Как произвести измерение сопротивления

Как проводится замер сопротивления изоляции?

Замер сопротивления изоляции является одним из приоритетных направлений, в которых работает любая электроизмерительная лаборатория. И это не случайно, ведь именно данная операция является главным звеном в определении состояния изоляции, а, соответственно, и в обеспечении безопасности использования электросетей и оборудования различного назначения. Поговорим о том, как измеряют сопротивление изоляции.

Для снятия показаний состояния изоляции используют специальный прибор — мегомметр. Он состоит из генератора тока и механизма, измеряющего напряжение. Существует оборудование, рассчитанное на рабочее напряжение до 1000 В и до 2500 В.

На подготовительном этапе измерения сопротивления изоляции необходимо:

  • проверить состояние мегомметра путем испытания его при разомкнутых проводах – при этом его стрелка должна показывать на знак бесконечности, а также при замкнутых проводах – в этом случае стрелка должна остановиться у 0;
  • проверить указателем напряжения, не подан ли ток к кабелям, на которых планируется проводить измерение сопротивления изоляции;
  • провести заземление токоведущих жил кабелей, которые будут подвергнуты испытаниям.

При работе с мегомметром обязательно нужно использовать зажимы с изолированными рукоятками. Если изоляция исследуется на напряжение выше 1000 В, необходимо надевать диэлектрические перчатки. К токоведущим частям во время проверки сопротивления прикасаться нельзя.

Показания с мегомметра снимаются только тогда, когда его стрелка принимает устойчивое положение. Чтобы добиться этого, необходимо производить вращение ручки прибора со скоростью 120 оборотов в минуту. Сопротивление изоляции можно устанавливать после 1 минуты вращения ручки, когда положение стрелки стабилизировалось.

Когда измерение окончено, на прибор накладывается заземление для снятия напряжения, только после этого концы мегомметра отсоединяются.

Чаще всего сопротивление изоляции измеряют в сетях освещения. Проверка проводится на напряжение 1000 В, при этом снимаются показатели с изоляции магистральных линий до общих распределительных щитов, от них до квартирных распределительных щитов, далее – от выключателей до светильников. Измерение включает проверку изоляции самих осветительных приборов.

Регулярная проверка исправности изоляции – основное условие безопасного и долгого использования любых электрических сетей и приборов. Поэтому необходимо в обязательном порядке периодически обращаться к специалистам, осуществляющим данные работы с применением современных приборов и технологий.

Как выполняется измерение сопротивления заземления

Безопасность пользования электрической энергией зависит не только от правильного монтажа электроустановки, но и от соблюдения требований, заложенных нормативной документацией в ее эксплуатацию. Контур заземления здания, как составная часть защитного электрического оборудования, требует периодического контроля своего технического состояния.

Как работает заземляющее устройство

В нормальном режиме электроснабжения контур заземления РЕ-проводником соединен с корпусами всех электроприборов, системой выравнивания потенциалов здания и бездействует: через него, грубо говоря, не проходят никакие токи, за исключением небольших фоновых.

Как заземление защищает человека

При возникновении аварийной ситуации, связанной с пробоем слоя изоляции электропроводки, опасное напряжение появляется на корпусе неисправного электроприбора и по РЕ-проводнику через контур заземления стекает на потенциал земли.

За счет этого величина прошедшего на нетоковедущие части высокого напряжения должна снизиться до безопасного уровня, неспособного причинить электротравму человеку, контактирующему с корпусом неисправного оборудования через землю.

Когда РЕ-проводник или контур заземления нарушены, то отсутствует путь стекания напряжения и ток станет проходить через тело человека, оказавшегося между потенциалами поврежденного бытового прибора и землей.

Поэтому при эксплуатации электрооборудования важно поддерживать в исправном состоянии контур заземления и периодическими электрическими замерами контролировать его состояние.

Как возникает неисправность у заземляющего устройства

В новом исправном контуре электрический ток аварии по РЕ-проводнику поступает на токоотводящие электроды, контактирующие своей поверхностью с грунтом и через них равномерно уходит на потенциал земли. При этом основной поток равномерно разделяется на составляющие части.

В результате длительного нахождения в агрессивной среде почвы металл тоководов покрывается поверхностной окисной пленкой. Начинающаяся коррозия постепенно ухудшает условия прохождения тока, повышает электрическое сопротивление контактов всей конструкции. Ржавчина, образующаяся на стальных деталях, обычно носит общий, а на отдельных участках ярко выраженный местный характер. Связано это с неравномерным наличием химически активных растворов солей, щелочей и кислот, постоянно находящихся в почве.

Образующиеся частицы коррозии в виде отдельных чешуек отодвигаются от металла и этим прекращают местный электрический контакт. Со временем таких мест становиться столько, что сопротивление контура увеличивается и заземляющее устройство, теряя электрическую проводимость, становится неспособным надежно отводить опасный потенциал в землю.

Определить момент наступления критического состояния контура позволяют только своевременные электрические замеры.

Принципы, заложенные в измерение сопротивления заземляющего устройства

В основу метода оценки технического состояния контура заложен классический закон электротехники, выявленный Георгом Омом для участка цепи. С этой целью достаточно через контролируемый элемент пропустить ток от калиброванного источника напряжения и с большой степенью точности замерить проходящий ток, а потом вычислить величину сопротивления.

Метод амперметра и вольтметра

Поскольку контур работает в земле всей своей контактной поверхностью, то ее и следует оценивать при замере. Для этого в почву на небольшом удалении (порядка 20 метров) от контролируемого заземляющего устройства заглубляют электроды: основной и дополнительный. На них подают ток от стабилизированного источника переменного напряжения.

По цепи, образованной проводами, источником ЭДС и электродами с подземной токопроводящей частью грунта начинает протекать электрический ток, величина которого замеряется амперметром.

На очищенную до чистого металла поверхность контура заземления и контакт основного заземлителя подключается вольтметр.

Он замеряет падение напряжения на участке между основным заземлителем и контуром заземления. Разделив значение показания вольтметра на измеренный амперметром ток, можно вычислить общее сопротивление участка всей цепи.

При грубых замерах им можно ограничиться, а для вычисления более точных результатов потребуется скорректировать полученное значение вычитанием величины сопротивления соединительных проводников и влияния диэлектрических свойств почвы на характер токов растекания в грунте.

Уменьшенное на эту величину и замеренное по первому действию общее сопротивление и даст искомый результат.

Описанный способ является довольно простым и неточным, имеет определенные недостатки. Поэтому для выполнения более качественных измерений, производимых специалистами электротехнических лабораторий, разработана более усовершенствованная технология.

Компенсационный метод

Замер основан на использовании уже готовых конструкций метрологических приборов высокого класса точности, выпускаемых промышленностью.

При этом способе тоже используется установка основного и вспомогательного электродов в почву.

Их разносят по длине около 10÷20 метров и заглубляют на одной линии, захватывающей испытываемый контур заземления. К шине заземлительного устройства подключают измерительный зонд, стараясь разместить прибор поближе к контакту шины. Соединительными проводниками соединяют клеммы прибора с установленными в землю электродами.

Источник переменной ЭДС выдает в подключенную схему ток I1, который проходит по замкнутой цепи, образованной первичной обмоткой трансформатора тока ТТ, соединительным проводам, контактам электродов и землей.

Вторичная обмотка трансформатора ТТ воспринимает ток I2, равный первичному и передает его на сопротивление реостата R, позволяющего реохордом «б» выставлять баланс между напряжениями U1 и U2.

Изолирующий трансформатор ИТ транслирует проходящий по его первичной обмотке ток I2 в свою вторичную цепь, замкнутую на измерительный прибор V.

Ток I1, протекающий по грунту на участке между основным заземлителем и контуром заземления, образует на замеряемом нами участке падение напряжения U1, которое вычисляется по формуле:

Ток I2, проходящий по участку реостата R «аб» с сопротивлением rаб, формирует падение напряжения U2, определяемое выражением:

Во время выполнения замера перемещают ручку реохорда таким образом, чтобы отклонение стрелки прибора V установилось на ноль. В этом случае будет выполнено равенство: U1=U2.

Тогда получим: I1∙rx=I2∙rаб.

Поскольку конструкция прибора выполнена так, что I1=I2, то соблюдется соотношение: rx=rаб. Остается только узнать сопротивление участка аб. Но, для этого достаточно ручку потенциометра сделать побольше и на ее подвижную часть вмонтировать стрелку, которая будет перемещаться по неподвижной шкале, проградуированной заранее в единицах сопротивления реостата R.

Смотрите так же:  Ауди 80 электрические схемы

Таким образом, положение стрелки-указателя реостата при компенсации падений напряжений на двух участках позволяет замерить сопротивление заземляющего устройства.

Используя изолирующий трансформатор ИТ и специальную конструкцию измерительной головки V, добиваются надежной отстройки прибора от блуждающих токов. Высокая точность измерительного механизма способствует малому влиянию переходных сопротивлений зонда на результат замера.

Приборы, работающие по компенсационному методу, позволяют точно замерять сопротивления отдельных элементов. Для этого достаточно на один конец измеряемой цепи подключить проводник, снятый с точки 1, а на второй — измерительный зонд (точка 2) и провод с точки 3 от вспомогательного электрода.

Приборы для измерения сопротивления заземляющего устройства

За время развития энергетики измерительные приборы постоянно совершенствовались в вопросах облегчения использования и получения высокоточных результатов.

Еще несколько десятилетий назад широко применялись только аналоговые измерители производства СССР таких марок, как МС-08, М4116, Ф4103-М1 и их модификации. Они продолжают работать и в наши дни.

Сейчас их успешно дополняют многочисленные приборы, использующие цифровые технологии и микропроцессорные устройства. Они несколько упрощают процесс замера, обладают высокой точностью, хранят в памяти результаты последних вычислений.

Методика выполнения замера сопротивления заземлительного устройства

После доставки прибора на место проведения замера и извлечения его из транспортировочного кейса готовят шинопровод к подключению контактного проводника: отчищают от следов коррозии место для подключения зажима типа крокодил напильником или устанавливают струбцину с винтовым зажимом, продавливающим верхний слой металла.

Замер сопротивления трехпроводным методом

Требования безопасной работы требуют выполнять измерения при отключенном автоматическом выключателе во вводном щите питания здания либо снятом с заземлителя РЕ-проводнике. Иначе при возникновении аварийного режима ток утечки пойдет через контур и прибор или тело оператора.

Соединительный проводник подключают к прибору и струбцине.

На установленной дистанции молотком забивают в грунт электроды заземлители. Навешивают на них катушки с соединительными проводниками и подключают их концы.

Устанавливают контакты проводов в гнезда прибора, проверяют готовность схемы к работе и величину напряжения помехи между установленными электродами. Она не должна превышать 24 вольта. Если это положение не выполнено, то придется менять места установки электродов и перепроверять этот параметр.

Остается только нажать кнопку выполнения автоматического замера и снять вычисленный результат с дисплея.

Однако, успокаиваться после получения результата первого замера нельзя. Чтобы проверить свою работу необходимо выполнить небольшую серию контрольных измерений, переставляя потенциальный штырь на небольшие дистанции. Расхождение всех полученных значений сопротивлений не должны расходиться более чем на 5%.

Замер сопротивления четырехпроводным методом

Для использования способов вертикального электрического зондирования измерители сопротивления контура заземления можно использовать по четырехпроводной схеме, расставляя приемные электроды по методике Веннера или Шлюмберже.

Этот способ больше подходит для глубинных исследований и вычисления удельного электрического сопротивления грунта.

Вариант подключения прибора марки ИС-20/1 по этой схеме показан на картинке.

Замер сопротивления заземлителя с применением токоизмерительных клещей

При использовании метода необходимо иметь фоновый ток от электроустановки здания в контур заземления. Его величина у большинства приборов, работающих по этому типу, не должна превышать 2,5 ампера.

Замер сопротивления контура без разрыва цепи заземлителей с применением измерительных клещей

Используя измеритель ИС-20/1м можно выполнить электрическую оценку состояния заземлительного устройства здания по следующей схеме.

Замер сопротивления контура без вспомогательных электродов с применением двух измерительных клещей

При этом способе не требуется устанавливать дополнительные электроды в землю, а можно выполнить работу пользуясь двумя токовыми клещами. Их потребуется разнести по шинопроводу заземлительного устройства на расстояние большее чем 30 сантиметров.

Выбор методики проведения замера зависит от конкретных условий эксплуатации оборудования и определяется специалистами лаборатории.

Оценку состояния заземлительного устройства можно выполнять в разное время года. Однако, следует учитывать, что в период большого нахождения влаги в почве во время осенне-весенней распутицы условия для растекания токов в земле наиболее благоприятные, а в сухую жаркую погоду — наихудшие.

Летние замеры при высушенном грунте наиболее качественно отражают реальное состояние контура.

Некоторые электрики рекомендуют для снижения значения сопротивления проливать почву около электродов растворами солей. Следует понимать, что это мера временная и неэффективная. С уходом влаги состояние проводимости вновь ухудшится, а ионы растворенной соли будут разрушать металл, расположенный в почве.

В заключение

Всем внимательным читателям и опытным электрикам предлагается посмотреть на прилагаемую ниже картинку, демонстрирующую простой, на первый взгляд, способ реализации измерения сопротивления заземляющего устройства, который не нашел широкого практического применения в лабораториях.

Объясните в комментариях какие электротехнические процессы происходят при таком способе и как они влияют на точность измерения. Проверьте свои знания, удачи!

ЭЛЕКТРОСАМ.РУ

Измерение сопротивления изоляции. Методика и приборы. Порядок

Качественные изолирующие материалы определяют функциональность и надежность снабжения объектов электрической энергией. Каждый специалист на предприятии должен понимать важность свойств изоляции оборудования. Периодически необходимо контролировать работу электрических устройств, проводить измерение сопротивления изоляции.

Материал изоляции кабелей имеет свой срок службы. На качество диэлектрического материала изоляции влияют следующие факторы:

  • Высокое напряжение.
  • Солнечный свет.
  • Механические повреждения.
  • Температурный режим.
  • Среда использования.

Измерение сопротивления изоляции рекомендуется для более точного выяснения причин повреждений в кабельной цепи, или цепи электрических устройств, а также для проверки возможности дальнейшей эксплуатации изоляции.

Если дефект изоляции обнаружен визуально, то выполнять измерения сопротивления уже нет необходимости. При обнаружении нарушения изоляции с помощью мегомметра, можно предотвратить:

  • Неисправности устройств.
  • Возникновение пожара.
  • Аварийные ситуации.
  • Чрезмерный износ устройства.
  • Короткие замыкания.
  • Удары электрическим током персонала, обслуживающего устройства.

Методика

Главной характеристикой состояния изоляции электрооборудования принято считать сопротивление постоянному току, поэтому обязательной частью проверки цепей является контроль сопротивления изоляции.

Приборы

Значение сопротивления изоляции контролируется при помощи мегомметрами. Сегодня популярными являются мегомметры марок: М — 4100, ЭСО 202 / 2Г, MIC – 30, MIC — 1000, MIC-2500. Прогресс технологий в электротехнике не стоит на месте, поэтому виды измерительных приборов постоянно обновляются.

Мегомметр состоит из источника питания постоянного тока и механизма измерения. В качестве источника тока может использоваться генератор переменного тока с выпрямительным мостом.

Мегомметры можно разделить по величине напряжения:

  • До 1000 вольт.
  • До 2500 вольт.

В комплекте к прибору приложены гибкие медные проводники. Их длина может достигать до 3 метров. Сопротивление изоляции измерительных проводов должно быть более 100 мегом. Концы проводов мегомметра должны быть оснащены наконечниками со стороны подключения к прибору. Другие концы проводов должны оснащаться зажимами вида «крокодил» с рукоятками из диэлектрического материала.

Порядок измерений

Перед началом контрольных измерений необходимо выполнить:

  • Перед непосредственным измерением необходимо выполнить контрольную проверку прибора. Такая проверка производится путем определения показаний прибора во время разомкнутых и замкнутых проводников. При разомкнутых проводниках стрелка или индикатор должны показывать бесконечное сопротивление. При замкнутых проводах показания должны быть близки к нулю.
  • Обесточить измеряемый кабель. Для проверки отсутствия напряжения необходимо пользоваться указателем напряжения, который испытан на заведомо подключенном к напряжению участке цепи электроустановки, согласно требованиям правил охраны труда.
  • Произвести заземление токоведущих жил испытуемого кабеля.

Во время измерения сопротивления на участках цепи свыше 1000 вольт, необходимо применять диэлектрические резиновые перчатки. Запрещается касаться токоведущих элементов, присоединенных к мегомметру.

Сопротивление проверяется для отдельной фазы по отношению к другим фазам. При отрицательном результате необходимо проверить сопротивление изоляции между отдельной фазой и землей.

Схема проверки сопротивления

Измерение сопротивления изоляции на кабеле, рассчитанном на напряжение более 1000 вольт, на изоляцию накладывают экранное кольцо, которое соединено с экраном.

При работах с кабелями до 1000 вольт, имеющих нулевые жилы, необходимо знать:

  • Изоляция нулевых проводов должна быть не хуже, чем у фазных проводников.
  • Нулевые проводники должны быть отключены от заземления со стороны приемника и источника питания.
Смотрите так же:  Провода высоковольтных линий

При вращении ручки привода генератора мегомметра необходимо добиться устойчивого состояния стрелки прибора. Только после этого можно измерять сопротивление. Для устойчивого положения стрелки ручку вращают со скоростью около 120 об / мин.

После начала вращения ручки до момента измерения должно пройти не менее 1 минуты. Далее после подключения проводов к кабелю необходимо выждать 15 секунд. После этого зафиксировать величину сопротивления.

При ошибочно выбранном интервале измерений, необходимо выполнить следующие мероприятия:

  • Снять напряжение с измеряемого проводника, подключить к нему заземление.
  • Установить правильное положение переключателя и возобновить измерение на новом диапазоне.

При подключении и снятии заземления применение диэлектрических перчаток является обязательным. После проведения измерений на кабеле накапливается заряд энергии, который необходимо снять перед отключением прибора. Заряд снимается при помощи наложения заземления.

Проверка изоляции осветительной цепи

Измерение сопротивления изоляции осветительной цепи выполняется мегомметром, рассчитанным на напряжение до 1000 вольт. Работы по измерению включают в себя следующие этапы:

  • Измерение сопротивления изоляции магистрали: от щитов 0,4 кВ до электрических автоматов распредщитов.
  • Сопротивления изоляции от этажных распредщитов до квартирных щитков.
  • Измерение сопротивления изоляции цепи освещения от автоматов выключения и групповых щитков до арматур освещения. В светильниках перед измерением отключается напряжение, выключатели света должны находиться во включенном состоянии, нулевые рабочие и защитные провода должны быть отключены, лампы освещения вывернуты. Если применяются газоразрядные лампы, то их допускается не выкручивать, однако необходимо снять стартеры.
  • Значение сопротивления на участках освещения и осветительной арматуры должно быть выше 0,5 мегома.

Информация по применению в измерениях приборов, и итоги замеров оформляются протоколами.

Требования безопасности

Работники измерительной лаборатории, направленные для исполнения работ в различных электроустановках, и не находящиеся в штате предприятия, владеющего электроустановкой, считаются командированными работниками.

Специалисты должны иметь в наличии определенной формы удостоверения. При этом должна быть отметка комиссии командирующей фирмы о присвоении группы электробезопасности. Фирма, отправляющая специалистов, несет ответственность за исполнение нормативов по технике безопасности и соответствию групп по электробезопасности.

Организация работ сотрудников предполагает выполнение мероприятий перед началом работ:

  • Извещение владельца проверяемой электроустановки о целях работы.
  • Предоставление специалистам права производства работ в виде выдачи наряда, назначения ответственных лиц.
  • Проведение вводного инструктажа.
  • Ознакомление с электросхемой и особенностями установки.
  • Подготовка рабочего места.

Организация (владелец) несет ответственность за соблюдением требований охраны труда. Работы осуществляются по наряду-допуску.

При выполнении измерений необходимо:

  • Соблюдать указания инструкций, применяемых приборов, разработанных на предприятии. Также необходимо выполнять вспомогательные требования согласно нарядам-допускам.
  • Запрещается начинать работы по измерениям, не убедившись в отсутствии напряжения на измеряемом участке. Контролировать отсутствие напряжения питания при выполнении измерений. Это требование выполняется с помощью испытанного указателя, который должен быть протестирован на подключенных к напряжению элементах электроустановки, согласно правилам ТБ. Напряжения контролировать между фазами, землей и фазами. Эта операция требует особой тщательности и ответственности.
  • Коммутацию приборов осуществлять при обесточенных токоведущих частях.
  • Обеспечить использование средств защиты и специального инструмента с диэлектрическими ручками, которые заранее испытаны.

Бригада специалистов должна иметь в составе не менее 2-х человек, включая производителя работ с 4 группой электробезопасности, и работника с 3 группой электробезопасности. При выполнении измерений запрещается подходить к токоведущим элементам ближе безопасного расстояния, которое определено в таблице.

Интервалы проведения проверок

Временные нормативы проведения плановых измерений величин сопротивлений, значение напряжения для измерения изоляции описываются в правилах технической эксплуатации. Ежегодно производится измерение сопротивления изоляции осветительной аппаратуры, лифтовой проводки, а также электропроводки подъемно-транспортных механизмов.

В остальных случаях такие проверки осуществляются один раз в несколько лет. Каждые 6 месяцев производится проверка переносного электрооборудования и инструмента, а также сварочных аппаратов.

При невыполнении установленных интервалов проверок повышается вероятность появления различных нежелательных неисправностей электроустановок. Нарушители этих правил могут подвергаться определенным санкциям и штрафам. В организациях должны быть разработаны планы проведения проверок изоляции. При этом делается упор на особенности и технические запросы, которым должны соответствовать электроустановки, а также кабельные сети. Изоляция проверяется во время эксплуатационных испытаний.

измерение сопротивления

Большой англо-русский и русско-английский словарь . 2001 .

Смотреть что такое «измерение сопротивления» в других словарях:

измерение сопротивления — varžos matavimas statusas T sritis automatika atitikmenys: angl. resistance measurement vok. Messung des Widerstandes, f rus. измерение сопротивления, n pranc. mesure de la résistance, f … Automatikos terminų žodynas

измерение сопротивления изоляции — проверка изоляции — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.] Тематики электротехника, основные понятия Синонимы проверка изоляции EN insulation… … Справочник технического переводчика

Измерение сопротивления изоляции — 1. Измерение сопротивления изоляции: а) первичных целей. Производится мегаомметром на напряжение 2,5 кВ. Сопротивление изоляции полностью собранных первичных цепей КРУ с установленными в них узлами и деталями, которые могут оказать влияние на… … Словарь-справочник терминов нормативно-технической документации

Измерение сопротивления постоянному току. — 5. Измерение сопротивления постоянному току. Нормы допустимых отклонений сопротивления постоянному току приведены в табл. 1.8.4. Таблица 1.8.4. Допустимое отклонение сопротивления постоянному току Испытуемый объект Норма Обмотка статора… … Словарь-справочник терминов нормативно-технической документации

Измерение сопротивления контура короткого замыкания — А.4.2. Измерение сопротивления контура короткого замыкания Измерение сопротивления контура короткого замыкания следует проводить с использованием измерительного оборудования, соответствующего требованиям МЭК 61557 3. Информация относительно… … Словарь-справочник терминов нормативно-технической документации

Измерение сопротивления на линейном входе и выходе системы с ВРК и проверка коэффициента отражения — 3. Измерение сопротивления на линейном входе и выходе системы с ВРК и проверка коэффициента отражения 3.1. Аппаратура 3.1.1. Измеритель уровня (ИУ). 3.1.2. Низкочастотный генератор (Г) с выходным напряжением не менее 800 мВ. 3.1.3. Магазин… … Словарь-справочник терминов нормативно-технической документации

Измерение сопротивления обмоток постоянному току. — 8. Измерение сопротивления обмоток постоянному току. Производится у первичных обмоток трансформаторов тока напряжением 10 кВ и выше, имеющих переключающее устройство, и у связующих обмоток каскадных трансформаторов напряжения. Отклонение… … Словарь-справочник терминов нормативно-технической документации

Измерение сопротивления заземляющих устройств. — 5. Измерение сопротивления заземляющих устройств. Значения сопротивления должны удовлетворять значениям, приведенным в соответствующих главах настоящих Правил. Источник: ПУЭ: Правила устройства электроустановок. Издание 6 … Словарь-справочник терминов нормативно-технической документации

Измерение сопротивления постоянному току — 3. Измерение сопротивления постоянному току: а) контактной системы разъединителей и отделителей напряжением 110 кВ и выше. Измеренные значения должны соответствовать данным заводов изготовителей или приведенным в табл. 1.8.20. б) обмоток… … Словарь-справочник терминов нормативно-технической документации

Измерение сопротивления заземления опор, их оттяжек и тросов. — 3. Измерение сопротивления заземления опор, их оттяжек и тросов. Производится в соответствии с 1.8.36. Источник: ПУЭ: Правила устройства электроустановок. Издание 6 … Словарь-справочник терминов нормативно-технической документации

Измерение сопротивления заземления. — 13. Измерение сопротивления заземления. Производится на линиях всех напряжений для концевых заделок, а на линиях 110 220 кВ, кроме того, для металлических конструкций кабельных колодцев и подпиточных пунктов. Источник: ПУЭ: Правила устройства… … Словарь-справочник терминов нормативно-технической документации

Измерение сопротивления мегаомметром

Измерительные приборы при работе с электрическими сетями играют важную роль для обеспечения безопасности обслуживающего персонала, а также для осуществления контроля состояния электроприборов и схем их подключения. Это же касается и прибора, именуемого мегаомметр (ранее «мегомметр»), предназначенного для измерения сопротивлений, имеющих очень высокие значения. Данная публикация содержит информацию о том, что представляет собой мегаомметр, сферы применения, порядок работы с ним. В статье расскажем про измерение сопротивления мегаомметром, рассмотрим пошаговую инструкцию.

Внешний вид прибора с динамо машиной, приводимой в действие вручную

Назначение прибора, конструкция, принцип работы

Название прибора говорит само за себя: «мега» — означает 10 6 или 1 млн., «омметр» — измерение сопротивления. Таким образом, становится ясно, что с помощью устройства доступны измерения сопротивлений в миллионы Ом или тысячи кОм. Где и кому могут понадобиться такие показатели? В основном это изоляция и все, что с ней связано, то есть средства, исключающие действие электротока там, где это не нужно по электрической схеме или недопустимо с точки зрения безопасности.

Смотрите так же:  Kicx провода набор

Кабеля, передающие электроэнергию, выводные трансформаторные изоляторы, обмотки электродвигателей приборов, машин и механизмов, должны обладать надежной изоляцией, способной исключить контакт проводников между собой, а также с корпусом устройства, предотвратить короткое замыкание или поражение человека электротоком. Соответственно значение сопротивления изоляционных средств должно иметь достаточно высокое значение. Для его измерения предназначен мегаомметр. С его помощью можно установить, что оборудование нуждается в замене, ремонте или временном отстранении от работы и просушке.

Внутреннее строение измерительного устройства

Основными составными частями прибора являются:

  • генератор напряжения (постоянного тока);
  • измерительный блок, демонстрирующий показания;
  • переключатель диапазонов измерений (кОм-МОм), дающий возможность изменять выходное напряжение за счет включения различных встроенных резисторных схем;
  • резисторы – сопротивления, ограничивающие протекающий ток.

Примерная схема устройства мегаомметра с обозначением его основных частей

Внутренний генератор в приборах старого образца работает от ручного привода за счет динамо машины. Современные устройства действуют от батарей. Стрелочные (аналоговые) аппараты отображают показания на шкале за счет двух рамок: одной — рабочей и второй – противодействующей. Измерительный блок электронных мегаомметров выдает значения на табло в цифровом виде.

Внешний вид цифрового электронного мегаомметра для диагностики изоляции

Клеммы для подключения щупов вместо обозначений «Л» и «З», могут иметь маркировку “Rx” и “-”. Читайте также статью: → «Способы проверки напряжения в розетке при помощи различных приборов ».

Принцип работы прибора

Действие устройства основано на законе Ома, известном из школьного курса физики, где сила тока находится в прямой зависимости от напряжения и сопротивления, что отображается формулой I = U/R.

Напряжение генерируется самим прибором. Измерительный блок, по сути, является амперметром, который фиксирует значение протекающего по цепи тока, но так как напряжение, подаваемое генератором заранее известно, то деления шкалы измерений рассчитаны и размечены под кило- и мегаомы.

Проверка сопротивления изоляции производится при отключенной электроэнергии, но создаваемое прибором высокое напряжение может накапливаться (например, на конденсаторах) и собираться в опасные заряды, способные привести к поражению человека электрическим током.

Осуществление измерений прибором

Работы производятся работниками (не менее двух), имеющими специальное образование и допуск по технике безопасности. Учитывая наличие высокого напряжения, контакты с диагностируемыми объектами производятся только специальными щупами с изолирующим покрытием. Читайте также статью: → «Измерение сопротивления изоляции электропроводки ».

Процедура измерений производится в два этапа:

  1. Подготовительный – проверка прибора, его работоспособности, подготовка места работы
  2. Рабочий – производство определенных действий по замеру сопротивления изоляции.

Перед началом работы измеряемый участок обесточивается, принимаются меры по предупреждению несанкционированной подачи электроэнергии.

Подготовка к проведению измерений, проверка мегаомметра

В проверяемой цепи могут присутствовать полупроводниковые и микропроцессорные элементы, которые не в состоянии выдержать подаваемое во время проверки высокое постоянное напряжение. Поэтому в период подготовки такие составляющие части схемы должны быть временно удалены или блокированы перемычками и шунтами.

Практическая рекомендация:если используется измерительное устройство старого типа, необходимо приготовить горизонтальную поверхность, на которую прибор будет установлен для уменьшения искажений и получения более точных результатов.

Проверка мегаомметра производится следующим образом:

  • аппарат, провода и щупы осматриваются на предмет наличия видимых повреждений (сколов, трещин);
  • провода подключаются к клеммам, щупы замыкаются между собой, от генератора подается напряжение – результат «0» свидетельствует об исправности;
  • при подаче напряжения и разведенных щупах исправный прибор должен показать «∞». Рабочее место и прибор готовы к проведению измерений.

Диагностирование состояния изоляции (пошаговая инструкция)

При проведении контроля сопротивления изоляции между проводником и корпусом (землей) используются только щупы. При испытаниях токоведущей жилы кабеля, провод от клеммы «Э» подключается к экрану кабеля. Это позволит компенсировать токи утечки.

Для измерения сопротивления обмоток, которое проводится перед их испытанием высоким напряжением, применяют мегаомметры с соответствующим номинальным напряжением, либо выставляют регулировку прибора (если она имеется) на нужную величину:

Непосредственно измерение производится в следующем порядке:

  1. На время подключения прибора, накладывается переносное заземление, щупы устанавливаются на проверяемые объекты, переносное заземление снимается (установка и снятие заземления производится перед каждым замером во избежание поражения током и предупреждения погрешностей на приборе)
  2. Проверяется изоляция между всеми фазами, а также относительно REN проводника. Ручка генератора при каждой проверке должна вращаться со скоростью 120 об/мин в течение 60 сек, а у электронного аппарата подача напряжения происходит через нажатие кнопки на 30 сек. Между замерами нужно выдерживать паузу – 2 мин. При нормальном состоянии изоляции, стрелка устройства будет уходить в сторону наибольшего значения, ближе к «∞», а в противном случае – приближаться к «0».

Способы подключения мегаомметра для проверки сопротивления изоляции жил кабеля

  1. При проверке однофазных цепей, необходимо отсоединить нулевой провод, отключить все потребители и УЗО. Для проверки бытовых электрических сетей напряжение прибора выставляется на 500 Вольт
  2. Замеры производятся поочередно между “N”, “L” и “RE”
  3. После окончания измерений, объект испытания необходимо кратковременно замкнуть на землю, для удаления возможного остаточного напряжения, а мегаомметр разрядить, соединив щупы между собой.

Возможность накопления и поражающего действия остаточного напряжения в цепи

Практическая рекомендация: во время работы с мегаомметром, щупы нужно держать только выше ограничительных колец, а все манипуляции с их переустановкой, наложением заземлений и другие осуществлять в диэлектрических перчатках.

В случае обнаружения неисправности, поврежденный участок разбирается на элементы для выявления и устранения нарушения. Перед возобновлением электроснабжения нужно устранить все внесенные в цепь изменения, удалить перемычки, шунты, подключить защитные устройства.

Обзор моделей мегаомметров и их производителей

Современный рынок измерительной техники предлагает широкий выбор аппаратов от разных торговых марок. Через интернет магазины можно приобрести аналоговые и цифровые мегаомметры в электродинамическом и электронном исполнении. Разные модели предназначенные для производства измерений в различных диапазонах отличаются не только рабочими параметрами, но и габаритами и ценовыми значениями. Охватить в одной публикации все модели и их производителей невозможно, поэтому для ориентации в разнообразии изделий и ценах на них, в качестве примера приводится продукция отечественного и зарубежного производства:

Похожие статьи:

  • Журнал измерения сопротивления изоляции Методика измерения сопротивления изоляции Целью настоящей методики является обеспечение качественного и безопасного проведения работ при производстве электролабораторией (далее ЭЛ) испытаний (измерений). Схема измерения сопротивления […]
  • Измерение сопротивления изоляции переносного электроинструмента Измерение сопротивления изоляции переносного электроинструмента Вопрос 29. Порядок испытания электрической прочности изоляции переносного электроинструмента. Переносной электроинструмент подлежит периодической проверке не реже одного раза […]
  • Зажим анкерный для провода сип 2х16 Зажим анкерный DN-123 для кабеля СИП 2х16-25, 4х16-25 Анкерный зажим DN-123 фирмы Нилед Анкерный зажим DN-123 используются для абонентских ответвлений двумя или четырьмя проводами одинакового сечения. Конструкция: термопластик, усиленый […]
  • Измерение сопротивления изоляции трансформаторов мегаомметром Измерение сопротивления изоляции трансформаторов мегаомметром 1.8.18. Измерительные трансформаторы напряжения 1. Электромагнитные трансформаторы напряжения. 1.1. Измерение сопротивления изоляции обмоток. Измерение сопротивления […]
  • Настройка тв антенны от провода Лайфхак: как смотреть качественное ТВ без интернета, кабеля и тарелки Через кабель и штекер с сильными помехами у меня показывали «Первый», «Россия 1» и «Рен ТВ». И все бы ничего. Телевизор я почти не смотрю (только спорт, «Что? Где? […]
  • Измерения сопротивления изоляции и коэффициента абсорбции Измерение сопротивления изоляции обмоток силовых трансформаторов Сопротивление изоляции обмоток силовых трансформаторов , имеющих параллельные ветви, производится между ветвями, если при этом параллельные ветви могут быть выделены в […]