Исходя из этого, и надо рассчитывать необходимую площадь радиаторов.

В следующей статье рассмотрим, что такое искажения, и чем их измеряют.

Все вопросы в Форум, заходите.
Удачи.
Сэр Мурр

Согласование сопротивлений

Обычно вопросу согласования сопротивлений уделяют недостаточно внимания. Цель этого раздела состоит в том, чтобы описать в общих чертах принципы и практику согласования сопротивлений.

Входное сопротивление. У любого электрического устройства, для работы которого требуется сигнал, имеется входное сопротивление. Точно так же, как и любое другое сопротивление (в частности, сопротивление в цепях постоянного тока), входное сопротивление устройства есть мера тока, текущего по входной цепи, когда ко входу приложено определенное напряжение.

Например, входное сопротивление 12-вольтовой осветительной лампы, потребляющей 0,5 А, равно 12/0,5 = 24 Ом. Лампа является простым примером сопротивления, так как нам известно, что в ней нет ничего, кроме нити накаливания. С этой точки зрения входное сопротивление такой схемы, как усилитель на биполярном транзисторе, может казаться чем-то более сложным. На первый взгляд, наличие в схеме конденсаторов, резисторов и полупроводниковых p-n переходов делает определение входного сопротивления трудным. Однако любую входную цепь, какой бы сложной она не была, можно представить в виде простого импеданса, как это сделано на рис.2.18. Если UВХ – напряжение переменного входного сигнала, а IВХ – переменный ток, текущий по входной цепи, то входной импеданс равен

У большинства схем входной импеданс имеет резистивный (омический) характер в широком диапазоне частот, в пределах которого сдвиг по фазе между входным напряжением и входным током пренебрежимо мал. В этом случае входная цепь выглядит так, как показано на рис. 2.19, справедлив закон Ома и нет необходимости в алгебре комплексных чисел и в векторных диаграммах, применяемых к цепям с реактивными элементами.

Рис.2.18. Схема с парой входных клемм, иллюстрирующая понятие входного импеданса ZВХ

Важно отметить, однако, что из омического характера входного импеданса не обязательно следует возможность его измерения на постоянном токе; на пути входного сигнала могут находиться реактивные компоненты (например, разделительный конденсатор), которые несущественны в отношении переменного сигнала на средних частотах, но не позволяют проводить измерения во входной цели на постоянном токе. Исходя из сказанного, при дальнейшем рассмотрении будем считать, что импеданс носит чисто омический характер и Z=R.

Измерение входного сопротивления. Напряжение на входе легко измерить с помощью осциллографа или вольтметра переменного напряжения. Однако так же легко измерить переменный ток нельзя, в частности, в случае, когда входное сопротивление велико. Самый подходящий способ измерения входного сопротивления показан на рис.2.19.

Рис.2.19. Измерение входного сопротивления

Резистор с известным сопротивлением R включают между генератором и входом исследуемой схемы. Затем с помощью осциллографа или вольтметра переменного напряжения с высокоомным входом измеряются напряжения U1 и U2 по обе стороны резистора R.

Если IВХ – переменный входной ток, то, согласно закону Ома, на резисторе падает напряжение, равное U1 – U2 = RIВХ. Отсюда I ВХ = (U1 – U2)/R, R ВХ = U2 / R. Следовательно

. (2.22)

Если исследуемая схема является усилителем, то часто удобнее всего определять U1 и U2, выполняя измерения на выходе усилителя: U1 измеряется при непосредственном подключении генератора ко входу, а U2 – при последовательном включении со входом резистора R. Поскольку в выражении для RВХ присутствует только отношение U1/U2, коэффициент усиления не играет никакой роли. Предполагается, что при выполнении этих измерений напряжение на выходе генератора остается неизменным. Вот очень простой пример: если включение последовательно со входом резистора с сопротивлением 10 кОм вызывает уменьшение напряжения на выходе усилителя наполовину, то U1 /U2 = 2 и RВХ = 10 кОм.

Выходное сопротивление. Пример, дающий представление о выходном сопротивлении, такой: свет фар автомобиля чуть тускнеет при работе стартера. Большой ток, потребляемый стартером, вызывает падение напряжения внутри аккумулятора, в результате чего напряжение на его клеммах уменьшается и свет фар становится менее ярким. Это падение напряжения происходит на выходном сопротивлении аккумулятора, возможно, более известном как внутреннее сопротивление или сопротивление источника.

Расширим это представление, распространив его на все выходные цепи, включая цепи постоянного и переменного тока, у которых всегда имеется определенное выходное сопротивление, соединенное с источником напряжения. В применимости такого простого описания даже к самым сложным схемам убеждает правило, говорящее о том, что любую цепь с сопротивлениями и источниками, имеющую две выходные клеммы, можно заменить на последовательно включенные одно сопротивление и один источник. Здесь под словом «источник» нужно понимать идеальный компонент, вырабатывающий напряжение и продолжающий поддерживать это напряжение неизменным даже тогда, когда от него потребляется ток. Описание выходной цепи показано на рис. 2.20, где RВЫХ– выходной импеданс, а U – выходное напряжение холостого хода, то есть напряжение на выходе разомкнутой цепи.

Смотрите так же:  Технология прокладки провода сип

Рис.2.20. Эквивалентная схема выходной цепи

Обсуждая вопрос о входном и выходном сопротивлении, уместно обратить внимание на впервые появляющееся понятие: эквивалентная схема. Все схемы на рис. 2.18, 2.19 и 2.20 являются эквивалентными схемами. В них не обязательно отражены реальные компоненты и соединения в рассматриваемых устройствах; эти схемы являются удобным способом представления, который полезен для понимания того, как ведет себя то или иное устройство.

Рис. 2.20, показывает, что в случае, когда к выходным клеммам подключается резистор или входные клеммы другого устройства, часть напряжения источника U падает на внутреннем сопротивлении источника.

Измерение выходного сопротивления. Простой метод измерения выходного сопротивления следует из схемы на рис.2.20. Если выходные клеммы замкнуть накоротко, изменить текущий при этом ток короткого замыкания IКЗ и учесть, что он совпадает с током, текущим по сопротивлению RВЫХ в результате приложения к нему напряжения U, то получим:

Напряжение U, поставляемое в схему источником, измеряется на выходных клеммах в режиме «холостого хода», то есть при пренебрежимо малом выходном токе. Таким образом, выходное сопротивление легко можно получить как отношение напряжения холостого хода к току короткого замыкания.

Рассмотрев этот принципиальный метод определения выходного сопротивления, необходимо сказать, что на этом пути имеются препятствия, присущие измерению выходного тока короткого замыкания в большинстве случаев. Обычно при коротком замыкании нарушаются условия функционирования схемы и нельзя получить достоверные результаты; в отдельных случаях могут выйти из строя те или иные компоненты, не выдержав ненормально большую нагрузку. Простая иллюстрация неприменимости метода короткого замыкания: попробуйте измерить выходное сопротивление сети переменного тока! Несмотря на эти недостатки с практической точки зрения, использование этого метода оправдано при теоретическом выводе выходного сопротивления схемы и в дальнейшем он применяется в этой главе.

Практический способ измерения выходного сопротивления показан на рис.2.21. Здесь выходное напряжение холостого хода измеряется вольтметром или осциллографом с высокоомным входом, а затем выходные клеммы шунтируются нагрузкой с известным сопротивлением R. Уменьшенное выходное напряжение при подключенной нагрузке непосредственно определяется тем же измерительным прибором. Значение RВЫХ можно вычислить как отношение величины, на которую упало напряжение, к выходному току.

Рис.2.21. Измерение выходного сопротивления с использованием шунтирующего резистора

Если U – это выходное напряжение холостого хода, а U 1 – выходное напряжение на нагрузке R, то падение напряжения на RВЫХпри наличии нагрузки равно U- U 1 , выходной ток при наличии нагрузки равен U 1 /R, поэтому

Согласование сопротивлений для оптимальной передачи напряжения. В большинстве электронных схем рассматриваются сигналы, являющиеся напряжениями. В большинстве случаев, когда подключается одна часть схемы к другой, необходимо в максимальной степени передать напряжение при минимуме потерь. В этом и состоит требование максимальной передачи напряжения, обычно выполняющееся при согласовании сопротивлений. Рассмотрим с учетом этого критерия принцип согласования сопротивлений.

На рис.2.22 показаны два блока, соединенные друг с другом: для оптимальной передачи напряжения нужно, чтобы UВХ было почти равно U, насколько это возможно. Напряжение UВХ равно:

Рис.2.22. Иллюстрация согласования сопротивлений между двумя устройствами

Другими словами, для возможно лучшей передачи напряжения от одной схемы к другой выходное сопротивление первой схемы должно быть много меньше, чем входное сопротивление второй схемы; как правило, нужно, чтобы RВХ > 10RВЫХ. Именно по этой причине применяемые для тестирования приборы, такие как генератор, проектируются с малым выходным сопротивлением (типичное значение 1 МОм).

Рис.2.23. Зависимость выходного напряжения схемы от сопротивления нагрузки

Если условия оптимального согласования сопротивлений не соблюдаются и сигнал поступает на вход схемы с входным сопротивлением, сравнимым с выходным сопротивлением источника, то в самом общем случае будут происходить просто потери напряжения. Такая ситуация возникает, когда два усилительных каскада на биполярных транзисторах, подобные изображенному на рис. 11.5, соединены один вслед за другим (каскадно). Как входное, так и выходное сопротивление у такого каскада на биполярном транзисторе одного порядка (обычно несколько тысяч Ом), и это значит, что около 50% напряжения сигнала теряется на связи между каскадами. С другой стороны, усилитель на полевом транзисторе (рис.11.13) много лучше с точки зрения согласования сопротивлений: у него очень большое входное сопротивление и среднее по величине выходное сопротивление; при соединении таких каскадов один за другим потери сигнала ничтожно малы.

Имеются один или два случая, когда согласование сопротивлений нуждается в особом внимании, так как слишком малое сопротивление нагрузки влияет не только на коэффициент усиления напряжения, но также и на частотную характеристику. Это происходит, когда выходной импеданс источника не является чисто резистивным, а наоборот, представляет собой реактивное сопротивление, и поэтому частотная характеристика изменяется. Простым примером служит конденсаторный микрофон, у которого выходной импеданс выражается не в омах, а в пикофарадах, с типичным значением в районе 50 пФ. Для хорошего воспроизведения низких частот нужно, чтобы входное сопротивление усилителя было большим по сравнению с реактивным сопротивлением емкости 50 пФ на частотах вплоть до 20 Гц. Практически для этого требуется, чтобы входное сопротивление было порядка 200 МОм, что обычно обеспечивается усилителем на полевом транзисторе, смонтированным в корпусе микрофона.

Согласование сопротивлений для оптимальной передачи мощности. Хотя, как правило, критерием при согласовании сопротивлений служит максимальный перенос напряжения, бывают случаи, когда требуется передать максимум мощности. Не приводя математических расчетов, сообщим, что для схемы 2.22 максимум мощности в RВХдостигается при RВХ = RВЫХ. Этот результат известен как теорема о максимальной мощности: максимум мощности передается от источника в нагрузку, когда сопротивление нагрузки равно выходному сопротивление источника. Эта теорема справедлива не только для резистивных компонентов, но и для комплексных компонентов ZВХ и ZВЫХ. В этом случае требуется, чтобы помимо условия RВХ = RВЫХ, выполнялось также условие XВХ = –XВЫХ, то есть при емкостном характере одного импеданса другой импеданс должен иметь индуктивный характер.

Согласование сопротивлений для оптимальной передачи тока. Иногда требуется согласование сопротивлений, обеспечивающее максимальный ток во входной цепи. Обращаясь снова к рис. 2.22, можно увидеть, что максимум входного тока IВХ достигается в том случае, когда полное сопротивление в цепи выбирается возможно меньшим. Поэтому, при фиксированном RВЫХ следует стремиться к возможно меньшему значению RВХ. Эта довольно нестандартная ситуация прямо противоположна обычному случаю, когда требуется передавать напряжение.

ГЛАВА 3

ПАССИВНЫЕ RC-ЦЕПИ

Пассивные RC-цепи в схемотехнике имеют большое значение. Они применяются достаточно часто, поэтому рассмотрим подробно их функционирование. Кроме этого, в области высоких частот паразитные емкости элементов, которые присутствуют в аналоговых, импульсных, цифровых устройствах и линиях связи, начинают проявляться, действуя как фильтры нижних частот. Поэтому знание характеристик фильтров является важным при изучении курса электроники. Электрические цепи, содержащие в своем составе индуктивности, в области низких частот используются редко, поэтому такие цепи в данном разделе не рассматриваются.

Дата добавления: 2015-12-29 ; просмотров: 918 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Похожие статьи:

  • Пускатель магнитный 10а ip54 Пускатель ПМ12-010110, без теплового реле, нереверсивный, 10А, IP54, без кнопок Артикул / Модель: ПМ12-010110 Магнитные пускатели серии ПМ12 Российского производства, пожалуй, самые распространенные в нашей стране аппараты для […]
  • Кабель и провода журнал Онлайн журнал электрика Статьи по электроремонту и электромонтажу Навигация по записям Провода и кабели в системах автоматики В системах автоматики используют огромное количество кабелей и проводов различных по предназначению и […]
  • Провода со стальными жилами Провода и кабели в системах автоматики В системах автоматики применяют большое количество кабелей и проводов разных по назначению и устройству: кабели контрольные, кабели для сигнализации и блокировки, кабели управления, […]
  • Линия для производства провода Линия для производства провода Линия для производства проводов с пластмассовой изоляцией . инд.591.465 Линия состоит из: · Пресс червячный ЧП 32х25 · Ванна охлаждения I · Ванна охлаждения II (2 штуки) · Компенсатор (2 штуки) Диаметр […]
  • Измерение удельного электрического сопротивления грунта Как измерить удельное сопротивление земли Электрофизические свойства земли Электрофизические свойства земли, в которой находится заземлитель, определяются ее удельным сопротивлением. Чём удельное сопротивление меньше, тем благоприятнее […]
  • Аккумулятор на 380 вольт Инверторная система для дома 5 кВт Код товара: 0800070 Наличие: на удаленном складе в Москве по Москве — от 500 руб. по России — от 500 руб. самовывоз — по предзаказу Инверторная система бесперебойного питания UR-5000 […]