Электрические схемы сирены

Электрические схемы сирены

Данный проект представляет собой многотональную сирену на основе микросхемы UM3561. В отечественных магазинах она встречается не часто, но если вам посчастливилось где-то её достать, и вы не знаете куда применить эту деталь — вот даташит и схема подключения:

Схема сирены на микросхеме UM3561

Технические характеристики и детали

  • Вход питания 6 В постоянного тока / 200 мА
  • Выход — динамик 8 Ом / 0,5 Вт
  • Два переключателя выбора и воспроизведения различных тонов
  • Выключатель питания
  • Контакты подключения питания и выхода на динамик
  • Светодиодный индикатор подачи питания
  • Габариты платы 42 x 64 мм

Каждая позиция переключателя будет генерировать свой звуковой эффект:

  1. Полицейская сирена
  2. Пожарная сирена
  3. Скорая помощь
  4. Звук пулемета

Звучание сирены

Данная сирена воспроизводит с помощью динамика различные звуковые эффекты — сирена, стрельба и так далее. Всё построено на базе UM3561 и аудио усилителя LM386, чтобы увеличить уровень звука, который с самой UM3561 выходит слишком слабый.

Как видите, это готовый блок для установки в сигнализации, электронные игрушки, сигналы вызова и так далее. Понятно, что на маленькой 8-выводной микросхеме это сделать проще, чем ставить несколько обычных цифровых микросхем общего применения или транзисторах. Далее можете почитать про ещё одно устройство для создания звуковых эффектов.

Звуковая сирена

Представляю вашему вниманию простую схему звуковой сирены без использования микросхем и транзисторов. Звуковая сирена предназначена для оповещения людей и сигнализации.

На рисунке ниже показана электрическая принципиальная схема звуковой сирены. Для создания колебаний тока звуковой частоты в катушке динамика ГД1 сопротивлением 8 ом служит схема релаксационного генератора, собранная на динисторе VS1, конденсаторе C2 и резисторе R1. Релаксационный генератор создаёт несинусоидальный импульсный переменный ток. Резистор R1 в схеме включён последовательно с конденсатором C2, параллельно которому подключены последовательно соединённые динистор VS1 и динамик ГД1.

Данная схема функционирует следующим образом. Конденсатор C2 постепенно заряжается через резистор R1, заряд на нём увеличивается, а, значит, увеличивается и напряжение на его обкладках, так как из курса физики известно, что напряжение на обкладках конденсатора прямо пропорционально заряду конденсатора и обратно пропорционально его ёмкости. Динистор является полупроводниковым прибором с тремя p-n переходами и в обычном состоянии не проводит электрический ток. Он открывается, то есть начинает проводить ток, при определённом напряжении, называемом пробивным. Напряжение на конденсаторе C2 увеличивается до тех пор, пока оно не становится равным пробивному напряжению для динистора VS1. После этого динистор VS1 отпирается, и конденсатор C2 резко разряжается через него и последовательно с ним соединённую обмотку динамика ГД1. По мере разряда напряжение на конденсаторе C2 падает и динистор VS1 запирается. Конденсатор C2 снова начинает заряжаться и цикл генерации колебаний повторяется.

Частота колебаний, создаваемых генератором, или тон звучания сирены, определяется по формуле:
f=1/(RC∙ln(U/(U-Uд))),
где R – сопротивление резистора R1, С – ёмкость конденсатора C2, U – напряжение питания релаксационного генератора, Uд – пробивное напряжение динистора.

В принципе, для настройки нужного тона звучания сирены можно менять все три ключевых для работы схемы параметра: ёмкость конденсатора C2, значение сопротивления резистора R1 и пробивное напряжение динистораVS1. Но для создания колебаний тока в обмотке динамика с мощностью, достаточной для формирования довольно громкого звука и в то же время безопасной для работоспособности динамика, значения ёмкости конденсатора C2 и пробивного напряжения динистора VS1 выберем определёнными и для настройки частоты колебаний соответственно изменять их не будем. В данном случае оптимальны следующие значения: ёмкость C2 будет 1 мкФ, пробивное напряжение динистора VS1 будет 56 вольт, которое соответствует динистору марки КН102Г. Таким образом, настройка необходимой частоты колебаний в рассматриваемой схеме может осуществляться с помощью подбора значения сопротивления резистора R1. В приведённой схеме используется резистор с сопротивлением 5,6 кОм с рассеиваемой мощностью 10 Вт. Для выбранного сопротивления резистора частота звучания звуковой сирены будет приблизительно равна 896 Гц (при напряжении 310 вольт после выпрямления двухполупериодным выпрямителем питающего сетевого напряжения в 220 вольт). Чем меньше сопротивление данного резистора, тем выше получается тон создаваемого в динамике звука, так как процесс заряда конденсатора C2 при меньшем сопротивлении R1 происходит быстрее и открывание динистора происходит чаще. Соответственно, чем выше сопротивление R1, тем тон звука ниже. Рассеиваемая мощность резистора R1 выбирается тем больше, чем ниже его сопротивление.

Питание схемы релаксационного генератора осуществляется постоянным током, который получается путём выпрямления переменного сетевого напряжения 220 вольт двухполупериодным выпрямителем на диодах VD1-VD4 марки Д226Б. Для сглаживания пульсаций выпрямленного напряжения служит электролитический конденсатор C1 ёмкостью 150 мкФ на 400 вольт. Таким образом, устройство включается напрямую в электрическую сеть напряжением 220 вольт и не требует понижающих силовых трансформаторов.

Минимум деталей, отсутствие сложно устроенных компонентов делает предложенную схему звуковой сирены надёжной, недорогой и простой в сборке и настройке. Кроме того, данное устройство можно использовать как квартирный звонок для слабослышащих людей.

Литература
1. Джонс М. Электроника – практический курс. – М.: Техносфера, 2006. – 512 с.
2. Гальперин М.В. Электроника и электротехника. – М.: Форум, 2009. – 480 с.

Электрические схемы сирены

Громкая сирена на транзисторах

Автор: Игорь Парунин, [email protected]
Опубликовано 22.08.2012.
Создано при помощи КотоРед.

Статья посвящается начинающим Радиокотам,
возраст которых не многим больше возраста виновника торжества…
а сама схема давно прижилась на разных должностях и объектах…

В сети большое количество сирен. Авторы не щадят таймеров, логики, спец микросхем и даже микроконтроллеров. В ход идут мощные пезо-излучатели и импульсные трансформаторы, и это правильно! Только вот что делать, если их нет, или не хватает уверенности в своих силах? На самом деле, громкую сирену, с красивым плавным тональным переходом, можно собрать на «рассыпухе». Которую можно выковырять из отслуживших свой срок телеков, видиков или еще чего. Для схемы сирены не понадобится ни одной современной или специализированной микросхемы, а только самые распространенные транзисторы. И звук этой сиренки, будет ничуть не хуже звука новенькой китайской, а может даже и лучше — все зависит от вас.

Схема содержит два генератора. Первый для генерации тона, второй для изменения тона, или как говорят спецы — модулирования. Один из них наверняка вы узнали, это мультивибратор (VT3, VT4, VT5). Правда… он не совсем обычный, он не симметричный, и одно плечо содержит целых два транзистора. Не пугайтесь все верно, это так называемый, в посвященных кругах, транзистор Дарлингтона — составной транзистор для усиления тока. А усиливать ток надо, чтобы было громко. Этот генератор как раз и ответственен за тон.

А вот что же это за абракадабра из транзисторов VT1, VT2? Это тоже генератор, и называется он – релаксационный. Генерирует он хитрое напряжение в форме «пилы». Нужно оно, для управления тоном главного задающего генератора. Что ж это за странная схема такая — спросите вы — транзисторы соединены как будто наугад! Подозрения ваши напрасны, это аналог однопереходного транзистора, легендарного КТ117А, выпускавшегося в СССР. Который я уверен не раз побывал в околоземном космическом пространстве, а может быть даже и дальше. Но это, как вы сами понимаете – секретно.
Итак, как же работает эта сладкая парочка? Работу однопереходного транзистора, объяснять по-научному я не стану, а попробую доходчиво – «на пальцах». В этой схеме транзистор похож на плотину, и высота этой плотины равна шести метрам, точней в нашем случае — шести вольтам. Этот потенциал, образуется на делителе напряжения, состоящем из резисторов R3, R4 и поступает на вторую базу (б2) однопереходного транзистора. Конденсатор С2 — это “водохранилище”, которое постепенно наполняется ручейком электрического тока, протекающего через резистор R1. И когда уровень заряда (воды) в конденсаторе (водохранилище) достигает высоты “плотины” в шесть вольт, она прорывается, и сливает все то, что накопилось на конденсаторе, через эмиттер транзистора (э), первую базу (б1) и резистор R2, на землю. Когда заряд конденсатора иссякнет, транзистор закрывается, (плотина вновь чудесно восстанавливается) и процесс заряда конденсатора повторяется вновь. Таким вот образом, форма напряжения на конденсаторе C2, будет напоминать зубья пилы, а на резисторе R2 расчески.

Стоит так же отметить, почему порог выбран именно 6 Вольт, а не три или восемь, к примеру. Связано это с величиной под названием постоянная времени RC цепи τ (тау), которая измеряется в секундах и равна произведению R1 и С2 (подставленных в Омах и Фарадах соответственно, и это важно, а то вместо секунд получите годы, поэтому помним о нано, кило и микро…). Что же происходит за это магическое время «тау»? А вот что… за это время наш конденсатор успевает зарядиться на целых 63,2% от напряжения питания (Uпит). Ну и не трудно посчитать, сколько ж это вольт – 0,632×12=7,6 Вольта, а порог составляет 0,5×Uпит, 6 Вольт. То есть, порог «плотины» находится как раз примерно там, где будет наш заряд через время «тау». Таким образом, период «вяков», будет равен этому самому «тау», и его легко вычислить, перемножив R1 и С2. Вообще, попадание в интервал времени «тау» это хорошо. к этому стремятся при расчете времязадающих цепей и не только. Почему — вопрос отдельный, просто запомните, что это — хорошо.

Да! И если вам посчастливится найти этот редкий, благородный (да-да он позолоченный и это не шутка), транзистор, то непременно используйте его, включив вместо транзисторов VT1 и VT2, как показано на рисунке 2. Ну а если не найдете, не отчаивайтесь! В схеме замещающей однопереходный транзистор, в нашем случае, будут работать практически все маломощные транзисторы. Только когда будете выбирать, не забывайте про их проводимость.

Смотрите так же:  Характеристики узо a ac

Вторая пара на нашей танцплощадке — транзисторы VT4 и VT5, это составной транзистор или транзистор Дарлингтона. С ними все гораздо проще, но это не умоляет их значения. Что же это за транзистор такой? Это объединение двух транзисторов с целью увеличения коэффициента усиления по току. Это означает, что небольшого тока базы достаточно для того, чтобы транзистор открылся, и ток коллектора составил весьма значительную величину, в сотни, в тысячи раз больше тока базы. Коэффициент усиления β, больше теоретический или академически, а на практике используют h21э — статический коэффициент передачи тока в схеме с общим эмиттером, и в нашем случае, эти два понятия равны. Результирующий коэффициент усиления равен произведению коэффициентов каждого транзистора. Соединив таким образом два транзистора, с усилением по 25, получим один, но с усилением аж в 625! И это означает, что ток коллектора может быть в 625 раз больше тока базы.
Ну и как не трудно догадаться, транзисторы в этой паре разные по мощности. Первый, VT4, маломощный, но обладающий сравнительно большим коэффициентом. Второй, VT5, наоборот, коэффициент передачи не высок, а максимальный ток коллектора весьма внушителен.
Еще, эту прекрасно дополняющую друг друга пару, дополняют диодом, включенным параллельно переходу «коллектор-эмиттер» мощного транзистора в обратном направлении. Делается это для его защиты от импульсов обратного напряжения. Кто это такие и откуда они берутся, вы наверняка со временем узнаете. А называется он – рекуперационный диод (жутковато, да?).
Такой транзистор используется в схемах, работающих с большими токами. Например, в схемах стабилизаторов напряжения, выходных каскадах усилителей мощности, в схемах управления шаговыми двигателями.
Ну и очень может так случиться, что вам посчастливится найти уже готовый составной транзистор. Например: КТ972, КТ829 или КТ827. В этом случае, не колеблясь, применяйте его по назначению, как показано на рисунке 3. При использовании предложенной в конце статьи платы, составной транзистор необходимо поставить вместо VT5, а вместо транзистора VT4 запаять перемычку база — эмиттер.

Всем хороши составные транзисторы Дарлингтона, только вот греются они, зараза, сильно. Связано это с тем, что падение напряжения на открытом на всю катушку составном транзисторе, больше чем на обычном, не составном, и составляет чуть ли не два (а то и больше) вольта. А при больших токах, это приводит к нагреву транзистора. Поэтому, если вы вдруг решите выжать из схемы максимум ее возможностей, позаботьтесь об, ну хоть каком-нибудь, теплоотводе.

Ну и пару слов о транзисторе VT3, потому как он тоже включен как-то странно. На самом деле странного тут ничего нет. Дело в том, что, у этого транзистора, есть еще и персональная задача, помимо общественной работы в генераторе тона. При помощи этого транзистора генератор останавливают. А запускать его не надо, он сам… Происходит это в момент срабатывания однопереходного транзистора (VT1, VT2). В тот самый момент, когда «прорывается» наша «плотина», помните? В этот момент, через резистор R2, протекает ток разряда конденсатора С2 и на резисторе появляется короткий положительный импульс напряжения. Этот импульс, прикладывается к переходу «база-эмиттер» транзистора VT3 в обратном направлении. Тем самым закрывая его принудительно, если он был в этот момент времени открыт, или, не позволяя ему открыться, если он был закрыт. В результате, генератор на короткое время остановится, и мы услышим отчетливые «вяки», отделенные друг от друга короткой паузой.

Так! Давайте сориентируемся на местности и воспользуемся штабной картой. Зеленой стрелкой показано направление, в котором ударно действует напряжение с резистора R2, указуя транзистору VT3 как ему жить. Синим отчерчен путь медленно текущего тока заряда нашей «плотины», конденсатора С2, а красным быстрая пробежка с препятствиями разрядного тока, в момент «прорыва плотины».

Теперь о генераторе тона, в общем и целом. Как мы раньше узнали, он несимметричный. Это значит что длительность импульса, по времени, с полезной стороны (со стороны динамика), не равна импульсу с противоположной. Давайте разберемся, зачем же его скривили. Дело в том, что импульсы, которые мы подаем в нагрузку, однополярные. Что это значит? Это значит, что импульс тока, через нагрузку, протекает всегда в одном направлении, что не совсем правильно. Возникает так называемая постоянная составляющая, которую частично и компенсирует этот перекос. Точного значения длительности импульсов, на которой будет наиболее эффективная отдача звуковой мощности, ни кто не знает, кроме вашего динамика. Поэтому, в данном случае ее необходимо подбирать. Но не стоит пугаться! Это только если вам захочется получить максимум громкости от вашей сирены.

Вообще говоря, то, что мы тут разбирали, называется скважностью S и величина эта безразмерная. А у буржуинов, коэффициентом заполнения D (Duty cycle), ну и как это положено у них, измеряется в процентах. Но запомните! Это разные понятия одного и того же. И чтоб не было больше вопросов, давайте раз и навсегда разберемся, что есть что. Скважность, это — отношение периода следования импульсов к длительности импульса, а коэффициент заполнения, это — отношение длительности импульса к периоду их следования. Строго на оборот, то есть, это — обратные величины.

Теперь о модулировании этого генератора. Как мы раньше определили функциональное назначение генераторов в нашей схеме, модулирующим является у нас релаксационный генератор на однопереходном транзисторе (VT1, VT2). Результатом его работы является та самая «пила», точней, переменное напряжение по форме ее напоминающее. В обычном мультивибраторе, как мы знаем, в заряде и разряде конденсаторов участвует одно напряжение, да еще и постоянное, это напряжение питания схемы. В нашем случае все не совсем так… если вы внимательно посмотрели на схему, то заметили что два резистора, R7 и R8, в мультивибраторе, подключены совсем не к плюсу питания схемы. Все правильно, они подключены к той самой «пиле» напряжения, которую и генерирует модулирующий генератор.

Давайте рассмотрим, как это все работает на примере конденсаторе С3, одного из конденсаторов мультивибратора. Заряд этого конденсатора происходит в момент открытия транзисторов VT4, VT5. Ток заряда протекает через резистор R5 и переходы «база-эмиттер» транзисторов. Величина этого тока и время его протекания не меняются от раза к разу, так как источником этого тока являются постоянные +12 Вольт, питание схемы. А вот разряд (выразимся точней — перезаряд) этого конденсатора происходит через открытый транзистор VT3, резистор R2 и резистор R7. Который подключен совсем не к постоянному напряжению, а к «пиле». Таким образом время разряда этого конденсатора будет меняться, в зависимости от того на какой момент напряжения «пилы» он попал.
В точности то же самое будет происходить и с конденсатором С4, только с другими «действующими лицами». В результате будет изменяться период генерируемых импульсов, а значит и частота звучания тона сирены.
Вот таким вот не затейливым образом и происходит управление тоном сирены.

Ну и как это у нас повелось, карта! На которой и показаны пути распространения токов, и их локальная борьба за высоту… брр… за конденсатор С3. Красными стрелками показан кратковременный, но очень мощный удар тока заряда, а синими стрелками ток разряда, который меняется от раза к разу, под действием локального, пилообразного, дестабилизирующего фактора, связанного с перебоями снабжения зарядами…

Ну и еще один элемент, в который стоит тыкнуть палацем, это резистор R6. Он явно бросается в глаза, потому как в классической схеме мультивибратора вы его не отыщите. Нужен он для ограничения тока заряда конденсатора С4. Давайте посмотрим, через что он заряжается. А заряжается он через динамик (нагрузку), который имеет малое сопротивление, резистор R2, величиной 100 Ом и резистор R6. Если выкинуть резистор R6 из схемы, то суммарное сопротивление, в цепи заряда этого конденсатора, будет порядка 110 Ом. Не трудно прикинуть величину импульса зарядного тока, по закону Ома, она составит порядка 109 миллиампер. Если вы знаете, как работает мультивибратор, то поймете, чем это может грозить маломощному транзистору VT3. Импульс этого тока протекает через переход «база-эмиттер» этого транзистора. Кроме того, при протекании такого большого тока через резистор R2, на нем возникнет импульс напряжения, который «прикладывается» к переходу б1-б2 однопереходного транзистора, и будет запирать его раньше времени. В результате вся наша «музыка» развалится… (вторая причина оказалась более веской, чем первая… хм…) Ну а разбор работы мультивибратора вы без труда найдете на этом сайте.

Ну и как это там говорится — …чета там… война, главное — маневры… давайте визуально оценим марш бросок зарядного тока конденсатора С4, он показан красной стрелкой. Синей стрелкой, показан кратковременный удар напряжения с резистора R2 в строну однопереходного транзистора.

Теперь об конденсаторе С1, который сиротливо стоит в сторонке, и назначение его кажется совсем неважным. На самом деле, это совсем не так. Поскольку в нашей схеме рождаются большие переменные токи, их надо как-то замыкать в цепь. Так вот, этот конденсатор и выполняет эту важную роль. Полезный переменный ток протекает через нагрузку (наш динамик SPK), транзистор Дарлингтона (в котором и рождается наш переменный ток), и конденсатор С1, который замыкает эту цепь. Емкость этого конденсатора должна быть тем больше, чем больше ток в этой цепи.
Давайте посмотрим, что бы было, если б этого конденсатора не было. Переменный ток замкнулся бы через батарею или блок питания, через все длинные и тонкие соединительные провода, и на всех этих потребителях мы бы теряли драгоценную громкость (мощность). Мало того, он бы полез в схемы генераторов и, может это и не привело бы к взрыву, но работать они бы стали по-другому.
Еще очень не маловажно то, куда именно подключен этот конденсатор (выразимся точней – припаян). На принципиальной схеме, место этого конденсатора на отшибе. Но в реальной жизни его место – центральное. Этот конденсатор следует включать как можно ближе к нагрузке, или клемме ее подключения на плате, и, к эмиттеру составного транзистора. Но не стоит сильно волноваться, потому как в нашем случае, не все так сурово. Но помнить об этом надо, на будущее.
Ну и не трудно догадаться, какие требования предъявляются к этому конденсатору, это – малое сопротивление. Или, по солидному – ЭПС, эквивалентное последовательное сопротивление (по-буржуйски — ESR). Но это уже отдельная тема. Но запомните — с кондерами по питанию (и не только) шутки плохи! Они часто бывают причиной плохого звука усилителя, дыма из импульсного блока питания или “глюков” материнской платы компьютера. Ну а в нашем случае уже достаточно того, что он там есть, даже если он немного потрепан жизнью.

Смотрите так же:  Молниезащита и заземление здания

Стоит так же упомянуть о диоде VD1. Нужен он для замыкания импульса напряжения, возникающего на индуктивной катушке динамика, в момент разрыва цепи тока через нее, составным транзистором. Ставить этот диод в схему имеет смысл только в случае применения очень солидного рупорного динамика, в остальных случаях особой необходимости в нем нет. В этой схеме можно применить любой шустрый диод с приличным допустимым импульсным током. К примеру, у КД212 он составляет 50 Ампер. Наверно покажется много? Но индуктивности, особенно когда они связываются с импульсами, становятся очень опасными, и порвут вашего Дарлингтона, как Тузик грелку.

Ну, и, карта «военных» действий, на которой показаны главные действующие силы в этом сражении. Красной стрелкой показан путь «правых» токов. Серыми стрелками хаос токов, возникающий в отсутствии главного элемента — конденсатора С1, замыкающего всю власть на себя. Зеленой стрелкой показан вредный, но неизбежный, ток, который локализован на ограниченном пространстве диодом VD1.

Теперь о том, что же будет у нас громко “сиренить”. Тут фантазия ваша ни чем не ограничена. Если вам попадется рупорный динамик от китайской сирены, непременно используйте его в первую очередь. Старый гнутый советский громкоговоритель — почему бы и нет! Только не забудьте вышвырнуть из него согласующий трансформатор. Может где завалялся у вас старый, ржавый, автомобильный клаксон? Тоже в дело! Только удалите из него механический прерыватель (тут стоит заметить, что как раз именно для него наиболее оптимально подходит эта схема… подумайте почему).
Если сиренку использовать в помещении, то, вполне подойдет (проверено) любой динамик среднего размера: от телевизора, магнитофона, или еще чего иного, в корпусе, или даже без. Колонка для компьютера тоже вполне подойдет или даже две. Из них надо бережно вынуть всю ненужную электронную начинку, и использовать только сам динамик и корпус. Включать их надо последовательно, или параллельно, если сопротивление динамиков более 8 Ом. Ну и постарайтесь сопоставить ваши запросы и мощность самого динамика, который вы выбрали.

Теперь о том, что мы можем улучшить, как обычно это бывает, или изменить в этой схеме. Первый кандидат — это конденсатор С2. Как вы узнали раньше, он отвечает за «пилу», точнее за ее период.
Период — это такая величина, измеряемая временем. Представьте себе монотонно повторяющееся действие. Например, тиканье часов: «тик» — и тишина, «тик» — и тишина, «тик» — и по новой… Так вот это и будет период, равный одной секунде. Представьте, что часы старинные, механические, и они будут тикать в два раза быстрее — два тика за одну секунду. И это будет период, равный 0.5 секунды.
Немного проигравшись с номиналом этого конденсатора, вы заметите, как изменяется звук сирены. Больше конденсатор — реже “вяки”, меньше конденсатор — чаще “вяки”.
Второй кандидат — это конденсатор С3, и его напарник С4. Эти конденсаторы стоят в генераторе тона и отвечают, стало быть, за тон. Правда, с ними не все так просто, как с электролитом С2, который можно смело менять на электролит с таким же номиналом и вы всегда заметите разницу, потому как двух одинаковых электролитов не бывает. Наковырять кучу конденсаторов для подбора может и не получится, но «надавить» на схемку можно, слабое место — резисторы R7 и R8. Последовательно с ними можно поставить построечный резистор 1-2 кОм и насладиться всей властью над схемой.

Все остальные элементы отвечают за правильную работу транзисторов, и изменять их не стоит.

Ну и в заключение, об источнике питания сирены. Согласитесь, если мы хотим погромче, то нам нужно бы побольше энергии.

Энергия, как и мощность, измеряется в Ваттах Вт, или по-ихнему W. Только энергию считают еще и часами, а некоторые даже деньгами. И получается она из напряжения U и тока I, а точней из их произведения. Ну и поскольку наша сирена рассчитана на напряжение питания 12 Вольт, то громкость ее будет зависеть от способности источника питания выдать на-гора необходимый ток. Ток, потребляемый сиреной, всецело зависит от динамика, который вы будете использовать, и при правильном выборе он составит порядка полутора ампер и больше (да-да, не хило!).
Ну а если вы не собираетесь по ночам будить всю округу, то ток, потребляемый сиреной и ее громкость, можно снизить, увеличив сопротивление резистора R9. Ну, а если таки собираетесь, то можете его и вовсе выкинуть.

ЗЫ. У этой схемы есть развитие… но об этом наверно в другой раз…

Простая однотональная сирена для оповещения о важных событиях

Несложная принципиальная схема сирены с небольшим количеством деталей ждет вас на рисунке выше. Условно принципиальную схему можно разделить на две части: мультивибратор — усилитель низкой частоты. Мультивибратор занимается тем что генерирует сигнал определенной частоты, а усилитель, в свою очередь, усиливает его. В итоге, получается громкий звук с колебаниями около 2000 Гц.

Мультивибратор у нас генерирует импульсы посредством быстрого открытия/закрытия транзисторов BC547. Частота, в главной мере, связана со значениями ёмкости конденсаторов и частично от базовых резисторов и самих транзисторов. В схеме стандартная ёмкость C1 и C2 = 10 нФ и 22 нФ, при вариации этих номиналов правится и тональность электрической сирены. Получать можно с коллектора любого из транзисторов (VT1/VT2). В данном приборе сигнал идет через резистор далее на каскад УНЧ. Усилитель базируется на двух весьма распространенных биполярных транзисторах BC547 и BD137.

Вот некоторые вычислительные параметры мультивибратора. Частота примерно 959,442 Гц (мультиметр показывает на коллекторе сделанного генератора 1-1,1 кГц), скважность S=1,45, период T=0,000104. Сии сведения могут отличаться в зависимости от применяемых транзисторов, других отклонений в характеристиках радиодеталей. На частоту звучания влияет практически все. Ток, который берет от источника питания схемы может доходить до 0,5 Ампер, при 12 Вольтах.

Схемка и плата в Протеусе (файл ISIS и ARES): plata-i-shema.rar [47.35 Kb] (скачиваний: 195)
Трехмерная плата в 3DS: pcb-sirena.rar [121.56 Kb] (скачиваний: 118)


Транзистор структуры NPN из усилителя низкой частоты будет нагреваться при активизации сирены, так что его ставим на теплоотвод, у меня используется мощный и большой C5803.



Питание от 6 до 12 Вольт (с большим тоже отлично функционирует). Мощность на выходе до пяти Ватт. При применении аккумуляторов/батареек получаем автономную сирену, которая сможет работать без сетевого напряжения. Если же давать питание от 220V, то тут берем готовый БП или переделываем зарядку для телефона путем замены стабилитрона на нужное напряжение.

Демонстрация сирены, видео:

Сирена на двух транзисторах

Сирена применяется для звукового оповещения какого-либо процесса. Как правило, сирена раздается при возникновении тревожного события, но радиолюбители используют такие звуки в устройствах различной сигнализации. Тональность и частота такого звука заставит злоумышленников отказаться от нехорошего намерения.

Собирая сирену, мы преследуем еще одну цель – улучшить навыки и опыт в разработке электронных устройств. Поскольку данная схема сирены является довольно простой и под силу даже начинающему радиолюбителю, то мы подробно рассмотрим назначение всех элементов схемы.

Схема сирены

Схема сирены состоит из трех резисторов, электролитического и керамического конденсаторов, двух транзисторов, динамика или громкоговорителя и источника питания напряжением 9 В, в качестве которого подойдет крона. Динамик подойдет мощностью до одного ватта, сопротивлением 8 Ом.

Как работает сирена на двух транзисторах

Кнопкой с фиксацией или маленьким выключателем K1 подается питания от кроны 9 В на схему. Звук в динамике BA возникает за счет протекания по его обмотке переменного напряжения, которое формируется с помощью генератора, построенного на транзисторах VT1 и VT2.

При нажатии кнопки без фиксации K2 от источника питания начинает заряжаться конденсатор C1 по пути через резистор R1. По мере заряда C1 возрастает потенциал на базе VT1 и некотором значении напряжения транзистор открывается, а звук в динамике начинает плавно нарастать. Максимальная громкость сирены достигается при полностью заряженном конденсаторе C1. Время нарастания звука равно времени заряда C1, то есть его емкостью и сопротивлением резистора R1.

При отпускании кнопки K2 начинается разрядка электролитического конденсатора, и громкость сирены начинает снижаться за счет снижения потенциала на базе VT1. Время разряда конденсатора, а соответственно время работы сирены определяется емкостью C1, величиной сопротивления R2 и R3, а также сопротивлением pn-перехода база-эмиттер VT1.

Керамический конденсатор C2 образует обратную положительную связь двух транзисторов. Путем изменения емкости C2 можно изменять тональность сирены на двух транзисторах.

Обратите внимание, что VT1 и VT2 разной полупроводниковой структуры. Для данной схемы подойдут транзисторы практически любой серии.

Поэкспериментируйте с разными номиналами резисторов и конденсаторов и послушайте, как на это откликнется сирена.

Еще статьи по данной теме

Выходной усилитель звука принципиально отличается от предварительного или входного (в том числе и микрофонного) усилителя,…

Микрофонный усилитель своими руками можно собрать из простых и доступных радиоэлектронных элементов. Такой усилитель, как…

Согласование сопротивлений усилительных каскадов играет ключевую роль в работе усилителя вцелом. Любой предварительный каскада можно…

В предыдущей статье мы рассмотрели принцип работы усилителя звука на транзисторах и рассчитали основные его…

Звуковой генератор как сирена

Для того, чтобы получить звуковой сигнал большой мощности (10.. .20 Вт) от простого звукового генератора, не требуется сложных усилителей 34. Генератор на популярной микросхеме КР1006ВИ1 включен по известной «классической» схеме и в описании не нуждается. Частота выходного сигнала — примерно 1000 Гц. Ее можно рассчитать по приближенной формуле:

Смотрите так же:  Как проверить предохранитель на плате мультиметром

где значения F — в килогерцах. R1, R2 — в килоомах, а СИ — в микрофарадах. Частоту можно в значительных пределах корректировать изменением номиналов С2 и R2.
Выход микросхемы (вывод 3DA1) не обеспечивает значительную мощность, поэтому на полевом транзисторе VT1 реализован УМЗЧ Можно, конечно, применить и обычный биполярный транзистор, например. КТ819БМ, подключив его эмиттер к общему проводу, коллектор — к ВА1, а базу —к выводу 3DA1 через ограничительный резистор сопротивлением 470. 820 Ом. Однако в данном случае полевой транзистор предпочтительнее, так как в открытом состоянии его переход сток-исток имеет меньшее сопротивление, а значит, с полевым транзистором будет больший КПД.

Вместо полевого транзистора BUZ11 можно включить аналогичные по электрическим характеристикам полевые транзисторы IRF521, IRF540, установив их на теплоотводы (при мощности динамической головки более 5 Вт) Все постоянные резисторы — МЛТ-0,25. MF-25. Динамическая головка ВА1 — любая, рассчитанная на мощность 10. ..20 Вт с сопротивлением катушки 4 Ом. При большем сопротивлении головки, например, 8 Ом, мощность пропорционально снизится. Оксидный конденсатор С1 — К50-29 или аналогичный, неполярные конденсаторы С2, СЗ — КМ-6. К10-17, КТ4-23, KWS или аналогичные. Конденсатор СЗ, подключенный к выводу 5 DA1 для защиты от помех, можно из схемы исключить.
Источник питания необходим стабилизированный. с выходным напряжением 9. 15 В. Чем больше напряжение, тем больше выходная мощность усилителя. При использовании мощного динамика (Ю 20 Вт) от источника требуется выходной ток не менее 7. 10 А.
Такое устройство можно использовать в качестве звуковой сигнализации удаленных охраняемых объектов. При этом динамическая головка ВА1 находится непосредственно на улице, и сигнал слышен очень далеко.

Громкая сирена

В этой громкой сирене в качестве звукоизлучающего элемента, возможно, применить два типа звукоизлучателей: пьезо и динамические головки. Поскольку электрические и механические качества их заметно отличаются, в схему сирены введен управляющий сигнал MODE. При высоком уровне на нем, то есть «1»задействован режим работы с пьезоизлучателем.

В качестве пьезоизлучателя допустимо применить «пищалки» для автомагнитол. В данном случае при питании усилителя от 12 вольт сила звука такова, что на расстоянии примерно метра от сирены в ушах появляются болевые ощущения .

В случае низкого уровня управляющего сигнала MODE активизируется режим работы с динамическим излучателем. Частота колебаний в данном режиме ниже ориентировочно в 5 раз, чем в режиме «пьезо». Сопротивление динамической головки может быть как 8 Ом так и 4 Ома.

Перед сборкой схемы транзисторы хорошо бы проверить в работе. В том случае если транзисторы будут интенсивно греться то, скорее всего, придется заменить на более мощные или с меньшим падением в режиме насыщения.

Поскольку сирены чаще всего применяются с готовыми системами охраны, в прошивку внесен режим подтверждения. Скорее всего, вы слышали, с каким звуком ставится или снимается с охраны автосигнализация. В данном режиме громкость должна быть достаточно тихой — необходимо слабого уровня звука, чтобы не тревожить окружающих. В связи с этим первые 300 мСек. слышится сплошной тон на 10% громкости.

Скачать рисунок печатной платы и прошивку (8,1 Kb, скачано: 1 175)

Сигнализация для гаража своими руками: эффективность, состав

Гаражи относятся к объектам, находящимся под пристальным вниманием как автоугонщиков, так и обычных воров, которые не прочь завладеть имуществом, расположенном внутри. Защитить себя и свой автомобиль от непрошеных «гостей» позволят специальные охранные системы. Сегодня на рынке имеется большое число различного оборудования, которое позволяет эффективно бороться со злоумышленниками. Оборудование предоставляется в разных ценовых категориях и каждый сможет подобрать для себя наиболее подходящее устройство. Одним из вариантов недорогих охранных систем, которые адаптированы под конкретные условия использования, может стать сигнализация для гаража – своими руками ее может смастерить практически каждый, кто хоть немного разбирается в технике и электронике.

Состав самодельных сигнализаций

Охранные системы, создаваемые собственноручно, имеют достаточно простую конструкцию, что обеспечивает несложную сборку и надежность функционирования разрабатываемых охранных комплексов. К основным элементам, которые имеет в своем составе самодельная сигнализация для гаража, относятся ИК-датчик движения, звуковая сирена, монтажные элементы и источник питания.

Если в гараже есть стандартная электрическая сеть 220 В, то звуковой извещатель можно будет подключить к ней. Если таковой не имеется, то придется модернизировать сирену, чтобы она могла функционировать от напряжения 12 В. Для этой цели в электрическую схему добавляется 6-вольтовое реле. Электропитание будет подаваться к датчику через выключатель. В таком случае, при срабатывании устройства, напряжение поступит к обмотке реле, что приведет к его срабатыванию и, как следствие, к подключению сирены. В качестве 12-вольтового источника питания могут применяться неиспользуемые автомобильные аккумуляторы.

Охранная сигнализация с сиреной

Эта охранная сигнализация для гаража является наиболее простым и дешевым вариантом, который можно реализовать самостоятельно и с минимальными финансовыми затратами. Принцип функционирования таких сигнализаций заключается в приведении в действие звуковых устройств-сирен, при срабатывании датчика. Его роль может выполнять ИК-датчик движения, или геркон. В первом случае фиксируется появление подвижного объекта, излучающего тепловую энергию, а во втором случае – определяется момент вскрытия или взлома двери, на которой установлен геркон.

При использовании герконовых датчиков, в случае открытия двери, происходит размыкание/замыкание контактов, что обеспечивает подачу питания к звуковой сирене и ее срабатыванию.

Создание сигнализации на основе ИК-датчиков заключается в нескольких простых шагах. Сначала нужно разобрать датчик движения и извлечь из него шарообразный элемент, вынуть плату, к которой подключить проводники подачи питания и обмотку реле. Эта обмотка заменяет штатное реле датчика. Для подключения сирены используются специальные контактные клеммы. Ее выносят наружу и располагают в труднодоступном месте. Выключатель такой самодельной сигнализации располагают внутри гаража в потайном месте. При потребности в состав сигнализации может подключаться несколько звукогенерирующих устройств, которые могут срабатывать одновременно или по запрограммированной очередности, регулируемой специальными временными релейными устройствами.

После завершения монтажных работ самодельная сигнализация для гаража настраивается на оптимальную работу. Если используемые датчики позволяют, то проводится настройка чувствительности срабатывания и продолжительности работы сирены.

Сигнализация с реле времени

С помощью временных реле может создаваться простая и надежная сигнализация для гаража своими руками, схемы и решения которой могут реализовываться в двух конфигурациях. Одна из них владеет двумя реле, а вторая – одним.

В первом случае релейное устройство имеет две группы коммутационных контактов, срабатывание которых настраивается с промежутком в 5…10 сек. В результате срабатывания датчика произойдет включение звуковой сирены. У пользователя будет от 5 до 10 сек, чтобы отключить его с помощью специальной кнопки-выключателя, расположенной в недоступном месте. Если отключение не произойдет на протяжении этого времени, сработает вторая пара контактов, что обеспечит постоянное звучание сирены до момента полного отключения сигнализации с помощью специального тумблера.

В процессе монтажа такой сигнализации датчик перемещений располагается на двери, а при входе устанавливают кнопку постановки сигнализации на охрану. В качестве реле используются устройства на 12 или 24В.

Недостатком такой схемы сигнализации является срабатывание сигнализации еще до момента ее отключения с помощью специальной кнопки. Чтобы исключить эту проблему с состав такой самодельной сигнализации вводится еще одно реле, время переключения коммутационных контактов которого не больше 180 сек. После истечения этого временного промежутка сирена отключится и будет находиться в таком состоянии до момента постановки ее на охрану.

Охранная сигнализация для гаража своими руками может создаваться и с использованием только одного реле времени. Момент срабатывания сирены в этой сигнализации задается с помощью соответствующей настройки реле. В ждущий режим такие сигнализации переходят после разрыва цепи подачи питания.»

В функциональной схеме такого типа сигнализаций применяется тиристор, наличие которого повышает уровень электрической и пожарной безопасности создаваемой охранной системы. Сигнализация этого типа рассчитана на подсоединение большого количества различных датчиков. Кроме звуковых сирен в состав такого самодельного охранного комплекса могут включаться лампочки или иные светогенерирующие устройства, обеспечивающие дополнительный эффект для привлечения внимания.

Насколько эффективны самодельные охранные системы?

Сигнализация, сделанная своими руками, относится к базовым средствам защиты, которые позволяют привлечь к себе внимание соседей, а также осуществляют психологическое воздействие на злоумышленника. Вряд ли кто-то станет возиться с автомобилем под вой сирены и мигание внешних осветительных устройств.

Чтобы обеспечить более высокий уровень защиты самодельную сигнализацию можно модернизировать, усовершенствовав ее под GSM сигнализацию своими руками. В таком случае не просто будут подаваться отпугивающие сигналы, а и произойдет рассылка СМС на номера владельца о взломе или проникновении в гараж.

Похожие статьи:

  • 220 вольт вн великий новгород Список магазинов Великий Новгород, Октябрьская ул д.22 Пн-Пт 09:00-20:00, Сб-Вс 09:00-18:00 Как добраться до магазина Магазин расположен через дорогу напротив вокзала в угловом доме, вход находится с торца здания. Добраться до магазина […]
  • Каким прибором проверить заземление Измерение сопротивления контура защитного заземления Защитным заземлением называется преднамеренное электрическое соединение с землей или эквивалентом металлических нетоковедущих частей, которые могут оказаться под напряжением вследствие […]
  • Электрические схемы на т5 Схема автомобиля — Фольксваген Транспортёр Представляем схемы электрооборудования на Volkswagen Transporter 1990-2000 г.в. Четвертое поколение (Т4) популярнейших пикапов, фургонов Transporter (выпускающихся с 1990 года) кардинально […]
  • Сечение медного провода под нагрузку сколько киловатт нагрузки может выдержать медный провод сечением 1,5 мм, а 2,5мм? 1 мм2 медного провода держат до 10А при 220 это на 1 мм2 будет 2.2квт ( тот же чайник китайский, там тен на 2.2квт, а проводулька 1мм2 ) Пример как […]
  • Сечение провода 05 квМм МГТФ 0.05 кв.мм, Провод монтажный, за 1м Провода, предназначенные для внутри приборного и межприборного монтажа, соединений электронной и электрической аппаратуры. МГТФ - с медной жилой с изоляцией из запеченных пленок фторопласта-4МГТФЭ […]
  • Регулятор переменного напряжения 220 вольт Регулятор переменного напряжения 220 вольт Всем привет! В прошлой статье я расказывал, как сделать регулятор напряжения для постоянного тока. Сегодня мы сделаем регулятор напряжения для переменного тока 220в. Конструкция довольно-таки […]