Как определить провода в блоке питания

Как определить совместимость блока питания и устройства

Случается, сетевой блок питания какого-нибудь портативного устройства перегорает, и нам приходится бежать срочно в магазин дабы купить новый. Но как определить, совместим ли предлагаемый в магазине блок питания с нашим устройством? Подойдет ли он, не навредит ли устройству, не сожжет ли его, потянет ли, не сгорит ли сам? Вот и встает вопрос о выборе наиболее подходящего блока питания.

Речь может идти о заряднике для планшета, о блоке питания для роутера, ноутбука или принтера, для сканера или монитора, для игровой приставки или для чего-нибудь еще, вплоть до автоматического аппарата для измерения артериального давления. Мало ли сегодня в нашем быту устройств с внешними блоками питания (как правило постоянного тока), которые втыкаются в розетку.

Напряжение питания (VOLTAGE)

Первым шагом найдите данные о напряжении, которое необходимо вашему устройству. Оно измеряется в вольтах и обозначается 24 В, 12 V, 5V и т. д. Соответствующая надпись имеется обычно как на самом устройстве, так и на родном блоке питания от него. Вход для подключения блока питания к устройству, как правило, сопровожден надписью типа DC IN 5V, обозначающей вход постоянного тока.

Рядом с обозначением входа обычно имеется и цифра требуемого номинального напряжения. В крайнем случае откройте инструкцию по эксплуатации от вашего устройства, там в спецификации точно указано напряжение питания.

Узнав нужное напряжение, вы поймете, какого выходного напряжения блок питания вам нужен. На блоке питания будет соответствующая надпись, например OUTPUT VOLTAGE 5V DC. В самом крайнем случае допускается погрешность по напряжению до 0,5 вольт в большую или в меньшую сторону, однако лучше если напряжение покупаемого блока питания окажется точно равным номинальному для вашего устройства.

Итак, требуемое номинальное напряжение вам известно. На входном напряжении внимание не заостряем, поскольку в розетке у нас всегда 220-240 вольт переменного напряжения (AC), соответственно и блок питания выбираем сетевой на это входное напряжение.

Ток потребления (AMPERAGE, CURRENT)

Следующим шагом необходимо выяснить ток потребления вашего устройства. Эта информация так же, как и напряжение, указана на устройстве возле разъема подключения блока питания. Ток потребления измеряется в амперах, и указан он цифрами возле разъема, либо в крайнем случае — в спецификации или на том же родном блоке питания. Например 1А или INPUT CURRENT 1A – на питаемом устройстве, соответственно OUTPUT CURRENT 1A – на выходе родного блока питания.

Если информации о токе нет, то точно есть информация о потребляемой мощности по постоянному току, она измеряется в ваттах. Написано например: 20 Вт или 20 W. Разделите указанные ватты на вольты, и вы получите требуемые устройству амперы.

Полученное значение — это и будет минимальный ток, который обязан будет обеспечить новый блок питания. Допустим, указано на устройстве «5W 5V DC», значит ток потребления составляет 1 А. Или прямо указано 5V 1A – ток нужен в 1 ампер.

Этот ток требуется устройству, и его должен обязательно без перегрузки давать блок питания. Кстати, если блок питания способен дать больше ампер (например, в продаже есть только блок питания с выходными параметрами 5V 2A, а вы насчитали, что достаточно всего 1 А) – такой блок питания тоже подойдет, ибо ваше устройство возьмет столько тока, сколько ему нужно, не более. Блок питания будет в этом случае взят с запасом, в процессе работы он меньше нагреется, точно не перегреется.

Разъем питания

Наконец, взгляните на разъем. Есть множество стандартных разъемов питания, включая мини и микро-USB, а также круглые, двухштыревые и т. д. Измерьте линейкой диаметр и длину разъема, отметьте его форму, а лучше возьмите с собой штекер или хотя бы его фото или рисунок, когда соберетесь в магазин. Разумеется, лучше всего взять с собой в магазин старый блок питания или само устройство, к которому выбираете блок.

Если из блоков питания, имеющихся в ассортименте магазина, в продаже есть лишь те, что подходят по напряжению и току, но не подходят штекером, — это в конце концов тоже не беда. Штекер можно перепаять и от старого блока питания, либо вообще припаять провод от блока питания намертво внутрь разъема устройства (для некоторых устройств такое решение приемлемо).

С задачей перепайки разъема справится за 5 минут любой работник сервисного центра по ремонту бытовой техники или мобильных устройств. Главное — чтобы у блока питания было правильное выходное напряжение и выходной ток был больше или равен току потребления вашего устройства.

Распиновка блока питания компьютера

Пошаговая распиновка блока питания компьютера для массового пользователя. Рассматриваются варианты распиновки, назначения коннекторов, обзор напряжения по проводам и их маркировка.

Современные блоки питания

Сегодняшние блоки питания несколько отличаются от своих предшественников, не только современным дизайном, повышенной мощностью и улучшенными характеристиками, но и наличием новых коннекторов для устройств, которых раньше не было в большинстве обычных компьютеров. Это связано с разработкой новых устройств или модификацией старых, повышением технических характеристик уже имеющихся и как следствие, необходимостью дополнительного питания.

Помимо обычных блоков питания, существуют модульные блоки или частично модульные. Различие между блоками в том, что в модульных полностью или частично, кабели заменены соответствующими разъёмами для их подключения и полностью соответствуют стандартам разъёмов обычных блоков. Это хорошо тем, что неиспользуемые провода не будут находиться в корпусе компьютера и мешать при его модернизации, так и циркуляции воздуха внутри.

Есть стандарты сертификации для энергоэффективности и КПД стандартного блока питания, для измерения эффективности подачи питания и распределения его мощности на внутренние устройства компьютера. Именно потребление дополнительного питания обуславливает появление новых коннекторов, наличие дополнительных проводов и контактов.

В современных блоках питания по-прежнему присутствуют основные коннекторы (разъёмы), использующиеся в более ранних моделях, подающие для устройств стандартное для них напряжение в 12, 5 и 3,3 вольта. Так для подключения к материнской плате используется разъём 24 pin (от английского pin – штырь, контакт), который претерпел некоторые изменения. В более старых моделях материнских плат, а соответственно и в блоках питания, использовался разъём в 20 pin. Поэтому, в большинстве современных БП (блок питания) разъём выполнен в виде разборной модели, представляющий собой стандартный разъём в 20 pin + дополнительный коннектор в 4 pin, для современных моделей материнских плат.

При использовании только 20 pin, дополнительный коннектор в 4 pin снимается (сдвигается вниз по пластмассовым рельсам) и остаётся отдельно в резерве. Далее в БП обязательно присутствуют разъёмы типа molex (по названию компании-разработчика фирмы Molex) в 4 pin, для «запитки» оптических дисков и других видов накопителей с интерфейсом PATA (Parallel ATA), вытесненных более современным интерфейсом SATA (Serial ATA). Для питания накопителей SATA обычно присутствуют два специальных разъёма в 15 pin (или переходников-адаптеров питания PATA HDD –> SATA HDD).

А также в современном БП должны быть коннекторы питания для центрального процессора 4 или 8 pin (могут быть разборными), коннектор для питания видеоплаты (6/8 pin, также может быть разборным и содержать 6 pin + 2 отдельных контакта). В некоторых моделях может присутствовать коннектор Floppy (4-pin), для питания флоппи-дисководов, некоторых картридеров и других устройств, которые используют данный устаревший разъём.

Маркировка для проводов блока питания

Для удобства технического обслуживания БП и материнских плат широко используется цветовая маркировка, когда провода окрашены в определённый цвет в зависимости от конкретного подаваемого напряжения. Буквенная маркировка используется в технической документации к вышеуказанным изделиям. Для стандартного типа ATX распиновка блока питания компьютера с разъёмами для подключения к материнской плате будет выглядеть следующим образом:

Где контакты с маркировкой GND (Ground) – это земля, а контакты 8, 13 и 16 являются сигналами управления. Таким образом замкнув контакты 16 и 15 (или любой чёрный GND) можно включить блок питания без подключения материнской платы. К 13 контакту подсоединены сразу 2 провода, один из которых является отводом. Провода имеет меньшее сечение, в отличие от стандартных проводов, которое равно 22 по американской калибровке проводов. Тогда как сечение проводов на 13 контакте составляет лишь 18.

Для стандартных блоков питания представленная выше таблица распиновки коннектора для материнской платы является универсальной и подходит ко всем материнских платам формата ATX.

Коннекторы типа molex

Данный вид 4 pin коннекторов PATA (Molex 8981) является наиболее распространённым и универсальным. В случае отсутствия требуемого разъёма, с помощью коннектора Molex 8981 и специального переходника (например, 4 pin —> 6 pin) можно подвести питание к видеокарте, или с помощью другого переходника (например, 4 pin —> 3 pin) можно подключить дополнительный вентилятор.

Универсальность разъёма объясняется наличием самых «востребованных» напряжений на контактах, распиновка которых выглядит так:

С помощью разъёма Molex 8981 к блоку питания может подсоединено несколько различных устройств, адаптеров, переходников и разветвителей, количество которых ограничено мощностью блока питания и системой охлаждения внутри корпуса. Разветвители предоставляют получить из одного разъёма Molex 8981 сразу два или три (тройник) разъёма. Переходники-адаптеры призваны заменить отсутствующий коннектор на БП, посредством подключения к разъёму Molex 8981.

Коннекторы типа SATA

Большинство современных накопителей информации, включая жёсткие диски и оптические накопители используют интерфейс SATA, как для подключения питания, так и передачи информации. Питание через SATA подаётся через 15 пиновый коннектор, к которому подсоединяются 5 проводов, из-за чего коннектор называют 5-ти пиновым. Но данное определение неверно.

Распиновка разъёма выглядит так:

Данная распиновка корректна для предуставленных коннекторов питания SATA, так как имеется наличие серого сигнального провода и оранжевого с напряжением в + 3.3V. Наличие данных проводов требуется для корректной работы в RAID-массивах и для «горячей» замены жёстких дисков. Современные носители информации, питающиеся от разъёма SATA, могут работать и от четырёх проводов, как у 4 pin коннекторов PATA. В устройства встроены преобразователи напряжения, помогающие использовать переходник питания PATA (Molex 8981) —> SATA для работы с накопителем, при отсутствии предустановленного коннектора SATA.

Смотрите так же:  Узо ставят после автомата

Коннекторы для видеокарт

В стандартных БП и более высокого уровня используются коннекторы 6 и 8 пин, а могут присутствовать сразу оба, для дополнительного питания видеокарт. Современные видеокарты предназначены для установки в разъём PCI-E материнской платы. Бюджетные и видеокарты начального уровня не нуждаются в дополнительном питании, а получают его от шины PCI-E до максимального потребления мощности в 75 ватт. А вот игровые и профессиональные видеокарты, возможно и несколько карт, подключённых при помощи технологии CrossFireX или SLI, в зависимости от «начинки» требуют повышенной мощности и питания.

Если видеокарта имеет средние требования к потреблению питания, то на ней устанавливается дополнительный разъём в 6 или 8 пин. Разъём в 6 пин добавляет мощности в 75 ватт, а 8 пиновый 150 ватт. На очень мощных видеокартах могут быть задействованы сразу два разъёма, и суммарная мощность потребляемой энергии составит 300 ватт. Распиновка для этих коннекторов выглядит так:

    8 пин: 1-2-3 – жёлтые +12V, 4-5-6-7-8 4 – черные GND.

  • 6 пин: 1-2-3 – жёлтые 12V, 4-5-6 – черные GND.
  • Подобные компоненты требуют повышенную мощность блока питания, а также следует учитывать, что при работе в режимах CrossFireX или SLI будет происходить повышенная теплоотдача, а соответственно потребуются ещё и дополнительные мощности для охлаждения. В зависимости от модели блока питания, линии для подачи напряжения в +12V могут быть раздельными, о чём написано на кожухе БП или в его техническом паспорте. 8 пиновые коннекторы предназначены не только для питания видеокарт, а также и для дополнительного питания процессора.

    Стоит заметить, что сами коннекторы с виду очень похожи и на первый взгляд кажутся одинаковыми. На самом деле коннекторы имеют разную распиновку и форм-фактор, не следует пытаться вставлять коннектор питания процессора в разъём видеокарты или наоборот. Если для видеокарты требуется дополнительное питание, а оно по каким-либо причинам не подключено или не поступает, то возможен как отказ работы самой карты, так и запуска компьютера в целом.

    Коннекторы для дополнительного питания процессора

    Данный тип коннекторов бывает двух типов – 4-х и 8 пиновые. В зависимости от потребляемой процессором мощности используется соответствующий разъём, для более мощного 8 пин, для менее требовательного – 4 пин. Дополнительные затраты мощности требуются для новых высокопроизводительных моделей, многоядерных процессоров и при разгоне. Распиновка разъёмов:

      4 пин: 1-2 – черные GND, 3-4 – жёлтые 12V;

  • 8 пин: 1-4 – черные GND, 5-8 – жёлтые 12V.
  • Наличие данных коннекторов зависит от производителя БП, может содержать как 2 разъёма сразу, так и любой из них, притом 8 пиновый коннектор может быть разборным и состоять из двух 4 пиновых, что очень удобно и позволяет его использование в соответствующем разъёме материнской платы.

    Дополнительные коннекторы

    Из дополнительных разъёмов стоит заметить 4 pin FLOPPY и 3-4 pin для вентиляторов. Первый считается устаревшим, как и говорилось в начале, хотя в редких случаях можно увидеть данный разъём на некоторых БП. Распиновка такова:

    4 pin FLOPPY: 1 – красный, +5V, 2-3 – чёрный GND, 4 – жёлтый +12 V.

    А вот тема охлаждения или подключения дополнительных вентиляторов сейчас очень актуальна. Некоторые производители корпусов ведут специальные разработки и снабжают свои изделия повышенным количеством мест под кулеры и вентиляторы 12-14. Чтобы запитать такое количество кулеров для них потребуются специальные переходники-адаптеры.

    Разумеется, на материнской плате есть специальные разъёмы для вентиляторов, один из которых присутствует обязательно – кулер процессора (CPU FAN). В зависимости от производителя материнских плат подобных разъёмов может быть несколько. Но в случае с большим количеством кулеров потребуются соответствующие переходники. Сейчас наиболее часто встречаются разъёмы 4 пин и различаются маркировкой распиновки для разных типов плат:

      4 pin FAN (1 вариант): 1 – чёрный GND, 2 – жёлтый +12V, 3 – зелёный сигнал тахометра, 4 – синий PWM (или ШИМ);

    4 pin FAN (2 вариант): 1 – чёрный GND, 2 – красный +12V, 3 – жёлтый сигнал тахометра, 4 – синий PWM (или ШИМ);

  • 3 pin FAN: 1 – чёрный GND, 2 – красный +12V, 3 – жёлтый сигнал тахометра.
  • Отсюда видно, что пины коннекторов различаются только маркировкой, а в 3-х пиновом варианте отсутствует провод ШИМ (широко-импульсной модуляции), который отвечает за процесс управления мощностью, а, следовательно, возможность контролировать число оборотов кулера. Таким образом 3-х пиновый вентилятор будет работать постоянно на максимальной скорости, в отличие от программно-регулируемых 4-х пиновых кулеров. Соответственно, можно подключить 4-х пиновый кулер в разъём для 3-х пинового, при этом работоспособность будет та же, за исключением возможности контроля скорости вращения.

    В некоторых случаях может потребоваться дополнительное питание для тюнинга и моддинга компьютера. Здесь, как правило, возможности ограничиваются мощностью блока питания и фантазией владельца. Подключение разных лампочек, подсветок, отражателей и прочего, потребуют изрядное количество мощностей. Для подобных излишеств нелишним будет большой и просторный корпус, желательно прозрачный или только частично. Тоже относится и к установке водяного охлаждения, отводы которого нередко имеет разнообразную подсветку.

    Реже, устройствам ПК требуется напряжение отличное от стандартного, которое выдаёт БП. Желаемый результат достигается комбинацией проводов, напряжение которых на выходе рассчитывается по формуле: положительное +0 = разность. Но это уже для продвинутых сборщиков ПК.

    В заключение

    При подключении большого количества устройств учитывайте возможности имеющегося блока питания. При его перегрузке может произойти непредвиденный сбой в работе компьютера, а также повреждение как самого блока питания, так и компонентов системного блока. В случае перепайки, замены боксового кулера и прочих нарушениях целостности комплектующих, вы лишаетесь гарантии и бесплатного технического обслуживания. Не лишним будет наличие прибора для измерения напряжения и мощности, а лучше мультитестера (мултиметра) на все случаи работы с ПК.

    Совет 1: Как определить полярность провода

    • Как определить полярность провода
    • Как определить фазу ноль
    • Как определить полярность аккумулятора
    • мультиметр, батарея питания на 3 вольта, индикаторная отвертка, прозвоночный провод.
    • как узнать какой проводник был у меня

    Совет 2: Как проверить полярность

    • — картофель;
    • — банка с водой;
    • — свеча.

    Совет 3: Как определить полярность аккумулятора

    • как определить полярность батареи

    Совет 4: Как определить провода по цвету

    • Техническое описание кабеля

    Чтобы определить провода по цвету в трехфазной проводке, воспользуйтесь следующим правилом.

    Современная маркировка трехфазных кабелей такая: фазы A, B, C, маркируются соответственно белым, черным и красным цветом. Нейтральный провод обозначен синим цветом, а провод заземления – желто-зеленым. В маркировке проводов однофазной сети используется три цвета: белый – фазный, синий – нулевой, заземление обозначено проводом желто-зеленого цвета.

    Так, например, если произошел обрыв в кабеле СБЗПУ или СБПУ, то определить цвет провода можно по следующей схеме:
    Пара 1. Цвет жилы Б – голубой, жилы А — белый.

    Пара 2. Цвет жилы Б – желтый, жилы А — белый.

    Пара 3. Цвет жилы Б – зеленый, жилы А — белый.

    Пара 4. Цвет жилы Б – коричневый, жилы А — белый.

    Пара 5. Цвет жилы Б – серый, жилы А — белый.

    Пара 6. Цвет жилы Б – красный, жилы А — белый.

    Пара 7. Цвет жилы Б – голубой, жилы А — красный.

    Пара 8. Цвет жилы Б – желтый, жилы А — красный.

    Пара 9. Цвет жилы Б – зеленый, жилы А — красный.

    Пара 10. Цвет жилы Б – коричневый, жилы А — красный.

    Пара 11. Цвет жилы Б – серый, жилы А — красный.

    Пара 12. Цвет жилы Б – красный, жилы А — красный.

    3 простых способа как проверить блок питания компьютера

    Не включается компьютер? В этом материале вы найдете ответ на вопрос: как проверить блок питания компьютера.

    Тезисное решение этой проблемы есть в одной из наших прошлых статей.

    Ознакомившись и применив наши рекомендации на практике, вы пришли к выводу, что, возможно, проблема кроется в блоке питания ПК.

    Содержание:

    О том как проверить его работоспособность читайте в нашей сегодняшней статье.

    Блок питания (БП) — вторичный источник питания (первичным источником выступает розетка), цель которого состоит в преобразовании переменного напряжения в постоянное, а также обеспечении питания компьютерных узлов на заданном уровне.

    Таким образом, БП выступает промежуточным звеном между электрической сетью и внутренними компонентами компьютера и соответственно от его исправности и правильной работы зависит работоспособность остальных компонентов.

    Причины и признаки неисправности блока питания

    Как правило, причинами из-за которых БП выходят из строя могут быть:

    низкое качество напряжения сети (частые перепады напряжения в сети, а также его выход за пределы рабочего диапазона БП);

    низкое качество компонент и изготовления в целом (данный пункт актуален для дешёвых БП);

    Определить вышел из строя БП или какая-то другая составляющая можно по следующим признакам:

    после нажатия на кнопку питания системного блока ничего не происходит — нет световой и звуковой индикации, не вращаются вентиляторы охлаждения;

    компьютер включается через раз;

    операционная система не загружается или загружается, но через несколько секунд компьютер отключается, хотя есть звуковая и световая индикация и работают вентиляторы;

    Проверку БП можно выполнить несколькими способами.

    О последовательности каждой из проверок мы поговорим ниже, а сейчас лишь ограничимся короткой информацией для понимания того, что мы будем делать.

    Суть первого способа заключается в проверке подачи напряжения и на этом этапе мы выполняем грубую проверку — есть напряжение или нет.

    Второй способ заключается в проверке выходного напряжения, мы уже упоминали, что напряжение должно быть строго в определённых пределах и отклонение в любую сторону недопустимо.

    Третий способ заключается в визуальном осмотре БП на предмет наличия вздутых конденсаторов.

    Для удобства восприятия алгоритм каждой из проверок будет представлен в виде пошаговой инструкции.

    Читайте также:

    Проверка подачи напряжения блоком питания

    Шаг 1. Выключить компьютер. Необходимо помнить, что БП компьютера работает с опасным для человека напряжением — 220В.

    Поэтому настоятельно рекомендуем, прежде чем выполнять все остальные пункты инструкции, обесточить компьютер.

    Смотрите так же:  Цвета провода для сети

    Шаг 2. Отрыть боковую крышку системного блока.

    Запомните или для удобства сфотографируйте, то каким образом выполнено подключение питания к каждой из компонент (материнская плата, жёсткий диски, оптический привод, пр.) после чего их следует отсоединить от БП.


    Шаг 3. Найти канцелярскую скрепку. Скрепкой мы будем замыкать контакты на БП и если её под рукой не оказалось подойдёт проволока схожая со скрепкой по длине и диаметру.

    После этого скрепку необходимо согнуть в виде латинской буквы «U».

    Шаг 4. Найти 20/24 контактный разъем питания. Данный разъем очень просто найти — это жгут из 20 или 24 проводов соответственно, которые идут от блока питания и подключались к материнской плате ПК.

    Шаг 5. Найти разъёмы зелёного и чёрного провода на коннекторе. В разъёмы, к которым подключены данные провода, необходимо вставить скрепку.

    Скрепка должна быть надёжно зафиксирована и иметь контакт с соответствующими разъёмами.

    Шаг 6. Включить блок питания. Подаём питание на БП (не забудьте включить кнопку питания на самом БП, если таковая была выключена на Шаге 1).

    Шаг 7. Проверка работоспособности вентилятора БП. Если устройство рабочее и проводит ток, то вентилятор, расположенный в корпусе БП должен вращаться при подаче напряжения.

    Если вентилятор не вращается выполните проверку контакта скрепки с зелёным и чёрным разъёмам 20/24 контактного разъёма.

    Как уже было сказано выше, данная проверка не гарантирует, что устройство рабочее. Данная проверка позволяет определить, что блок питания включается.

    Для более точной диагностики необходимо провести следующий тест.

    Как проверить блок питания. Проверка мультиметром

    В этой теме мы рассмотрим устройство простейшего блока питания от старого магнитофона. Блок питания перестал выдавать на выходе напряжение 9 вольт, в связи с чем, мне необходимо было проверить блок питания и устранить неисправность.

    Детали блока питания

    Описываемый блок питания с выходным напряжением девять вольт и силой тока — 0,3 ампера, состоит из следующих элементов:

    • предохранитель на 0,16 ампер;
    • трансформатор;
    • светодиод;
    • диод;
    • три конденсатора.

    Как отремонтировать блок питания

    Что необходимо сделать при этом, как провести диагностику для разрешения такого вопроса: «Как отремонтировать блок питания». Для этого следует прозвонить отдельные участки электрической цепи:

    • от вилки шнура до первичной обмотки трансформатора,
    • проверить на сопротивление первичную обмотку трансформатора,
    • проверить на сопротивление вторичную обмотку трансформатора,
    • проверить исправность диода на его проводимость (от анода к катоду)

    и проверить емкость трех конденсаторов в блоке питания.

    Как проверить трансформатор блока питания

    Чтобы измерить сопротивление первичной и вторичной обмоток трансформатора, можно воспользоваться любым из измерительных приборов, такими как:

    Соответственно, тот или иной измерительный прибор нужно установить в диапазон измерения сопротивления. Для измерения напряжения на выводах проводов вторичной обмотки трансформатора, измерительный прибор (стрелочный тестер, мультиметр) нужно установить в диапазон измерения соответствующего напряжения.

    В первом фотоснимке показано, как нужно пользоваться стрелочным тестером при измерении сопротивления обмотки (первичной, вторичной) трансформатора. Стрелочный тестер, в данном примере, устанавливается в диапазон измерения сопротивления и соответственно, стрелка прибора укажет сопротивление обмотки трансформатора в зависимости от количества витков в этой обмотке и сечения провода обмотки (фото 1).

    Во втором фотоснимке наглядно показано, как проводится измерение напряжения на выводах вторичной обмотки трансформатора (фото 2). То-есть, в этом примере, измерительный прибор устанавливается в диапазон измерения переменного напряжения от 20 до 200 вольт, так как трансформатор выдает на выходах проводов вторичной обмотки — округленно, 28 вольт.

    Проверка емкости конденсатора

    Для измерения емкости конденсатора (фото 3), нужно установить измерительный прибор в диапазон измерения емкости конденсатора в соответствии с указанной емкостью на корпусе конденсатора. То-есть, к примеру, для конденсатора с емкостью 400 микрофарад емкость должна соответствовать показанию на дисплее прибора. Измерение емкости конденсатора нужно проводить при полной разрядке конденсатора, во избежание повреждения электрическим разрядом сам измерительный прибор.

    Для Вас предоставлены примеры (фотоснимки) не именно для элементов электроники, которые состоят в этом блоке питания, а чтобы познать ту информацию, которая пригодится в Вашей дальнейшей практике по ремонту бытовой аудио и видео техники.

    Как проверить диод

    Диод как известно, проводит ток в одном направлении, от анода к катоду. Непроводимость от катода к аноду, объясняется наличием большого значения сопротивления и обратный ток в этом направлении очень низок. Как проверяется диод, наглядно показано на фотоснимке (фото 4). После проверки отдельных элементов электроники, можно легко установить причину неисправности ремонтируемого Вами блока питания.

    Причина неисправности для блока питания, который мне пришлось ремонтировать, заключалась в простейшей поломке — в неисправности предохранителя.

    Как проверить блок питания

    Сегодня мы с Вами будем говорить о том, как проверить блок питания компьютера? Проверку мы будем проводить с помощью двух разных измерительных приборов: мультиметра (мультитестера) и одной китайской «приспособы» 🙂 Ими мы проведем необходимые измерения и попытаемся выявить неисправность блока питания компьютера. Будем надеяться, что с помощью данных приборов проверка блока питания пройдет не только успешно, но и познавательно!

    Начнем, как и положено, с небольшой предыстории. Был в нашем IT отделе случай: рабочая станция пользователя включалась раза с третьего-четвертого. Потом — совсем перестала загружаться. Вообщем — «классика жанра», все вентиляторы крутятся, но после включения — черный экран.

    Грешим на неисправность блока питания. Как же нам с Вами проверить блок питания компьютера? Давайте извлечем его из корпуса, автономно запустим и померяем напряжения на его выходе.

    Как уже упоминалось, проведем проверку блока питания двумя разными измерительными приборами: одним безымянным китайским устройством и самым обычным мультиметром долларов за 10-15. Так мы сразу убьем двух зайцев: научимся работать с этими измерителями и сравним их показания между собой.

    Предлагаю начать с простого правила: напряжения блока питания надо проверять, предварительно нагрузив чем-то сам БП. Дело в том, что без «нагрузки» мы будем получать неточные (немного завышенные) результаты измерений (а оно нам надо?). Согласно рекомендациям стандарта для блоков питания без подключения к ним нагрузки они вообще не должны запускаться.

    Конечно, (в случае проведения замеров мультиметром) можно и не отключать БП от материнской платы компьютера (сохранив, тем самым, для него рабочую нагрузку), но тогда я просто не смогу нормально сфотографировать для Вас сам процесс измерений 🙂

    Итак, предлагаю нагрузить наш БП обычным 8-ми сантиметровым внешним вентилятором на 12V (можно — двумя), который мы на время проверки блока питания подключим к «Molex» разъему испытуемого. Вот так:

    А вот так выглядит наш китайский тестер (вещь в себе) для проверки БП о котором я говорил раньше:

    Как видите, устройство без названия. Надпись «Power Supply Tester» (тестер электропитания) и — все. Но нам название не обязательно, нам надо чтобы он замеры производил адекватно.

    Я подписал основные коннекторы, с которых может снимать показания данное устройство, поэтому здесь — все просто. Единственно, перед тем как начинать проверку блока питания компьютера убедитесь в том, что правильно подключили дополнительный 4-х контактный штекер на 12V. Он используется при подключении блока питания к соответствующему разъему возле центрального процессора.

    Давайте разберем этот момент подробнее. Вот интересующая нас часть устройства крупным планом:

    Внимание ! Видите предупреждающую надпись «Use correct connector»? (используйте подходящий коннектор). При неправильном подключении мы не то что правильно проверить блок питания не сможем, мы сам измеритель угробим ! На что тут нужно обратить внимание? На подсказки: «8P (пин)», «4P (пин)» и «6P (пин)»? К 4-х пиновому разъему подключается 4-х контактный (12-ти вольтовый) штекер питания процессора, к «6P» — шести контактный разъем дополнительного питания (к примеру — видеокарты), к «8P», соответственно, — 8-ми контактный. Только так и никак иначе!

    Давайте посмотрим, как проверить блок питания данным устройством в «боевых» условиях? 🙂 Вскрываем системный блок, внимательно подключаем к тестеру нужные нам коннекторы и смотрим на экран с результатами замеров.

    На фото выше мы можем видеть на цифровом табло показатели замера. Предлагаю по порядку разобрать их все. Прежде всего, стоит обратить внимание на три зеленых светодиода слева. Они указывают на наличие напряжения по основным линиям: 12, 3,3 и 5V.

    По центру на экране отображается числовой результат измерений. Причем отображаются как плюсовые значения, так и значения напряжения со знаком «минус».

    Давайте еще раз посмотрим на фото выше и слева направо пройдемся по всем показаниям, тестера при проверке блока питания компьютера.

    • — 12V (в наличии — 11,7V) — в норме
    • + 12V2 (в наличии 12,2V) — ток на отдельном 4-х контактном разъеме возле процессора)
    • 5VSB (5.1V) — здесь V=Вольт, SB — «standby» (дежурное напряжение — «дежурка»), с номиналом в 5В, которые устанавливаются на заданном уровне не позднее чем через 2 секунды после включения блока в сеть.
    • PG 300ms — сигнал «Power Good». Измеряется в миллисекундах (ms). О нем поговорим чуть ниже 🙂
    • 5V (есть 5.1V) — линии, которые служат для подачи энергии на жесткие диски, оптические приводы, дисководы и другие устройства.
    • + 12V1 (12.2V) — которые подаются на основной (20 или 24-х контактный коннектор) и коннекторы дисковых устройств.
    • + 3,3 V (в наличии — 3,5V) — используется для подачи питания на платы расширения (также присутствует на коннекторе SATA).

    Это мы произвели проверку блока питания, который был полностью исправен (чтобы набить руку), так сказать 🙂 Теперь вопрос, как проверить блок питания компьютера, который вызывает у нас подозрения? С него эта статья и начиналась, помните? Снимаем БП, «вешаем» к нему нагрузку (вентилятор) и подключаем к нашему тестеру.

    Обратите внимание на выделенные области. Мы видим что напряжения БП компьютера по линиям 12V1 и 12V2 составляют 11,3 V (при номинале в 12V).

    Хорошо это или плохо? Спросите Вы 🙂 Отвечаю: согласно стандарту, есть четко заданные границы допустимых значений, которые считаются «нормальными». Все что в них не вписывается — иногда тоже замечательно работает, но зачастую — глючит или не включается вообще 🙂

    Для наглядности — вот таблица допустимого разброса напряжений:

    Первая колонка показывает нам все основные линии, которые есть в БП. Столбец «Допуск» это — максимально допустимое отклонение от нормы (в процентах). Согласно с ним, в поле «мин» указывается минимально допустимое значение по данной линии. Столбец «ном» приводит номинальный (рекомендуемый показатель, согласно стандарту). И — «макс» — максимально допустимое.

    Как видите, (на одной из предыдущих фотографий) наш результат замера по линиям 12V1 и 12V1 равен 11,30V и он не вписывается в стандартный пятипроцентный разброс (от 11,40 до 12,60V). Данная неисправность блока питания, по видимому, и приводит к тому, что компьютер не включается вообще или запускается с третьего раза.

    Итак, неисправность, вызывающую подозрения мы обнаружили. Но как произвести дополнительную проверку и убедиться, что проблема именно в заниженном напряжении +12V? С помощью нашего (самого обычного) мультиметра под маркой «XL830L».

    Как проверить блок питания с помощью мультиметра?

    Запускать, блок будем так, как описано в одной из предыдущих статей, замыкая два контакта (пина) скрепкой или куском проволоки подходящего диаметра.

    Теперь — подсоединяем к БП внешний вентилятор (помним про «нагрузку») и — кабель 220V. Если мы все сделали правильно, то внешний вентилятор и «карлсон» на самом блоке начнут вращаться. Картина, на этом этапе, выглядит следующим образом:

    На фото выделены приборы, с помощью которых мы будем проверять блок питания. Работу тестера из поднебесной мы уже рассматривали в начале статьи, теперь произведем те же измерения, но уже с помощью цифрового мультиметра.

    Здесь нужно немного отвлечься и рассмотреть поближе сам разъем БП компьютера. Точнее — те напряжения, которые в нем присутствуют. Как мы можем видеть (на одном из предыдущих фото) он состоит из 20-ти (или же — 24-ти четырех) проводов разного цвета.

    Эти цвета употреблены не просто так, а обозначают весьма определенные вещи:

    • Черный цвет это — «земля» (COM, он же — общий провод или — масса)
    • Желтый цвет + 12V
    • Красный: + 5V
    • Оранжевый цвет: +3,3V

    Предлагаю проверить и рассмотреть каждый пин отдельно:

    Так — гораздо нагляднее, не правда ли? Про цвета Вы помните, да? (черный, желтый, красный и оранжевый). Это — основное, что нам надо запомнить и понять, прежде чем самостоятельно проверять блок питания. Но есть еще несколько пинов, на которые нам надо обратить внимание.

    В первую очередь это провода:

    1. Зеленый PS-ON — при замыкании его с «землей» блок питания запускается. На схеме это показано, как «БП Вкл.». Именно эти два контакта мы замыкаем с помощью скрепки. Напряжение на нем должно быть 5V.
    2. Далее — серый и передаваемый по нему сигнал «Power Good» или — «Power OK». Также 5V (смотрите в примечании)
    3. Сразу за ним — фиолетовый с маркировкой 5VSB (5V Standby). Это — пять вольт дежурного напряжения (дежурка). Оно подается в компьютер даже тогда, когда он выключен (кабель на 220V должен быть, естественно, подключен). Это нужно, к примеру, для того, чтобы иметь возможность отправить удаленному компьютеру по сети команду на запуск «Wake On Lan».
    4. Белый (минус пять Вольт) — сейчас практически не используется. Раньше служило для обеспечения током плат расширения, устанавливаемых в ISA слот.
    5. Голубой (минус двенадцать Вольт) — на данный момент потребляют интерфейсы «RS232» (COM порт), «FireWire» и некоторые PCI платы расширения.

    Перед тем, как проверять блок питания мультиметром, рассмотрим еще два его разъема: дополнительный 4-х контактный для нужд процессора и «Molex» коннектор, для подключения жестких дисков и оптических приводов.

    Здесь мы видим знакомые уже нам цвета (желтый, красный и черный) и соответствующие им значения: + 12 и + 5V.

    Для большей наглядности скачайте себе полную расшифровку всех напряжений БП отдельным архивом.

    Сейчас давайте с Вами убедимся, что полученные нами теоретические знания вполне подтверждаются на практике. Каким же образом? Предлагаю начать с внимательного изучения заводского «стикера» (наклейки) на одном из реальных блоков питания стандарта ATX.

    Обратите внимание на то, что подчеркнуто красным. «DC OUTPUT» (Direct Current Output — выходное значение постоянного тока).

    • +5V=30A (RED) — плюс пять В, обеспечивает силу тока в 30 Ампер (красный провод) Мы ведь помним из текста выше, что по красному у нас поступает именно +5V?
    • +12V=10A (YELLOW) — по плюс двенадцать В мы имеем силу тока в десять Ампер (ее провод — желтый)
    • +3.3V=20A (ORANGE) — линия три и три десятых В может выдержать силу тока в двадцать Ампер (оранжевый)
    • -5V (WHITE) — минус пять В — по аналогии с описанным выше (белый)
    • -12V (BLUE) — минус двенадцать В (голубой)
    • +5Vsb (PURPLE) — плюс пять В дежурное (Standby). О нем мы уже говорили выше (он — фиолетовый).
    • PG (GRAY) — сигнал Power Good (серый).

    На заметку: если, к примеру, дежурное напряжение согласно замерам равно не пяти вольтам, а, скажем, — четырем, то, весьма вероятно, что мы имеем дело с проблемным стабилизатором напряжения (стабилитроном), который следует заменить на аналогичный.

    И последняя запись из списка выше говорит нам, что максимальная выходная мощность изделия в ваттах равна 400W, причем только каналы в 3 и 5V суммарно могут обеспечить 195 Ватт.

    Примечание: «Power Good» — «питание соответствует норме». Напряжение от 3-х до 6-ти Вольт (номинал — 5V) вырабатывается после необходимых внутренних проверок через 100 — 500 ms (миллисекунд, получается — от 0,1 до 0,5 секунды) после включения. После этого микросхема тактового генератора формирует сигнал начальной установки центрального процессора. Если он отсутствует, то на материнской плате возникает другой сигнал — аппаратного сброса ЦП, не позволяя компьютеру работать при нештатном или нестабильном питании.

    Если выходные напряжения не соответствуют номинальным (например, при его снижении в электросети), сигнал «Power Good» пропадает и процессор автоматически перезапускается. При восстановлении всех необходимых значений тока «P.G.» формируется заново и компьютер начинает работать так, как будто его только что включили. Благодаря быстрому отключению сигнала «Power Good» ПК “не замечает” неполадок в системе питания, поскольку останавливает работу раньше, чем могут появиться ошибки и другие проблемы, связанные с его нестабильностью.

    В правильно спроектированном блоке выдача команда «Power Good» задерживается до стабилизации питания по всем цепям. В дешевых БП эта задержка недостаточна и процессор начинает работать слишком рано, что, само по себе, может даже привести к искажению содержимого CMOS-памяти.

    Вот теперь, вооружившись необходимыми теоретическими знаниями, мы понимаем как правильно проверить блок питания компьютера с помощью мультитестера. Выставляем предел измерений по шкале постоянного тока в 20 Вольт и приступим к проверке блока питания.

    Черный «щуп» тестера прикладываем к черному проводу «земля», а красным начинаем «тыкать» во все оставшиеся 🙂

    Примечание: не волнуйтесь, даже если Вы что-то не так начнете «щупать», то ничего не сожжете — просто получите не верные результаты измерений.

    Итак, что мы видим на экране мультиметра в процессе проверки блока питания?

    По линии +12V напряжение в 11,37V. Помните, китайский тестер показал нам 11,3 (в принципе, — похожее значение). Но все равно не дотягивает до минимально допустимого в 11,40V.

    Обратите внимание также на две полезные кнопки на тестере: «Hold» — удержание показаний измерений на табло и «Back Light» — подсветка экрана (при работе в плохо освещенных помещениях).

    Что мы делаем дальше? Предлагаю также снять замер с «Molex» разъема и с провода в +12V.

    Видим — те же (не внушающие доверия) 11,37V.

    Теперь (для полноты картины) нам нужно проверить блок питания на предмет соответствия номиналу других значений. Протестируем, к примеру, пять Вольт на том же «Molex-е».

    Черный «щуп» к «земле», а красный — к красному пятивольтовому пину. Вот результат на мультиметре:

    Как видим — показатели в норме. Аналогично производим замеры всех остальных проводов и сверяем каждый результат с номиналом из полной расшифровки.

    Таким образом, проверка блока питания показала, что устройство имеет сильно заниженное (относительно номинала) напряжение +12V. Давайте, для наглядности еще раз промеряем эту же линию (желтый цвет на дополнительном 4-х контактном разъеме) у полностью исправного устройства.

    Видим — 11,92V (помним что минимально допустимое значение здесь у нас — 11,40V). Значит в допуск вполне укладываемся.

    Но проверить блок питания компьютера это еще — пол дела. Надо его после этого еще и отремонтировать, а этот момент мы разбирали в одной из предыдущих статей, которая называлась проблемы с блоком питания.

    Надеюсь, что теперь Вы сами, при необходимости, сможете проверить блок питания компьютера, будете точно знать, какие именно напряжения должны присутствовать на его выводах и действовать, в соответствии с этим.

    Похожие статьи:

    • Пускатель магнитный lc1d09 Магнитный пускатель LC1D09 BL 24 DC Schneider Electric GmbH Технические характеристики "Schneider Electric Telemecanique Контактор D 380V,25A,3НОсил.конт.1НО+1НЗ доп.катушка 24V (LC1D09BL)" Цвет: Белый. Напряжение: 380 В. Переменный ток, […]
    • Датчики движения 220 вольт Регулятор освещения ДД-03 (движения и света, 12 Вольт,2А) Датчик света и движения на пониженное напряжение. ОБЩИЕ СВЕДЕНИЯ Регулятор освещения имеет встроенный датчик движения и света. Днем, при высоком уровне освещенности прибор […]
    • Реле на 12 вольт постоянного тока MY4-12VDC Реле промежуточное, четыре группы контактов, катушка управления 12 вольт постоянный ток Есть в наличии: 20 шт. Артикул/код товара: MY4-12VDC Товарное предложение обновлено 14 февраля 2019 г. в 15:31 Описание товара MY4-12VDC […]
    • Автомобильный компрессор от сети 220 вольт Качаем колеса автомобильным компрессором от сети 220V Если у вас имеется автомобильный компрессор для подкачки колес, который питается от “прикуривателя”, то вы можете расширить его возможности и использовать в домашних условиях, […]
    • Провода для прикуривания автомобиля сечение Провода для прикуривания автомобиля сечение ✆ (963) 034 56 66 Все мы хоть раз находились в ситуации когда суровой Российской зимой не заводится автомобиль. Тут есть два варианта либо заносить аккумулятор домой на зарядку, либо […]
    • Инвертор 12 в 220 чистый синус схема 1500W Pure Sine Wave Power Inverter 12V DC to 220V AC / Инвертор 12->220 1500W чистый синус "занидорага" Для тех, у кого нет света, и прочих неравнодушных, предлагаю обзор очередного своего инвертора 12-220 с чистым синусом. Мало фоток, […]