Электрические принципиальные схемы выпрямительных устройств

Оглавление:

Схемы простых выпрямителей для зарядки аккумуляторов

Первая конструкция. Выпрямитель (рис. 26) собран по мостовой схеме на четырех диодах Д1—Д4 типа Д305. Сила зарядного тока регулируется при помощи мощного транзистора 77, включенного по схеме составного триода. При изменении смещения, снимаемого на базу триода с потенциометра R1, изменяется сопротивление цепи коллектор — эмиттер транзистора. Зарядный ток при этом можно изменять от 25 мА до 6 А при напряжении на выходе выпрямителя от 1,5 до 14 В.

Резистор R2 на выходе выпрямителя позволяет устанавливать выходное напряжение выпрямителя при отключенной нагрузке. Трансформатор собран на сердечнике сечением 16 см2. Первичная обмотка рассчитана на включение в сеть с напряжением 127 В (выводы 1—2) или 220 В (выводы 1—3) и содержат 350+325 витков провода ПЭВ 0,35, вторичная обмотка — 45 витков провода ПЭВ 1,5. Транзистор 77 устанавливают на металлическом радиаторе, площадь поверхности которого должна быть не менее 350 см” с обеих сторон пластины при толщине ее не менее 3 мм.

Рис, 26. Принципиальная электрическая схема выпрямителя (первая конструкция)

Рис. 27. Принципиальная электрическая схема выпрямителя (вторая конструкция)

Вторая конструкция. Схема, приведенная на рис. 27, отличается от предыдущей тем, что с целью увеличения максимального тока до 10 А транзисторы 77 и Т2 включены параллельно. Смещение на базы транзисторов, изменением которого регулируется зарядный ток, снимается с выпрямителя, выполненного на диодах Д5—Д6. При зарядке 6-вольтовых аккумуляторов переключатель устанавливается в положение /, 12-вольтовых — в положение 2. Обмотки трансформатора содержат следующее количество витков: Іа—328 витков провода ПЭВ 0,85; 16 — 233 витка провода ПЭВ 0,63; II — 41+41 виток провода ПЭВ 1,87; III — 7+7 витков провода ПЭВ 0,63. Сердечник — УШ35 X 55.

Классификация полупроводниковых выпрямителей

Устройство, предназначенное для преобразования энергии источника переменного тока в постоянный ток называется выпрямителем. Выпрямитель может быть представлен в виде структурной схемы, представленной на рис. 1.

Охарактеризуем основные элементы схемы:

а) силовой трансформатор служит для согласования входного и выходного напряжения выпрямителя и электрического разделения отдельных цепей выпрямителя (т.е. разделяет питающую сеть и сеть нагрузки);

б) блок вентилей обеспечивает одностороннее протекание тока в цепи нагрузки, в результате чего переменное напряжение преобразуется в пульсирующее;

в) сглаживающий фильтр предназначен для уменьшения пульсации напряжения на нагрузке до требуемого значения;

г) стабилизатор напряжения , служащий для стабилизации среднего значения выпрямленного напряжения при колебаниях напряжения питающей сети или при изменении тока нагрузки.

Рис. 1 – Структурная схема выпрямителя

Соотношения между параметрами в выпрямительном устройстве во многом зависят от схемы выпрямления. Под схемой выпрямления понимают схему соединения обмоток трансформатора и порядок присоединения вентилей ко вторичным обмоткам трансформатора.

Схемы выпрямления (выпрямители) классифицируют по следующим основным признакам:

1. По числу фаз источника питания переменного напряжения различают выпрямители однофазного тока и выпрямители трехфазного тока.

2. По способу подключения вентилей ко вторичной обмотке трансформатора – нулевые схемы, с использованием нулевой (средней) точки вторичной обмотки трансформатора и мостовые схемы, в которых нулевая точка изолирована или вторичные обмотки трансформатора соединены в треугольник.

Схема однофазного мостового выпрямителя

Временные диаграммы напряжений и токов мостового выпрямителя

При положительной полярности напряжения на вторичной обмотке трансформатора (полярность указана без скобок) на интервале 0 – υ1 (0 – π), ток проводят диоды Д1 и Д2. Падение напряжения на диодах на интервале проводимости близко к нулю (вентили идеальные), поэтому к нагрузке прикладывается положительная полуволна напряжения вторичной обмотки трансформатора, создавая на ней напряжение ud = u2. На интервале υ1 – υ2 (π — 2π) изменится полярность напряжений u1 и u2 на обратную, что приведет к отпиранию диодов Д3 и Д4. При этом напряжение u2 будет подключено к нагрузке с той же полярностью, что и на предыдущем интервале. Следовательно, выходное напряжение ud при чисто активной нагрузке мостового выпрямителя имеет вид однополярных полу-волн напряжения (ud = u2).

3. По потребляемой нагрузкой мощности выпрямители делятся на маломощные (единицы кВт), средней мощности (десятки кВт) и большой мощности (Рпот > 100 кВт).

4. Независимо от мощности выпрямителя все схемы делятся на однотактные или однополупериодные и двухтактные (двухполупериодные).

Однотактные – это схемы, у которых ток протекает по вторичным обмоткам трансформатора один раз за период (полупериод или его часть). Все нулевые схемы являются однотактными.

Временные диаграммы однофазного выпрямителя с нулевым выводом при активной нагрузке

Двухполупериодное выпрямление в схеме достигается выполнением трансформатора с двумя вторичными обмотками. Обмотки соединены последовательно и имеют общую нулевую (среднюю) точку. Свободные концы вторичных обмоток трансформатора присоединены к анодам вентилей Д1 и Д2, а связанные между собой катоды вентилей образуют положительный полюс выпрямителя. Отрицательным полюсом выпрямителя является общая (нулевая) точка соединения вторичных обмоток. Таким образом трансформатор служит в этой схеме как для согласования величины питающего напряжения и напряжения на нагрузке, так и для создания средней (нулевой) точки. Очевидно, что напряжения на выводах вторичных обмотках трансформатора u1 и u2 (или ЭДС е1 и е2) одинаковы по величине и сдвинуты относительно нулевой точки на 180°, т.е. находятся в противофазе.

В каждый момент времени проводит ток тот диод, потенциал анода которого положителен. Поэтому на интервале 0 – π открыт диод Д1 и к сопротивлению нагрузки Rн (Rd) приложено фазное напряжение вторичной обмотки трансформатора ud = u2-1. Диод Д2 в интервале 0 – π закрыт, так как к нему приложено отрицательное напряжение. В конце интервала напряжения и токи в схеме равны нулю.

На следующем интервале работы схемы π — 2π напряжения на первичной и вторичной обмотках изменяют свою полярность на обратную, поэтому диод Д2 будет открыт, а диод Д1 – закрыт. Далее процессы в схеме выпрямления повторяются. Кривая выпрямленного напряжения ud состоит из однополярных полуволн фазного напряжения вторичной обмотки трансформатора. Форма тока нагрузки при чисто активной нагрузке повторяет форму напряжения. Диоды Д1 и Д2 проводят ток поочередно в течение полупериода.

5. По назначению:

а) маломощные выпрямители , как правило однофазные, используют в системах управления, для питания отдельных узлов электронной аппаратуры, в измерительной технике и др.;

б) выпрямители средней и большой мощности служат источниками питания промышленных установок.

6. Схемы выпрямления делятся на простые и сложные. К простым схемам относятся однофазные и трехфазные, нулевые и мостовые схемы. В сложных (или составных схемах) несколько простых схем соединяются последовательно или параллельно.

7. По виду (характеру) нагрузки. Для однофазных схем выпрямления характерны значительные пульсации выпрямленного напряжения. Для уменьшения пульсаций напряжения на нагрузке используют сглаживающие фильтры, выполняемые на основе реактивных элементов дросселей (L) и конденсаторов (С). Характер входной цепи сглаживающего фильтра совместно с нагрузкой определяют вид нагрузки выпрямителя. Различают работу выпрямителя на активную нагрузку (R – НГ), активно-индуктивную нагрузку (RL – НГ), активную нагрузку и емкостный фильтр (RC – НГ).

Общим для всех выпрямителей является их применение преимущественно при RL – НГ. Это объясняется тем, что маломощные выпрямители чаще всего работают LC – фильтром, а мощные выпрямители — с L – фильтром.

7. По способу управления различают неуправляемые и управляемые выпрямители.

Параметры и схемы выпрямителей

Выпрямитель — статическое устройство, служащее для преобразования переменного тока источника электроэнергии (сети) в постоянный. Выпрямитель состоит из трансформатора, вентильной группы и сглаживающего фильтра (рис. 1).

Трансформатор Тр выполняет несколько функций: изменяет напряжение сети Uвх до значения U1 необходимого для выпрямления, электрически отделяет нагрузку Н от сети, преобразует число фаз переменного тока.

Вентильная группа ВГ преобразует переменный ток в пульсирующий однонаправленный. Сглаживающий фильтр СФ уменьшает пульсации выпрямленного напряжения (тока) до значения, допустимого для работы нагрузки. Трансформатор Тр и сглаживающий фильтр СФ не являются обязательными элементами схемы выпрямителя.

Рис. 1. Структурная схема выпрямителя

Основными параметрами, характеризующими качество работы выпрямителя, являются:

средние значения выпрямленного (выходного) напряжения U ср и тока I ср,

частота пульсаций f п выходного напряжения (тока),

коэффициент пульсаций р, равный отношению амплитуды напряжения пульсаций к среднему значению выходного напряжения. Вместо коэффициента пульсаций р часто используют коэффициент пульсаций по первой гармонике равный отношению амплитуды первой гармоники выходного напряжения к его среднему значению,

внешняя характеристика — зависимость среднего значения выпрямленного напряжения от среднего значения выпрямленного тока,

к. п. д. η = P полезн / P потр = P полезн / ( полезн + Ртр + Рвг + Рф), где Ртр, Рвг, Рф — мощность потреь в трансформаторе, в вентильной группе и сглаживающем фильтре.

Работа выпрямителя (вентильной группы) основана на свойствах вентилей — нелинейных двухполюсников, пропускающих ток преимущественно в одном (прямом) направлении.

В качестве вентилей используют обычно полупроводниковые диоды. Вентиль, обладающий нулевым сопротивлением для прямого тока и имеющий бесконечно большое сопротивление для обратного тока, называют идеальным.

Смотрите так же:  Электропроводка паз 32054

Вольт-амперные характеристики реальных вентилей приближаются к в. а. х. идеального вентиля. Для работы в выпрямителях вентили выбирают по эксплуатационным параметрам , к которым относятся:

наибольший (прямой) рабочий ток I срmaх — предельно допустимое среднее значение выпрямленного тока, протекающего через вентиль при его работе в однополупернодной схеме на активную нагрузку (при нормальных для данного вентиля условиях охлаждения и температуры, не превышающей предельного значения),

наибольшее допустимое обратное напряжение (амплитуда) Uобрmaх — обратное напряжение, которое вентиль выдерживает в течение длительного времени. Как правило, напряжение Uобрmaх равно половине напряжения пробоя,

прямое падение напряжения Uпр — среднее значение прямого напряжения в однополупернодной схеме выпрямления, работающей на активную нагрузку при номинальном токе.

обратный ток Iобр — значение тока, протекающего через вентиль, при приложении к нему допустимого обратного напряжения,

максимальная мощность Рmах — максимально допустимая мощность, которая может быть рассеяна вентилем.

Наиболее распространенные схемы выпрямления показаны на рисунках , где приняты следующие обозначения: mс — число фаз напряжения сети, m1 — число фаз напряжения на входе схемы выпрямления (на выходе трансформатора), m = fп / fc — коэффициент, равный отношению частоты пульсации выходного напряжения к частоте напряжения сети. В качестве вентилей везде изображены полупроводниковые диоды.

Самые распространенные схемы выпрямления и формы в ыходного напряжения при работе на активную нагрузку :

Однофазная однополупериодная схема выпрямления ( mc=1, m1=1, m=1)

Однофазная двухполупериодная схема выпрямления ( мостовая схема выпрямления mc=1, m1=1, m= 2 )

Однофазная схема выпрямления с выводом средней точки ( mc=1, m1= 2 , m= 2 )

Трехфазная схема выпрямления с выводом нейтрали ( mc= 3 , m1= 3 , m= 3 )

Трехфазная мостовая схема выпрямления ( mc= 3 , m1= 3 , m= 6 )

Основные соотношения для схем выпрямления при работе на активную нагрузку Rн в предположении идеальности трансформатора и вентилей приведены в таблице :

Выпрямитель переменного тока

Выпрямитель электрического тока это устройство, преобразующее переменный ток в постоянный. Он обычно реализуется на полупроводниковых диодах. Простейший выпрямитель тока содержит трансформатор, выпрямительный диод и нагрузку. Его принципиальная схема приведена на рисунке 1.


Рисунок 1. Схема простейшего выпрямителя переменного тока

Приведенная на рисунке 1 схема построена по однотактной схеме выпрямления однофазного источника переменного напряжения. В этой схеме трансформатор позволяет преобразовать переменное напряжение до необходимого на выходе значения. Полупроводниковый диод пропускает ток только в одном направлении, и именно этот ток подается в нагрузку.

Выпрямленное напряжение Ud содержит полезную составляющую (постоянное напряжение U) и ряд гармоник частоты входного тока fсети, в том числе и основную гармонику с частотой входного напряжения. Амплитуды гармоник тока на выходе однотактного выпрямителя напряжения можно определить по коэффициентам Берга для угла отсечки, равного 90°. В идеальном случае гармонический спектр продолжается до бесконечности. В реальных устройствах он ограничивается фильтрующим действием паразитных элементов схемы.

Как уже обсуждалось в статье «Преобразование переменного тока в постоянный», в однотактных схемах постоянный ток нагрузки протекает через трансформатор, поэтому его сердечник подмагничивается. Понять процессы, происходящие в однотактном выпрямителе, помогут временные диаграммы, приведенные на рисунке 2.


Рисунок 2. Временные диаграммы токов и напряжений однополупериодного выпрямителя переменного тока

Как уже определялось при обсуждении схемы замещения трансформатора, ток в первичной обмотке трансформатора равен сумме тока его холостого хода (ixx) и переменной составляющей тока нагрузки, пересчитанной в первичную цепь (i2’). Форма тока в первичной обмотке (i1) трансформатора, входящего в состав однополупериодного выпрямителя, сильно отличается от синусоидальной. По этой причине подобная схема применяется достаточно редко.

В общем случае, при работе от многофазной сети переменного тока, у трансформатора есть m1 первичных обмоток, подключенных к различным фазам сети, и р фаз во вторичной цепи, которое называют пульсностью. Обычно m1p . Пульсность схемы определяется произведением

С точки зрения выражения (1) однопериодный выпрямитель тока, принципиальная схема которого приведена на рисунке 1, обладает пульсностью p = 1 · 1 = 1

В качестве примера выпрямителя тока с количеством фаз напряжения на выходе больше, чем на входе, можно привести двухфазный однотактный выпрямитель тока. Его принципиальная схема приведена на рисунке 3.


Рисунок 3. Принципиальная схема двухфазного однотактного выпрямителя тока

В данном случае используются две вторичных обмотки, включенных противофазно (обмотка с отводом посередине). В течение одного периода сети через каждую из них протекает один импульс тока i2’ и i2«. Благодаря диодам эти токи протекают через нагрузку в одном направлении, а через вторичные обмотки из-за противофазного включения — в разных направлениях. В результате форма тока в первичной обмотке не искажается и в сердечнике трансформатора не происходит подмагничивание постоянным током.

При этом с точки зрения выражения (1) в данной схеме пульсность p= k · q = 2 · 1 = 2 . Уменьшение времени, когда на нагрузке отсутствует входное напряжение, позволяет значительно уменьшить габариты сглаживающего фильтра. Временные диаграммы токов и напряжений двухфазного однотактного выпрямителя тока приведены на рисунке 4.


Рисунок 4. Временные диаграммы токов и напряжений двухфазного однотактного выпрямителя тока

При расчете сглаживающего фильтра очень важно знать частоту первой гармоники пульсаций. В схеме двухфазного однотактного выпрямителя она вдвое выше частоты сети ( ТП = Т/2 ) и может быть определена через пульсность

В качестве еще одного примера схемы выпрямления переменного тока рассмотрим двухтактный выпрямитель. Его еще называют однофазным диодным мостом. Принципиальная схема двухтактного выпрямителя переменного напряжения приведена на рисунке 5.


Рисунок 5. Принципиальная схема двухтактного выпрямителя переменного тока

Временные диаграммы токов и напряжений этого устройства совпадают с временными диаграммами двухфазного однотактного выпрямителя тока, приведенными на рисунке 4. В выпрямителе переменного тока на диодном мосте присутствует только одна вторичная обмотка, поэтому k = 1 . В то же самое время количество импульсов тока за период равно 2, поэтому пульсность в данной схеме равна p= k · q = 1 · 2 = 2 . По этой формуле полное название устройства, приведенного на рисунке 5, это двухтактный однофазный выпрямитель тока.

Частота первой гармоники пульсаций в данном случае, как и для двухфазного однотактного выпрямителя вдвое выше частоты сети. Тем не менее, области применения этих типов выпрямителей тока несколько отличаются. Для низковольтных устройств лучше подходит схема, показанная на рисунке 3, так как в ней падение напряжения происходит только на одном диоде. В ряде случаев это настолько важно, что можно пренебречь возрастанием стоимости трансформатора. В преобразователях AC/DC с относительно высоким выходным напряжением лучше применять схему, приведенную на рисунке 5, так как на ее диодах действует одинарное обратное напряжение (в схеме двухфазного однотактного выпрямителя — удвоенное, так как напряжение на нагрузке и напряжение обмотки трансформатора складываются).

Однофазный выпрямитель напряжения подходит только для схем с относительно небольшим потребляемым током. При необходимости получить значительные величины постоянного тока лучше использовать трехфазный выпрямитель тока. Его основным преимуществом является меньший уровень пульсаций выходного напряжения, что значительно снижает требования к сглаживающему фильтру. В качестве примера приведем схему трехфазного однотактного выпрямителя тока. Она показана на рисунке 6.


Рисунок 6. Принципиальная схема трехфазного однотактного выпрямителя переменного тока

Трехфазный однотактный выпрямитель напряжения состоит из трёхфазного трансформатора и трёх выпрямительных диодов VD1, VD2 и VD3. Нагрузка включается между точкой соединения катодов диодов и общей точкой вторичных обмоток трансформатора. Для пояснения принципов работы данного устройства на рисунке 7 приведены временные диаграммы токов и напряжений на вторичных обмотках трансформатора, на выходе схемы и на одном из выпрямительных диодов.


Рисунок 7. Временные диаграммы токов и напряжений трехфазного однотактного выпрямителя тока

Трехфазный однотактный выпрямитель переменного тока применяется в относительно низковольтных устройствах. На его выходе удается получить пульсацию напряжения около 13%. Это соответствует требованиям к качеству питания большинства устройств. по крайней мере при сварке постоянным током электрическая дуга не будет гаснуть, что позволит получить качественный шов сварки металла.

Если для питания устройства требуется большее напряжение по сравнению с предыдущим случаем, то можно применить трехфазную двухтактную схему выпрямления тока. Она позволяет снизить требования к сглаживающему фильтру. Принципиальная схема трехфазного двухтактного выпрямителя тока приведена на рисунке 8. Это устройство известно также под названием трехфазного выпрямительного моста или схемы Ларионова.


Рисунок 8. Принципиальная схема трехфазного выпрямительного моста

Напряжение на выходе схемы, приведенной на рисунке 8, можно представить как сумму двух трехфазных однотактных выпрямителей тока, работающих в противофазе. Его можно записать как Ud = Ud1 + Ud2 . Это позволяет увеличить количество фаз на выходе схемы и тем самым увеличить основную частоту пульсаций выходного напряжения. Это позволяет уменьшить требования к сглаживающему фильтру, а в ряде случаев вообще отказаться от него.

В схеме Ларионова на входе выпрямителя присутствуют три фазы обмотки, поэтому k = 3 и ее пульсность p= k · q = 3 · 2 = 6 . Отсюда можно определить основную частоту спектра пульсаций fП = 6 · fс . Временные диаграммы токов и напряжений в различных точках схемы трехфазного выпрямительного моста приведены на рисунке 9.


Рисунок 9. Временные диаграммы токов и напряжений трехфазного выпрямительного моста

Как видно из приведенных временных диаграмм уровень пульсаций на выходе рассмотренного трехфазного выпрямителя тока значительно меньше предыдущих вариантов выпрямителей и составляет 3,5%. Однако с помощью трехфазного трансформатора можно получить на выходе количество фаз больше шести. Это позволяет дополнительно уменьшить уровень пульсаций напряжения на выходе трёхфазного выпрямителя тока. Возможна реализация девяти, двенадцати, восемнадцати и более фазных выпрямителей. Повышение количества фаз позволяет уменьшить уровень пульсаций напряжения на выходе выпрямителя. В качестве примера рассмотрим схему двенадцатипульсного выпрямителя тока. Его схема приведена на рисунке 10.


Рисунок 10. Схема двенадцатифазного выпрямителя тока

В данной схеме применяется трехфазный трансформатор с двумя вторичными обмотками для каждой фазы. При этом одна группа вторичных обмоток включается по схеме «звезда», а другая — «треугольник». В результате напряжения на выходе каждой из групп вторичных обмоток оказывается сдвинутыми на 30° Для того, чтобы напряжения были равны, количество витков в каждой из групп вторичных обмоток отличаются в 1.73 раза. Благодаря последовательному включению постоянные напряжения на выходе диодных мостов суммируются Ud = Ud1 + Ud2 и на нагрузке действует напряжение с частотой пульсаций в 12 раз выше частоты сети и значительно меньшим по сравнению с предыдущими схемами уровнем пульсаций, равным 0.9%.

Дата последнего обновления файла 16.02.2018

  1. Сажнёв А.М., Рогулина Л.Г., Абрамов С.С. “Электропитание устройств и систем связи”: Учебное пособие/ ГОУ ВПО СибГУТИ. Новосибирск, 2008г. – 112 с.
  2. Алиев И.И. Электротехнический справочник. – 4-е изд. испр. – М.: ИП Радио Софт, 2006. – 384с.
  3. Гейтенко Е.Н. Источники вторичного электропитания. Схемотехника и расчёт. Учебное пособие. – М., 2008. – 448 с.
  4. Электропитание устройств и систем телекоммуникаций: Учебное пособие для вузов / В.М.Бушуев, В.А. Деминский, Л.Ф. Захаров и др. – М.,2009. – 384 с.
  5. Денисов А.И., Зволинский В.М., Руденко Ю.В. Вентильные преобразователи в системах точной стабилизации. – К.: Наукова думка, 1997. – 250 с.
Смотрите так же:  Как поменять провода аккумулятора

Вместе со статьей «Выпрямитель переменного тока» читают:

Типы выпрямителей переменного тока

Какие бывают выпрямители?

Ещё в начале ХХ века имел место очень принципиальный спор между корифеями электротехники. Какой ток выгоднее передавать потребителю на большие расстояния: постоянный или переменный? Научный спор выиграли сторонники передачи переменного тока по проводам высоковольтных линий от подстанции к потребителю. Эта система принята во всём мире и успешно эксплуатируется до сих пор.

Но большинство электронной техники и не только бытовой, но и промышленной питается постоянными напряжениями и это привело к созданию целой отрасли электрики – преобразование (выпрямление) переменного тока. После того как электронная лампа была забыта, главным элементом любого выпрямителя стал полупроводниковый диод.

Схемотехника выпрямителей весьма обширна, но самым простым является однополупериодный выпрямитель.

Однополупериодный выпрямитель.

Напряжение с вторичной обмотки силового трансформатора подаётся на один единственный диод. Вот схема.

Поэтому выпрямитель и назван однополупериодным. Выпрямляется только один полупериод и на выходе получается импульсное напряжение. Форма его показана на рисунке.

Схема проста и не требует большого количества элементов. Это и сказывается на качестве выпрямленного напряжения. При низких частотах переменного напряжения (например, как в электросети — 50 Гц) выпрямленное напряжение получается сильно пульсирующим. А это очень плохо.

Для того чтобы снизить величину пульсации выпрямленного напряжения приходится брать величину конденсатора С1 очень большую, порядка 2000 – 5000 микрофарад, что увеличивает размер блока питания, так как электролиты на 2000 — 5000 мкф имеют довольно большие размеры. Поэтому на низких частотах эта схема практически не используется. Зато однополупериодные выпрямители прекрасно зарекомендовали себя в импульсных блоках питания работающих на частотах 10 – 15 кГц (килогерц). На таких частотах величина ёмкости фильтра может быть очень небольшой, а простота схемы уже не столь сильно влияет на качество выпрямленного напряжения.

Примером использования однополупериодного выпрямителя может служить простой зарядник от сотового телефона. Так как зарядник сам по себе маломощный, то в нём применяется однополупериодная схема, причём как во входном сетевом выпрямителе 220V (50Гц), так и в выходном, где требуется выпрямить переменное напряжение высокой частоты со вторичной обмотки импульсного трансформатора.

К несомненным достоинствам такого выпрямителя следует отнести минимум деталей, низкую стоимость и простые схемные решения. В обычных (не импульсных) блоках питания многие десятилетия успешно работают двухполупериодные выпрямители.

Двухполупериодные выпрямители.

Они бывают двух схемных решений: выпрямитель со средней точкой и мостовая схема, известная, как схема Гретца. Выпрямитель со средней точкой требует более сложного в исполнении силового трансформатора, хотя диодов там используется в два раза меньше чем в мостовой схеме. К недостаткам двухполупериодного выпрямителя со средней точкой можно отнести то, что для получения одинакового напряжения, число витков во вторичной обмотке трансформатора должно быть в два раза больше, чем при использовании мостовой схемы. А это уже не совсем экономично с точки зрения расходования медного провода.

Далее на рисунке показана типовая схема двухполупериодного выпрямителя со средней точкой.

Величина пульсаций выпрямленного напряжения меньше чем у однополупериодного выпрямителя и величину конденсатора фильтра так же можно использовать гораздо меньшую. Наглядно увидеть, как работает двухполупериодная схема можно по рисунку.

Как видим, на выходе выпрямителя уже в два раза меньше «провалов» напряжения — тех самых пульсаций.

Активно применяется схема выпрямителя со средней точкой в выходных выпрямителях импульсных блоков питания для ПК. Так как во вторичной обмотке высокочастотного трансформатора требуется меньшее число витков медного провода, то гораздо эффективнее применять именно эту схему. Диоды же применяются сдвоенные, т.е. такие, у которых общий корпус и три вывода (два диода внутри). Один из выводов — общий (как правило катод). По виду сдвоенный диод очень похож на транзистор.

Наибольшую популярность приобрела в бытовой и промышленной аппаратуре мостовая схема. Взгляните.

Можно без преувеличения сказать, что это самая распространённая схема. На практике вы с ней ещё не раз встретитесь. Она содержит четыре полупроводниковых диода, а на выходе, как правило, ставится RC-фильтр или только электролитический конденсатор для сглаживания пульсаций напряжения.

О данной схеме уже рассказывалось на странице про диодный мост. Стоит отметить, что и у мостовой схемы есть недостатки. Как известно, у любого полупроводникового диода есть так называемое прямое падение напряжения (Forward voltage dropVF). Для обычных выпрямительных диодов оно может быть 1 — 1,2 V (зависит от типа диода). Так вот, при использовании мостовой схемы на диодах теряется напряжение, равное 2 x VF, т.е. около 2 вольт. Это происходит потому, что в выпрямлении одной полуволны переменного тока участвуют 2 диода (затем другие 2). Получается, что на диодном мосте теряется часть напряжения, которое мы снимаем со вторичной обмотки трансформатора, а это явные потери. Поэтому в некоторых случаях в составе диодного моста применяются диоды Шоттки, у которых прямое падение напряжения невелико (около 0,5 вольта). Правда, стоит учесть, что диод Шоттки не рассчитан на большое обратное напряжение и очень чувствителен к его превышению.

Большой интерес вызывает выпрямитель с удвоением напряжения.

Выпрямитель с удвоением напряжения.

Принцип удвоителя напряжения Латура-Делона-Гренашера основан на поочерёдном заряде-разряде конденсаторов С1 и С2 разными по полярности полуволнами входного напряжения. В результате между катодом одного диода и анодом второго диода возникает напряжение в два раза превышающее входное. Схема в студию:)

Стоит отметить, что данная схема применяется в блоках питания нечасто. Но её можно смело использовать, если необходимо вдвое увеличить напряжение, которое снимается со вторичной обмотки трансформатора. Это будет более логичным и правильным решением, чем перематывать вторичную обмотку трансформатора с целью увеличить выходное напряжение вторичной обмотки в 2 раза (ведь при этом придётся наматывать вторичную обмотку с вдвое большим числом витков). Так что, если не удалось найти подходящий трансформатор — смело применяем данную схему.

Развитием схемы стало создание умножителя на полупроводниковых диодах.

Умножитель напряжения.

Каждый диод и конденсатор образуют «звено» и эти звенья можно соединять последовательно до получения напряжения в несколько десятков киловольт. Конечно, для этого входное напряжение тоже должно быть достаточно большим.

На рисунке изображён четырёхзвенный умножитель и на выходе мы получаем напряжение в четыре раза превышающее входное (U). Эти выпрямители получили большое распространение там, где нужно получить высокое напряжение при достаточно малом токе. Например, по такой схеме были выполнены источники высокого напряжения в старых телевизорах и осциллографах для питания анода электронно-лучевой трубки.

Сейчас такие источники питания используются в научных лабораториях, в детекторах элементарных частиц, в медицинской аппаратуре (люстра Чижевского) и в оружии самообороны (электрошокер). При повторении подобных конструкций и подборе деталей, следует учитывать рабочее напряжение, как диодов, так и конденсаторов исходя из напряжения, которое вы хотите получить. Весь умножитель, как правило, заливается специальным компаундом или эпоксидной смолой во избежание высоковольтных пробоев между элементами схемы.

Для нормальной работы некоторых устройств как, например, люстры Чижевского необходимы достаточно высокие напряжения. Как считают специалисты, излучатель отрицательных аэроионов, эффективен только при напряжении не менее 60 киловольт.

Трёхфазные выпрямители.

Устройства, которые используются для получения постоянного тока из переменного трёхфазного тока, называются трёхфазными выпрямителями. Трёхфазные выпрямители в бытовой технике, конечно, не используются. Единственный прибор, который может использоваться в быту это сварочный аппарат. В качестве трёхфазных выпрямителей используются наработки двух известных электротехников Миткевича и Ларионова. Самая простая схема Миткевича называется «три четверти моста параллельно», что означает три силовых диода включенных параллельно через вторичные обмотки трёхфазного трансформатора. Схема.

Коэффициент пульсаций на нагрузке очень мал, что позволяет использовать конденсаторы фильтра небольшой ёмкости и малых габаритов.

Более сложной является схема Ларионова, которая называется «три полумоста параллельно», что это такое хорошо видно из рисунка.

В схеме используется уже шесть диодов и немного другая схема включения. Вообще схем трёхфазных выпрямителей достаточно много и наиболее совершенной, хотя редко употребляемой является схема «шесть мостов параллельно», а это уже 24 диода! Зато эта схема может выдавать высокое напряжение при большой мощности.

Трёхфазные мощные выпрямители используются в электровозах, городском электротранспорте (трамвай, троллейбус, метро), в промышленных установках для электролиза. Так же промышленные системы очистки газовых смесей, буровое и сварочное оборудование используют трёхфазные выпрямители.

Теперь вы знаете, какие бывают выпрямители переменного тока и сможете легко обнаружить их на принципиальной схеме или печатной плате любого прибора. А для тех, кто хочет знать больше, рекомендуем ознакомиться с книгой «Полупроводниковые выпрямители».

Электрические принципиальные схемы выпрямительных устройств

Совпадений найдено: 3383

Вы искали: принципиальн ая электрическ ая схем а выпрямителя sn

Файл-архив ›› Типовое схем ы принципиальн ые электрическ ие распределительных устройств напряжением 6- 750 кв подстанций и указания по их применению

1.1.1. Данная работа выполнена на основе положений «Норм техно-логического проектирования подстанций переменного тока, с высшим напряжением 35-750 кВ. (Издание -4-е)» и является практически составной частью этих Норм. С выходом этой работы аннулируется работа «Схемы принципиальн ые электрическ ие ОРУ напряжением 6-750 кВ подстанций» (407-ОЗ-456.87)

1.1.2. Работой устновлено минимальное количество типовых схем РУ, охватываших большинство встречающихся в практике слу чаев проектирования ПС и переключательных пунктов и позволяющих при этом достичь наиболее экономичных унифшированных решений.Для разработанного набора схем РУ выполняются типозые проектные решения компоновок сооружений, установки оборудования, устройств управления, релейной защиты, автоматики и строительной части.

Файл-архив ›› Схемы электрическ ие принципиальн ые для ячеек КРУ 6(10)кВ на переменном оперативном токе с применением устройства ТЭМП 2501. АЛЬБОМ 2 – 13590тм-т2

Типовая работа 13590ТМ выполнена в двух томах:
— 13590ТМ-т1 — для вакуумных выключателей: ВБП-10, ВБТЭ-10, ВБКЭ-10, ВБЭК-10;
— 13590ТМ-т2 — для вакуумного выключателя BB/TEL с БУ-12, исполнение 01.

В работе 13590ТМ-т2 представлены схем ы электрическ ие принципиальн ые управления, защиты, автоматики и сигнализации элементов РУ 6(10) кВ с вакуумным выключателем BB/TEL с БУ-12, исполнение 01 с использованием микропроцессорных устройств типа ТЭМП 2501, выпускаемых ОАО “ВНИИР“.

Файл-архив ›› Выполнение электрическ их схем по ЕСКД: Справочник. Усатенко С.Т.

В справочнике изложены основные положения Единой системы конструкторской документации (ЕСКД), общие правила выполнения схем , правила выполнения чертежей изделий, изготовляемых с применением электрическ ого монтажа. Приведены условные графические обозначения элементов электрическ их схем , что в значительной степени упрощает поиск необходимой информации.

Рассчитан на инженерно-технических работников, связанных с выполнением электрическ их схем , эксплуатацией электротехнических и радиотехнических устройств и электронно-вычислительной техники, а также студентов вузов соответствующих специальностей и радиолюбителей.

Новости ›› Специалистами НТЦ Механотроника разработан Альбом принципиальн ых электрическ их схем РЗА для объектов распределения 6(10) кВ, выполненных на постоянном оперативном токе

Альбом содержит принципиальн ые решения по организации цепей вторичной коммутации распределительных устройств напряжением 6(10) кВ, выполненных на постоянном оперативном токе напряжением =220 В и с применением блоков БМРЗ-15х, БМРЗ-12х. В альбоме рассмотрено применение вакуумных выключателей различных производителей.

Книжная лавка ›› Тепловые электрическ ие станции. Схемы и оборудование: Учебное пособие

Файл-архив ›› 8208тм- 1Т. Правила выполнения электрическ их схем управления и автоматики ( вторичных соединений). Руководящие указания

Целью настоящей работы является систематизация материлов пообщим принципам выполнения схем управления и автоматики (вторичных соединений).

Смотрите так же:  Забить заземление

В работе содержатся указания и рекомендации, выполненные на основании действующих стандартов, с учетом специфики выполнения электрическ их схем вторичных соединений для энергетических объектов (подстанций энергосистем).

Работа предназначена для проектировщиков, занимающихся разработкой схем управления и автоматики (вторичных соединений) подстанций.

Основы релейной защиты ›› РЕЛЕ СОПРОТИВЛЕНИЯ НА ДИОДНЫХ СХЕМАХ СРАВНЕНИЯ АБСОЛЮТНЫХ ЗНАЧЕНИЙ ДВУХ ЭЛЕКТРИЧЕСКИХ ВЕЛИЧИН

Принципы выполнения. Полупроводниковые PC, основанные на сравнении абсолютных значений двух электрическ их величин, обычно выполняются посредством сравнения этих величин после их выпрямления диодными выпрямителя ми. В качестве сравниваемых величин служат напряжения U1 и U2,образованные из UIр по (11.14). Принцип устройства и работы PC, построенных на сравнении двух выпрямленных напряжений, поясняется схем ой на рис.11.16, уточняющей схем у на рис.11.15 в части выполнения структуры УФ и схем ы сравнения. Реле состоит из суммирующих устройств 1 и 2,формирующих напряжения U1 и U2 по (11.14), двухполупериодных выпрямителей на полупроводниковых диодах 3 и 4,образующих схем у сравнения 5 на балансе напряжений или токов, и реагирующего органа 6, выдающего сигнал о срабатывании PC [52, 53].

Основы релейной защиты ›› Принципиальная схем а (Э3)

Принципиальная схем а является наиболее полной электрическ ой схем ой изделия, на которой изображают все электрическ ие элементы и устройства, необходимые для осуществления и контроля в изделии заданных электрическ их процессов, все связи между ними, а также элементы подключения (разъемы, зажимы), которыми заканчиваются входные и выходные цепи. На схем е могут быть изображены соединительные и монтажные элементы, устанавливаемые в изделии по конструктивным соображениям.

Электрические элементы на схем е изображают условными графическими обозначениями, начертание и размеры которых установлены в стандартах ЕСКД (см. разд. 2). Элементы, используемые в изделии частично, допускается изображать не полностью, а только используемые части.

Основы релейной защиты ›› СХЕМЫ СРАВНЕНИЯ ДВУХ ЭЛЕКТРИЧЕСКИХ ВЕЛИЧИН

Схемы сравнения двух абсолютных значений электрическ их величин. Схемы сравнения абсолютных значений получили распространение в ИО, где сравниваются выпрямленные напряжения |UI| и |UII|. Применяются две схем ы сравнения: на равновесии сравниваемых напряжений или на балансе токов, пропорциональных сравниваемым напряжениям (рис.2.61).

В схем е сравнения на равновесии напряжений (рис.2.61, а) выпрямители VS1 и VS2 соединяются одноименными полюсами, а в рассечку провода включается реагирующий орган РО. Под влиянием разности напряжений |UI| – |UII| в РО появляется ток IРО. При |UI| > |UII| ток IРО имеет положительный знак, и РО действует. Резисторы R1 и R2 шунтируют выпрямители и образуют контур с малым сопротивлением, по которому проходит ток IVS помимо выпрямителей, представляющих большое сопротивление для токов обратного направления.

Файл-архив ›› Принципиальные схем ы вторичной коммутации подстанции 35/ 10 кВ

Принципиальные схем ы вторичной коммутации подстанции 35/10кВ с поясняющими схем ами и полными спецификациями вторичного оборудования. Схемы выполнены с помощью графического редактора Microsoft Visio.

В сборник схем к подстанции входят следующие схем ы:

1. Принципиальная исполнительная схем а газовой защиты Т-1

2. Принципиальная исполнительная схем а цепей защиты Т-1 — на двух листах

3. Шкаф ввода-10кВ Т-1. Схема электрическ ая принципиальн ая

Книжная лавка ›› Электрическое и электромеханическое оборудование. Гриф МО РФ

Основы релейной защиты ›› Схема соединений (Э4)

Схема соединений определяет конструктивное выполнение электрическ их соединений элементов в изделии. На схем е изображают все устройства и элементы, входящие в состав изделия, их входные и выходные элементы (соединители, платы, за жимы и т. п.) и соединения между ними. Устройства изображают в виде прямоугольников или упрощенных внешних очертаний, элементы — в виде условных графических обозначений, установленных в стандартах ЕСКД, прямоугольников или упрощенных внешних очертаний. Внутри прямоугольников или упрощенных внешних очертаний, изображающих элементы, допускается помещать их условные графические обозначения, а для устройств — их структурные, функциональные или принципиальн ые схем ы.

Входные и выходные элементы изображают условными графическими обозначениями. Расположение изображений входных и выходных элементов или выводов внутри условных графических обозначений устройств и элементов должно примерно соответствовать их действительному расположению в устройстве или элементе.

Основы релейной защиты ›› 15-11. Особенности проверки электрическ их характеристик схем защиты на переменном оперативном токе

а) Схема защиты с дешунтированием токовых цепей

В защитах с дешунтированием токовых цепей источником оперативного тока являются трансформаторы тока. Поэтому необходимо проверить, что ток срабатывания промежуточных реле, реле времени, электромагнитов отключения меньше тока срабатывания пусковых токовых реле. На основании опыта эксплуатации принимают, что ток срабатывания промежуточных реле и реле времени должен быть не более 80—90% тока срабатывания пусковых реле, а ток срабатывания электромагнитов отключения не более 70—80% тока срабатывания пусковых реле [Л.90].

Проверка отключающих катушек производится точно так же, как и в схем ах с постоянным оперативным током. Дополнительно при новом включении проверяется зависимость сопротивления катушки от проходящего по ней тока при поднятом и опущенном сердечнике. Эти данные необходимы для определения нагрузки на трансформаторы тока.

Файл-архив ›› Ртутные выпрямители. Фингер А. А. Библиотека электромонтера

В брошюре изложен принцип действия ртутных выпрямителей, приведены схем ы выпрямления и даны основные соотношения, имеющие место при работе этих схем . Рассмотрены конструкции современных ртутных выпрямителей, даны их классификация и параметры.
Брошюра предназначена для широкого круга электромонтеров, бригадиров и мастеров, занятых монтажом и эксплуатацией установок со ртутными выпрямителя ми. Библиотека электромонтера. Выпуск 149.

1. Принцип действия ртутного вентиля
2. Типы ртутных вентилей
3. Вспомогательные устройства
4. Обратные зажигания
5. Конструкция ртутных выпрямителей
6. Схемы ртутного выпрямления.
7. Основные соотношения электрическ их величин в выпрямительных схем ах
8. Элементы ртутно-преобразовательных агрегатов

Основы релейной защиты ›› В-1 Основные виды и схем ы распределительных электрическ их сетей

Распределительные сети предназначены для передачи электроэнергии потребителям и состоят из линий электропередачи, питающих ряд трансформаторных подстанций, или вводов к электроустановкам потребителей, а также из трансформаторных подстанций и распределительных пунктов [1,2].

Файл-архив ›› Защиты от замыканий на землю в электрическ их ceтях 6- 10 кВ. Шуин В.А. Гyceнкo А. В.

В книге приведены сведения об электрическ их величинах, используемых для действия защит от замыканий на землю. Рассмотрены принципы выполнения устройств защиты и сигнализации замыканий на землю. Приведены структурные и принципиальн ые схем ы устройств защиты и сигнализации замыканий на землю. Даны рекомендации по применению этих устройств в сетях с различными режимами заземления нейтрали, по выбору их параметров срабатывания.

Для специалистов служб релейной защиты и автоматики энергocистем и промпредприятий, занимающихся эксплуатацией кабельных и воздушных электрическ их сетей 6-10 кВ, а также студентов высших и средних учебных заведений.

Основы релейной защиты ›› Общие правила выполнения схем

Схема — это графический конструкторский документ, на котором показаны в виде условных изоображений или обозначений составные части изделия и связи между ними.

Схемы применяют при изучении принципа действия механизмов, машин, приборов, аппаратов, при их наладке и ремонте, монтаже трубопроводов и электрическ их сетей, для уяснения связи между отдельными составными частями изделия без уточнения особенностей их конструкции.

Схемы входят в комплект конструкторской документации и содержат вместе с другими документами необходимые данные для проектирования, изготовления, сборки, регулировки, эксплуатации изделий.

Основы релейной защиты ›› Буквенные коды наиболее распространенных элементов в электрическ их схем ах

А — устройства, блоки
Комплектные устройства (панели, пульты, шкафы, ящики) А
Усилители А
Регуляторы АА
Регуляторы тока АА

Файл-архив ›› Схемы приводов выключателей и коммутационных аппаратов напряжением 35 — 750 кВ. Типовые материалы для проектирования. Типовой проект 407-0-172.87

В настоящем альбоме приведены схем ы электрическ ие принципиальн ые и соединении приводов масляных выключателей 35- 220кВ, и шкафов управления и распределительных для воздушныхвыключателей 35- 750 кВ, электродвигательных приводов разъединителей 110-750кВ, а также приводов отделителей и короткозамыкателей 35 — 220 кВ.
Шкафы распределительные типа ШР, управления выключателями воздушных выключателей ВВУ, ВВБК, ВВД, ВВДМ, ВНВ, ВВ
Шкафы распределительные типа ШРЭ-1, ШРЗ-Т1, ШРН выключателей ВЭК- 110, ВВБТ- 110 ( 220), ВВБТ- 110 ( 220)
Шкаф управления фазы выключателя ВБК- 110, ВВБТ- 110 ( 220), ВВБК- 220 ( 500), ВВД- 220, ВВДМ- 330, ВВ, ВНВ и ВО, ВВБ- 750, ВЭК- 110
Шкафы распределительный типа ШР выключателя- отключателя ВО- 750кВ
Привода типа ШПЭ- 35, ШПВ- 35, ПП- 67, ШПЭ- 12 для выключателей С-35, С-35М
Привод типа ПЭМУ- 800 выключателя ВЭМУ- 35
Привод пружинный типа ППРК- 1400 выключателя ВМТ
Привод пружинный выключателя ММО
Привод типа ПРО-1 отделителя и типа ПРК-1 короткозамыкателя 35- 220кВ
Привод ПД-5 и ПДП-2 разъеденителей

Новости ›› В энергетику возвращается бартер: Таджикистан включил Урал в электрическ ую схем у

Таджикистан предлагает оплатить задолженность в $10 млн перед российской Сангтудинской ГЭС-1 поставками своей энергии на Урал. Оператор достройки станции «Интер РАО» считает такую схем у проблематичной, но готов рассмотреть варианты.

Эксперты считают импорт энергии в Россию неконкурентоспособным, но возможным при отсутствии других схем погашения долга, пишет сегодня «Коммерсантъ».

Похожие статьи:

  • Схемы электрические ваз 21093 Схемы электрические ваз 21093 Представлен бесплатный справочный материал по электрооборудованию отечественного автомобиля ВАЗ-21093. В том числе блок реле и предохранителей, с указанием силы тока и функций защиты. Электрика ВАЗ выполнена […]
  • Электрические схемы автомобилей ваз 2114 Схема ваз 2114 Для ваз 2114 предусмотрено огромное количество схем. Все они предназначены для того, чтобы провести тюнинг своими руками как можно быстрее и безболезненно. Водители – народ прямой: если дело дрянь, то вы никогда не […]
  • Т-16 электропроводка Т-16 электропроводка Трактор Т-16. Электросхема трактора Трактор Т-16 оснащен электрическим оборудованием, согласно схеме, предназначенным для пуска дизеля, питания электрических приборов и устройств, обеспечения возможности работы в […]
  • Электрические схемы сандеро Электросхемы ВА GR NO SA CY Прозрачный или белый BE JA OR VE BJ МА RG VI КАК ЧИТАТЬ ПРИНЦИПИАЛЬНУЮ СХЕМУ 1 - Модельный ряд , 2- Критерии выбора схемы, 3 - Текущий модельный год, 4 - Цвет разъема, 5 - Схема разъема, 6 - Схема […]
  • Электрические схемы бмв 19. Принципиальные электрические схемы Поскольку невозможно в данном Руководстве привести все принципиальные схемы за каждый год выпуска, ниже приводятся наиболее типичные схемы и те, которые бывают необходимы чаще всего. Прежде чем […]
  • Электропроводка matiz 41.1.2 Схема электропроводки A — автомобиль, оборудованный системой «Дневной свет» 1 — блок управления электроникой кузова 2 — приборная панель 3 — блок управления системы отопления, вентиляции и кондиционирования 4 — функциональный […]