Электродвигатель 3-х фазный асинхронный

Трехфазный асинхронный двигатель

Трехфазный асинхронный двигатель с короткозамкнутым ротором

Конструкция асинхронного электродвигателя

Трехфазный асинхронный электродвигатель, как и любой электродвигатель, состоит из двух основных частей — статора и ротора. Статор — неподвижная часть, ротор — вращающаяся часть. Ротор размещается внутри статора. Между ротором и статором имеется небольшое расстояние, называемое воздушным зазором, обычно 0,5-2 мм.

Статор состоит из корпуса и сердечника с обмоткой. Сердечник статора собирается из тонколистовой технической стали толщиной обычно 0,5 мм, покрытой изоляционным лаком. Шихтованная конструкция сердечника способствует значительному снижению вихревых токов, возникающих в процессе перемагничивания сердечника вращающимся магнитным полем. Обмотки статора располагаются в пазах сердечника.

Ротор состоит из сердечника с короткозамкнутой обмоткой и вала. Сердечник ротора тоже имеет шихтованную конструкцию. При этом листы ротора не покрыты лаком, так как ток имеет небольшую частоту и оксидной пленки достаточно для ограничения вихревых токов.

Принцип работы. Вращающееся магнитное поле

Принцип действия трехфазного асинхронного электродвигателя основан на способности трехфазной обмотки при включении ее в сеть трехфазного тока создавать вращающееся магнитное поле.

Вращающееся магнитное поле — это основная концепция электрических двигателей и генераторов.

Частота вращения этого поля, или синхронная частота вращения прямо пропорциональна частоте переменного тока f1 и обратно пропорциональна числу пар полюсов р трехфазной обмотки.

,

  • где n1 – частота вращения магнитного поля статора, об/мин,
  • f1 – частота переменного тока, Гц,
  • p – число пар полюсов

Концепция вращающегося магнитного поля

Чтобы понять феномен вращающегося магнитного поля лучше, рассмотрим упрощенную трехфазную обмотку с тремя витками. Ток текущий по проводнику создает магнитное поле вокруг него. На рисунке ниже показано поле создаваемое трехфазным переменным током в конкретный момент времени

Составляющие переменного тока будут изменяться со временем, в результате чего будет изменяться создаваемое ими магнитное поле. При этом результирующее магнитное поле трехфазной обмотки будет принимать разную ориентацию, сохраняя при этом одинаковую амплитуду.

Действие вращающегося магнитного поля на замкнутый виток

Теперь разместим замкнутый проводник внутри вращающегося магнитного поля. По закону электромагнитной индукции изменяющееся магнитное поле приведет к возникновению электродвижущей силы (ЭДС) в проводнике. В свою очередь ЭДС вызовет ток в проводнике. Таким образом, в магнитном поле будет находиться замкнутый проводник с током, на который согласно закону Ампера будет действовать сила, в результате чего контур начнет вращаться.

Короткозамкнутый ротор асинхронного двигателя

По этому принципу также работает асинхронный электродвигатель. Вместо рамки с током внутри асинхронного двигателя находится короткозамкнутый ротор по конструкции напоминающий беличье колесо. Короткозамкнутый ротор состоит из стержней накоротко замкнутых с торцов кольцами.

Трехфазный переменный ток, проходя по обмоткам статора, создает вращающееся магнитное поле. Таким образом, также как было описано ранее, в стержнях ротора будет индуцироваться ток, в результате чего ротор начнет вращаться. На рисунке ниже Вы можете заметить различие между индуцируемыми токами в стержнях. Это происходит из-за того что величина изменения магнитного поля отличается в разных парах стержней, из-за их разного расположения относительно поля. Изменение тока в стержнях будет изменяться со временем.

Вы также можете заметить, что стержни ротора наклонены относительно оси вращения. Это делается для того чтобы уменьшить высшие гармоники ЭДС и избавиться от пульсации момента. Если стержни были бы направлены вдоль оси вращения, то в них возникало бы пульсирующее магнитное поле из-за того, что магнитное сопротивление обмотки значительно выше магнитного сопротивления зубцов статора.

Скольжение асинхронного двигателя. Скорость вращения ротора

Отличительный признак асинхронного двигателя состоит в том, что частота вращения ротора n2 меньше синхронной частоты вращения магнитного поля статора n1.

Объясняется это тем, что ЭДС в стержнях обмотки ротора индуцируется только при неравенстве частот вращения n21. Частота вращения поля статора относительно ротора определяется частотой скольжения ns=n1-n2. Отставание ротора от вращающегося поля статора характеризуется относительной величиной s, называемой скольжением:

,

  • где s – скольжение асинхронного электродвигателя,
  • n1 – частота вращения магнитного поля статора, об/мин,
  • n2 – частота вращения ротора, об/мин,

Рассмотрим случай когда частота вращения ротора будет совпадать с частотой вращения магнитного поля статора. В таком случае относительное магнитное поле ротора будет постоянным, таким образом в стержнях ротора не будет создаваться ЭДС, а следовательно и ток. Это значит что сила действующая на ротор будет равна нулю. Таким образом ротор будет замедляться. После чего на стержни ротора опять будет действовать переменное магнитное поле, таким образом будет расти индуцируемый ток и сила. В реальности же ротор асинхронного электродвигателя никогда не достигнет скорости вращения магнитного поля статора. Ротор будет вращаться с некоторой скоростью которая немного меньше синхронной скорости.

Скольжение асинхронного двигателя может изменяться в диапазоне от 0 до 1, т. е. 0—100%. Если s

0, то это соответствует режиму холостого хода, когда ротор двигателя практически не испытывает противодействующего момента; если s=1 — режиму короткого замыкания, при котором ротор двигателя неподвижен (n2 = 0). Скольжение зависит от механической нагрузки на валу двигателя и с ее ростом увеличивается.

Скольжение, соответствующее номинальной нагрузке двигателя, называется номинальным скольжением. Для асинхронных двигателей малой и средней мощности номинальное скольжение изменяется в пределах от 8% до 2%.

Преобразование энергии

Асинхронный двигатель преобразует электрическую энергию подаваемую на обмотки статора, в механическую (вращение вала ротора). Но входная и выходная мощность не равны друг другу так как во время преобразования происходят потери энергии: на трение, нагрев, вихревые токи и потери на гистерезисе. Это энергия рассеивается как тепло. Поэтому асинхронный электродвигатель имеет вентилятор для охлаждения.

Подключение асинхронного двигателя

Трехфазный переменный ток

Электрическая сеть трехфазного переменного тока получила наиболее широкое распространение среди электрических систем передачи энергии. Главным преимуществом трехфазной системы по сравнению с однофазной и двухфазной системами является ее экономичность. В трехфазной цепи энергия передается по трем проводам, а токи текущие в разных проводах сдвинуты относительно друг друга по фазе на 120°, при этом синусоидальные ЭДС на разных фазах имеют одинаковую частоту и амплитуду.

Звезда и треугольник

Трехфазная обмотка статора электродвигателя соединяется по схеме «звезда» или «треугольник» в зависимости от напряжения питания сети. Концы трехфазной обмотки могут быть: соединены внутри электродвигателя (из двигателя выходит три провода), выведены наружу (выходит шесть проводов), выведены в распределительную коробку (в коробку выходит шесть проводов, из коробки три).

Фазное напряжение — разница потенциалов между началом и концом одной фазы. Другое определение: фазное напряжение это разница потенциалов между линейным проводом и нейтралью.

Линейное напряжение — разность потенциалов между двумя линейными проводами (между фазами).

Трехфазный асинхронный двигатель

Трехфазный асинхронный двигатель с короткозамкнутым ротором

Конструкция асинхронного электродвигателя

Трехфазный асинхронный электродвигатель, как и любой электродвигатель, состоит из двух основных частей — статора и ротора. Статор — неподвижная часть, ротор — вращающаяся часть. Ротор размещается внутри статора. Между ротором и статором имеется небольшое расстояние, называемое воздушным зазором, обычно 0,5-2 мм.

Статор состоит из корпуса и сердечника с обмоткой. Сердечник статора собирается из тонколистовой технической стали толщиной обычно 0,5 мм, покрытой изоляционным лаком. Шихтованная конструкция сердечника способствует значительному снижению вихревых токов, возникающих в процессе перемагничивания сердечника вращающимся магнитным полем. Обмотки статора располагаются в пазах сердечника.

Смотрите так же:  Как заизолировать тонкие провода

Ротор состоит из сердечника с короткозамкнутой обмоткой и вала. Сердечник ротора тоже имеет шихтованную конструкцию. При этом листы ротора не покрыты лаком, так как ток имеет небольшую частоту и оксидной пленки достаточно для ограничения вихревых токов.

Принцип работы. Вращающееся магнитное поле

Принцип действия трехфазного асинхронного электродвигателя основан на способности трехфазной обмотки при включении ее в сеть трехфазного тока создавать вращающееся магнитное поле.

Вращающееся магнитное поле — это основная концепция электрических двигателей и генераторов.

Частота вращения этого поля, или синхронная частота вращения прямо пропорциональна частоте переменного тока f1 и обратно пропорциональна числу пар полюсов р трехфазной обмотки.

,

  • где n1 – частота вращения магнитного поля статора, об/мин,
  • f1 – частота переменного тока, Гц,
  • p – число пар полюсов

Концепция вращающегося магнитного поля

Чтобы понять феномен вращающегося магнитного поля лучше, рассмотрим упрощенную трехфазную обмотку с тремя витками. Ток текущий по проводнику создает магнитное поле вокруг него. На рисунке ниже показано поле создаваемое трехфазным переменным током в конкретный момент времени

Составляющие переменного тока будут изменяться со временем, в результате чего будет изменяться создаваемое ими магнитное поле. При этом результирующее магнитное поле трехфазной обмотки будет принимать разную ориентацию, сохраняя при этом одинаковую амплитуду.

Действие вращающегося магнитного поля на замкнутый виток

Теперь разместим замкнутый проводник внутри вращающегося магнитного поля. По закону электромагнитной индукции изменяющееся магнитное поле приведет к возникновению электродвижущей силы (ЭДС) в проводнике. В свою очередь ЭДС вызовет ток в проводнике. Таким образом, в магнитном поле будет находиться замкнутый проводник с током, на который согласно закону Ампера будет действовать сила, в результате чего контур начнет вращаться.

Короткозамкнутый ротор асинхронного двигателя

По этому принципу также работает асинхронный электродвигатель. Вместо рамки с током внутри асинхронного двигателя находится короткозамкнутый ротор по конструкции напоминающий беличье колесо. Короткозамкнутый ротор состоит из стержней накоротко замкнутых с торцов кольцами.

Трехфазный переменный ток, проходя по обмоткам статора, создает вращающееся магнитное поле. Таким образом, также как было описано ранее, в стержнях ротора будет индуцироваться ток, в результате чего ротор начнет вращаться. На рисунке ниже Вы можете заметить различие между индуцируемыми токами в стержнях. Это происходит из-за того что величина изменения магнитного поля отличается в разных парах стержней, из-за их разного расположения относительно поля. Изменение тока в стержнях будет изменяться со временем.

Вы также можете заметить, что стержни ротора наклонены относительно оси вращения. Это делается для того чтобы уменьшить высшие гармоники ЭДС и избавиться от пульсации момента. Если стержни были бы направлены вдоль оси вращения, то в них возникало бы пульсирующее магнитное поле из-за того, что магнитное сопротивление обмотки значительно выше магнитного сопротивления зубцов статора.

Скольжение асинхронного двигателя. Скорость вращения ротора

Отличительный признак асинхронного двигателя состоит в том, что частота вращения ротора n2 меньше синхронной частоты вращения магнитного поля статора n1.

Объясняется это тем, что ЭДС в стержнях обмотки ротора индуцируется только при неравенстве частот вращения n21. Частота вращения поля статора относительно ротора определяется частотой скольжения ns=n1-n2. Отставание ротора от вращающегося поля статора характеризуется относительной величиной s, называемой скольжением:

,

  • где s – скольжение асинхронного электродвигателя,
  • n1 – частота вращения магнитного поля статора, об/мин,
  • n2 – частота вращения ротора, об/мин,

Рассмотрим случай когда частота вращения ротора будет совпадать с частотой вращения магнитного поля статора. В таком случае относительное магнитное поле ротора будет постоянным, таким образом в стержнях ротора не будет создаваться ЭДС, а следовательно и ток. Это значит что сила действующая на ротор будет равна нулю. Таким образом ротор будет замедляться. После чего на стержни ротора опять будет действовать переменное магнитное поле, таким образом будет расти индуцируемый ток и сила. В реальности же ротор асинхронного электродвигателя никогда не достигнет скорости вращения магнитного поля статора. Ротор будет вращаться с некоторой скоростью которая немного меньше синхронной скорости.

Скольжение асинхронного двигателя может изменяться в диапазоне от 0 до 1, т. е. 0—100%. Если s

0, то это соответствует режиму холостого хода, когда ротор двигателя практически не испытывает противодействующего момента; если s=1 — режиму короткого замыкания, при котором ротор двигателя неподвижен (n2 = 0). Скольжение зависит от механической нагрузки на валу двигателя и с ее ростом увеличивается.

Скольжение, соответствующее номинальной нагрузке двигателя, называется номинальным скольжением. Для асинхронных двигателей малой и средней мощности номинальное скольжение изменяется в пределах от 8% до 2%.

Преобразование энергии

Асинхронный двигатель преобразует электрическую энергию подаваемую на обмотки статора, в механическую (вращение вала ротора). Но входная и выходная мощность не равны друг другу так как во время преобразования происходят потери энергии: на трение, нагрев, вихревые токи и потери на гистерезисе. Это энергия рассеивается как тепло. Поэтому асинхронный электродвигатель имеет вентилятор для охлаждения.

Подключение асинхронного двигателя

Трехфазный переменный ток

Электрическая сеть трехфазного переменного тока получила наиболее широкое распространение среди электрических систем передачи энергии. Главным преимуществом трехфазной системы по сравнению с однофазной и двухфазной системами является ее экономичность. В трехфазной цепи энергия передается по трем проводам, а токи текущие в разных проводах сдвинуты относительно друг друга по фазе на 120°, при этом синусоидальные ЭДС на разных фазах имеют одинаковую частоту и амплитуду.

Звезда и треугольник

Трехфазная обмотка статора электродвигателя соединяется по схеме «звезда» или «треугольник» в зависимости от напряжения питания сети. Концы трехфазной обмотки могут быть: соединены внутри электродвигателя (из двигателя выходит три провода), выведены наружу (выходит шесть проводов), выведены в распределительную коробку (в коробку выходит шесть проводов, из коробки три).

Фазное напряжение — разница потенциалов между началом и концом одной фазы. Другое определение: фазное напряжение это разница потенциалов между линейным проводом и нейтралью.

Линейное напряжение — разность потенциалов между двумя линейными проводами (между фазами).

Низковольтный 3-х фазный асинхронный короткозамкнутый электродвигатель Loher

Горизонтальные вкладки

Низковольтные 3-х фазные электродвигатели Loher могут поставляться в стандартном и взрывозащищенном исполнении. Общее применение: насосы, вентиляторы, компрессоры. Также 3-х фазный электродвигатель Loher адаптирован для работы в опасных зонах, химической, горной, нефтяной промышленности.

В зависимости от сферы применения и модификации того или иного электродвигателя, варьируются показатели выходной мощности и параметры типоразмеров мотор-редукторов. Все модели относятся к классу защиты IP55.

Если у заказчиков или покупателей возникнут вопросы, касательно выбора определенного типа размера агрегатов, они могут рассчитывать на своевременную и компетентную помощь менеджеров компании.

Больше актуальной информации о характеристиках асинхронных трехфазных электродвигателей приведено в информационном разделе сайта.

Пожалуйста, уточняйте цены на электродвигатели Loher у наших специалистов.

Как прозвонить электродвигатель мультиметром

Для выявления неисправности электродвигателя в домашних условиях за неимением дорогостоящего профессионального оборудования ничего не остается, как прозвонить электродвигатель мультиметром. С его помощью можно определить большинство поломок, и вам не придется привлекать специалиста. Итак, что нужно сделать?

Подготовка

Перед тем, как проводить диагностику, следует:

  • Обесточить агрегат. Если измерение сопротивления осуществляется в цепи, подключенной к электросети, прибор выйдет из строя.
  • Откалибровать аппарат, то есть выставить стрелку в нулевое положение (щупы должны быть замкнуты).
  • Осмотреть двигатель и выяснить, не затоплен ли он, нет ли запаха горелой изоляции или отломанных деталей и т.д.
Смотрите так же:  220 вольт напряжение предупреждение

Асинхронный, коллекторный, однофазный и трехфазный двигатели прозваниваются по одной и той же методике, небольшая разница в конструкции особой роли не играет, но есть нюансы, которые необходимо учитывать.

Этапы работы

Самые частые неисправности можно поделить на два вида:

  • Наличие контакта в месте, где его не должно быть.
  • Отсутствие контакта в месте, где он должен быть.

Для начала рассмотрим, как прозвонить 3-фазный электродвигатель мультиметром. Он имеет три катушки, соединенные по схеме «треугольник» или «звезда». На его работоспособность влияют надежность контактов, качество изоляции и правильная намотка.

  • Для начала проверьте замыкание на корпус (имейте в виду, значение получится приблизительное, так как для точных показаний требуются более чувствительные приборы).
  • Установите значения измерений на мультиметре на максимум.
  • Соедините щупы друг с другом, чтобы убедиться в правильности настроек и исправности прибора.
  • Соедините один из щупов с корпусом двигателя, если есть контакт, присоедините второй щуп к корпусу и следите за показаниями.
  • Если сбоев нет, поочередно коснитесь щупом вывода каждой из трех фаз.
  • Если изоляция качественная, проверка должна показать достаточно высокое сопротивление (несколько сотен или тысяч мегом).

Необходимо помнить, что при измерении сопротивления изоляции с помощью мультиметра показания будут выше допустимых, так как ЭДС прибора не превышает 9в. Двигатель же работает при 220 или 380в. По закону Ома значение сопротивления зависит от напряжения, поэтому делайте скидку на разницу.

Далее проверьте целостность обмоток, прозвонив три конца, входящих в борно двигателя. При наличии обрыва дальнейшая проверка не имеет смысла, поскольку прежде нужно устранить эту неисправность.

Затем проверьте короткозамкнутые витки. При соединении «треугольником» показателем неисправности будет большее значение в концах А1 и А3. При соединении «звездой» прибор показывает завышенное значение в цепи А3.

Зная, как прозвонить асинхронный электродвигатель мультиметром, вы сэкономите время и деньги, так как, возможно, выявятся только мелкие неисправности, которые вы легко устраните самостоятельно. Для более серьезной и детальной диагностики требуются другие приборы, которые редко используются в быту по причине дороговизны. Если вы не смогли найти повреждения с помощью мультиметра, обратитесь к специалисту.

Проверка коллекторного электродвигателя

Теперь перейдем к вышеупомянутым нюансам, ведь двигатели бывают разных видов. Как прозвонить коллекторный электродвигатель мультиметром? Схема его проверки выглядит следующим образом:

  • Включите прибор на единицы Ом и измерьте попарно сопротивление ламелей коллектора.
  • Затем измерьте сопротивление между корпусом якоря и коллектором.
  • Проверьте обмотки статора.
  • Измерьте сопротивление между корпусом и выводами статора.

Межвитковое замыкание определяется только специальным прибором. Существует способ измерения сопротивления якоря. Снимите с него щетки и подведите к пластинам напряжение до 6в, измерьте падение напряжения между ними.

Для проверки однофазного двигателя прозвоните рабочую и пусковую обмотки. Сопротивление первой должно быть в полтора раза ниже, чем второй.

Для примера возьмем однофазный мотор с тремя выводами, использующийся в стиральных машинах (чаще старого образца). Если между концами очень большое сопротивление, значит катушки соединены последовательно. Остается найти среднюю точку и таким образом определить концы каждой из них в отдельности.

Поскольку электродвигатели встречаются в каждом доме в бытовых приборах – это и холодильник, и пылесос, и многое другое – и они периодически ломаются, знать, как проверить однофазный электродвигатель мультиметром, просто необходимо. Если поломка не слишком серьезная, нести прибор в ремонтную мастерскую нецелесообразно. И у вас появится возможность набраться опыта и получить навыки, работая с двигателями разных типов и модификаций.

Включение 3-х фазного двигателя в однофазную сеть, от теории к практике

В домашнем хозяйстве иногда возникает необходимость запустить 3х фазный асинхронный электродвигатель (АД). При наличии 3х фазной сети это не составляет трудностей. При отсутствии 3х фазной сети двигатель можно запустить и от однофазной сети, добавив в схему конденсаторы.

Конструктивно АД состоит из неподвижной части – статора, и подвижной – ротора. На статоре в пазах укладываются обмотки. Обмотка статора представляет собой трёхфазную обмотку, проводники которой равномерно распределены по окружности статора и пофазно уложены в пазах с угловым расстоянием 120 эл. градусов. Концы и начала обмоток выводятся в соединительную коробку. Обмотки образуют пары полюсов. От числа пар полюсов зависит номинальная частота вращения ротора двигателя. Большинство общепромышленных двигателей имеют 1-3 пары полюсов, реже 4. АД с большим числом пар полюсов имеют низкий КПД, больше габариты, поэтому используются редко. Чем больше пар полюсов, тем меньше частота вращение ротора двигателя. Общепромышленые АД выпускаются с рядом стандартных скоростей вращения ротора: 300, 1000, 1500, 3000 об/мин.

Ротор АД представляет собой вал, на котором находится короткозамкнутая обмотка. В АД малой и средней мощности обмотку обычно изготавливают путём заливки расплавленного алюминиевого сплава в пазы сердечника ротора. Вместе со стержнями отливают короткозамкнутые кольца и торцевые лопасти, осуществляющие вентиляцию машины. В машинах большой мощности обмотку выполняют из медных стержней, концы которых соединяют с короткозамкнутыми кольцами при помощи сварки.

При включении АД в 3ф сеть по обмоткам по очереди в разный момент времени начинает идти ток. В один период времени ток проходит по полюсу фазы А, в другой по полюсу фазы В, в третий по полюсу фасы С. Проходя через полюса обмоток, ток поочередно создает вращающее магнитное поле, которое взаимодействует с обмоткой ротора и заставляет его вращаться, как бы подталкивая его в разных плоскостях в разный момент времени.

Если включить АД в 1ф сеть, вращающий момент будет создаваться только одной обмоткой. Действовать на ротор такой момент будет в одной плоскости. Такого момента не достаточно, чтоб сдвинуть и вращать ротор. Чтобы создать сдвиг фазы тока полюса, относительно питающей фазы, применяют фазосдвигающие конденсаторы рис.1.


Рис.1

Конденсаторы можно применять любых типов, кроме электролитических. Хорошо подходят конденсаторы типа МБГО, МБГ4, К75-12, К78-17. Некоторые данные конденсаторов приведены в таблице 1.

Если необходимо набрать определенную емкость, то конденсаторы следует соединить параллельно.

Основные электрические характеристики АД приводятся в паспорте рис.2.


Рис.2

Из паспорта видно, что двигатель трехфазный, мощностью 0,25 кВт, 1370 об/мин, есть возможность менять схему соединения обмоток. Схема соединения обмоток «треугольник» при напряжении 220В, «звезда», при напряжении 380В ,соответственно ток 2,0/1,16А.

Схема соединения «звезда» изображена на рис.3. При таком включении к обмоткам электродвигателя между точками АВ (линейное напряжение Uл) подводится напряжение в раза больше напряжения между точками АО (фазное напряжение Uф).


Рис.3 Схема подключения «звезда».

Таким образом линейное напряжение в раза больше фазного напряжения: . При этом фазный ток Iф равен линейному току Iл.

Рассмотрим схему соединения «треугольник» рис. 4:


Рис.4 Схема соединения «треугольник»

При таком соединении линейное напряжение UЛ равное фазному напряжению Uф., а ток в линии Iл в раза больше фазного тока Iф: .

Таким образом если АД рассчитан на напряжение 220/380 В, то для его подключения к фазному напряжению 220 В используется схема соединения обмоток статора «треугольник». А для подключения к линейному напряжению 380 В – соединение «звезда».

Для пуска данного АД от однофазной сети напряжением 220В нам следует включить обмотки по схеме «треугольник», рис.5.


Рис.5 Схема соединения обмоток ЭД по схеме «треугольник»

Схема соединение обмоток в выводной коробке показана на рис. 6


Рис.6 Соединение в выводной коробке ЭД по схеме «треугольник»

Чтобы подключить электродвигатель по схеме «звезда» необходимо две фазные обмотки подключить непосредственно в однофазную сеть, а третью – через рабочий конденсатор Ср к любому из проводов сети рис. 6.

Смотрите так же:  Как украсить провода от телевизора на стене

Соединение в выводной коробке для схемы «звезда» изображено на рис. 7.


Рис.7 Схема соединения обмоток ЭД по схеме «звезда»

Схема соединение обмоток в выводной коробке показана на рис. 8


Рис.8 Соединение в выводной коробке ЭД по схеме «звезда»

Емкость рабочего конденсатора Ср для данных схем рассчитывается по формуле:
,
где Iн— номинальный ток, Uн— номинальное рабочее напряжение.

В нашем случае, для включения по схеме «треугольник» емкость рабочего конденсатора Cр = 25 мкФ.

Рабочее напряжение конденсатора должно быть в 1.15 раз больше номинального напряжения питающей сети.

Для пуска АД не большой мощности обычно достаточно рабочего конденсатора, но при мощности более 1.5 кВт двигатель либо не запускается, либо очень медленно набирает обороты, поэтому необходимо применить еще пусковой конденсатор Сп . Емкость пускового конденсатора должна быть в 2.5-3 раза больше емкости рабочего конденсатора.

Схема соединения обмоток электродвигателя, соединенных по схеме «треугольник» с применением пусковых конденсаторов Сп представлена на рис. 9.


Рис.9 Схема соединения обмоток ЭД по схеме «треугольник» с применением пусковых конденсатов

Схема соединения обмоток двигателя «звезда» с применением пусковых конденсаторов представлена на рис. 10.


Рис.10 Схема соединения обмоток ЭД по схеме «звезда» с применением пусковых конденсаторов.

Пусковые конденсаторы Сп подключают параллельно рабочим конденсаторам при помощи кнопки КН на время 2-3 с. При этом скорость вращения ротора электродвигателя должна достигнуть 0.7…0.8 от номинальной скорости вращения.

Для запуска АД с применением пусковых конденсаторов удобно применять кнопку рис.11.


Рис.11

Конструктивно кнопка представляет собой трехполюсный выключатель, одна пара контактов которого замыкается, когда кнопка нажата. При отпускании контакты размыкаются, а остальная пара контактов остается включенной, до тех пор, пока не будет нажата кнопка стоп. Средняя пара контактов выполняет функцию кнопки КН (рис.9, рис.10), через которую подключают пусковые конденсаторы, две остальных пары работают как выключатель.

Может оказаться так, что в соединительной коробке электродвигателя концы фазных обмоток выполнены внутри двигателя. Тогда АД можно подключить только по схемам рис.7, рис. 10, в зависимости от мощности.

Существует еще схема соединения обмоток статора трехфазного электродвигателя — неполная звезда рис. 12. Выполнение соединения по данной схеме возможно, если начала и концы фазных обмоток статора выведены в соединительную коробку.


Рис.12

Подключать ЭД по такой схеме целесообразно, когда необходимо создать пусковой момент, превышающий номинальный. Такая необходимость возникает в приводах механизмов с тяжелыми условиями пуска, при пуске механизмов под нагрузкой. Следует отметить, что результирующий ток в питающих проводах превышает номинальный ток на 70-75%. Это необходимо учитывать при выборе сечения провода для подключения электродвигателя

Емкость рабочего конденсатора Ср для схемы рис. 12 рассчитывается по формуле:
.

Емкости пусковых конденсаторов должны быть в 2.5-3 раза больше емкости Ср. Рабочее напряжение конденсаторов в обеих схемах должно быть в 2.2 раза больше номинального напряжения.

Обычно выводы статорных обмоток электродвигателей маркируют металлическими или картонными бирками с обозначением начал и концов обмоток. Если же бирок по каким-либо причинам не окажется, поступают следующим образом. Сначала определяют принадлежность проводов к отдельным фазам статорной обмотки. Для этого следует взять любой из 6 наружных выводов электродвигателя и присоединить его к какому-либо источнику питания, а второй вывод источника подсоедините к контрольной лампочке и вторым проводом от лампы поочередно прикоснитесь к оставшимся 5 выводам статорной обмотки, пока лампочка не загорится. Загорание лампочки означает, что 2 вывода принадлежат к одной фазе. Условно пометим бирками начало первого провода С1 ,а его конец — С4. Аналогично найдем начало и конец второй обмотки и обозначим их С2 и С5, а начало и конец третьей — С3 и С6.

Следующим и основным этапом будет определение начала и конца статорных обмоток. Для этого воспользуемся способом подбора, который применяется для электродвигателей мощностью до 5 кВт. Соединим все начала фазных обмоток электродвигатели согласно ранее присоединенным биркам в одну точку (используя схему «звезда») и включим электродвигатель в однофазную сеть с использованием конденсаторов.

Если двигатель без сильного гудения сразу наберет номинальную часто­ту вращения, это означает, что в общую точку попали все начала или все концы обмотки. Если при включении двигатель сильно гудит и ротор не может набрать номинальную частоту вращения, то в первой обмотке следует поменять местами выводы С1 и С4. Если это не помогает, концы первой обмотки необходимо вернуть в первоначальное положение и теперь уже выводы С2 и С5 поменяйте местами. То же самоё сделайте; в отношении третьей пары, если двигатель продолжает гудеть.

При определении начал и концов обмоток строго придерживайтесь правил техники безопасности. В частности, прикасаясь к зажимам статорной обмотки, провода держите только за изолированную часть. Это необходимо делать еще и потому, что электродвигатель имеет общий стальной магнитопровод и на зажимах других обмоток может появиться большое напряжение.

Для изменения направления вращения ротора АД, включенного в однофазную сеть по схеме «треугольник» (см. рис.5), достаточно третью фазную обмотку статора (W) подсоединить через конденсатор к зажиму второй фазной обмотки статора (V).

Чтобы изменить направление вращения АД, включенного в однофазную сеть по схеме «звезда» (см. рис.7), нужно третью фазную обмотку статора (W) подсоединить через конденсатор к зажиму второй обмотки (V).

При проверке технического состояния электродвигателей нередко можно с огорчением заметить, что после продолжительной работы появляются посторонний, шум и вибрация, а ротор трудно повернуть вручную. Причиной этого может быть плохое состояние подшипников: беговые дорожки покрыты ржавчиной, глубокими царапинами и вмятинами, повреждены отдельные шарики и сепаратор. Во всех случаях необходимо осмотреть электродвигатель и устранить имеющиеся неисправности. При незначительном повреждении достаточно промыть подшипники бензином, и смазать их.

Похожие статьи:

  • 3 фазная сеть заземление Начинающим электрикам о заземлении Что здесь есть: Сколькими усадьбами владеет премьер-министр Медведев? Узнайте из расследования Фонда по борьбе с коррупцией. Вот видеоверсия. А здесь текстовый вариант. Заземление в сетях с […]
  • Раки узо Рецепт УЗО (OUZO) 7 дней.Если класть анис 100г(2 аптечных пачки) на 1 литр 70% спирта. Анис - бадьян 50+50 г на на 1 литр 70% спирта. 7 дней настаиваем(на батарее отопления можно и 3 дня, если на водяной бане, то 3 часа). Убираем из […]
  • Подключение трехфазного двигателя на 220 вольт к однофазной сети Подключение 3 фазного двигателя на 220 Как подключить трехфазный двигатель к сети 220 вольт Подключение 3х фазного двигателя на 220 без конденсаторов Подключение 3х фазного двигателя на 220 с конденсатором Подключение 3х фазного […]
  • Как считается квадрат провода Паленые провода или как считать сечение многожильного провода В последнее время китайцы и другие недобросовестные личности, стали активно клепать поддельный многожильный провод. В этом убедился на собственной шкуре, купил "хороший провод" […]
  • Схема запуска трехфазного двигателя с 220 без конденсаторов Бесконденсаторный пуск трехфазных электродвигателей от однофазной сети Как известно, для запуска трехфазного электродвигателя (ЭД) с короткозамкнутым ротором от однофазной сети наиболее часто в качестве фазосдвигающего элемента […]
  • Смета на заземление шкафов Смета на заземление шкафов Юлия. г. Чт Авг 07, 2008 11:18 Ваша реклама Valentina Чт Авг 07, 2008 13:36 Teac Ср Окт 15, 2008 20:39 где вы их применяете? Эти копачки идут на может изоляторов типа ТФ-20. 3. Вы контрольные кабеля и […]