Как проверить напряжение usb мультиметром

Проверка зарядки при помощи мультиметра

В последние десятилетия появилось множество приборов, использующих для обеспечения автономной работы аккумуляторы или батареи постоянного тока. Это электроинструменты, телефоны, компьютеры, различные бытовые приборы. К каждому из них, как правило, прилагается зарядное устройство для поддержания аккумулятора в рабочем состоянии. Увы, нередко возникают ситуации, при которых батарея не заряжается вовсе или разрядка наступает очень быстро. Одной из причин возникновения таких явлений может быть неисправность зарядного устройства (ЗУ).

Принцип работы

Работа зарядного устройства основана на понижении напряжения и преобразовании переменного тока в постоянный. Для этого в схеме присутствует понижающий трансформатор и диодный мост. Напряжение зарядки должно быть на 5-10% выше номинального значения этого параметра у батареи, а величина тока зарядки должна быть около 10% от ее емкости. Иногда подзарядка телефона производится от аккумулятора постоянного тока автомобиля. В этом случае выпрямление (преобразование из переменного в постоянный) не нужно.

Для проверки работоспособности трансформатора ЗУ достаточно подключить параллельно выводам лампу, номинал которой соответствует зарядному устройству. Можно проверить наличие напряжения на выводах зарядного устройства тестером (цифровым мультиметром).

Полное представление о состоянии можно получить только при проверке зарядного устройства мультиметром. Для различных приборов подзарядка происходит по-разному, и очевидно, методы проверки различны.

Мобильные телефоны и компьютеры

Проверка ЗУ мобильного телефона или планшетного компьютера сводится к измерению напряжения на выводах. Оно должно соответствовать указанному в руководстве по эксплуатации или наклейке (маркировке) на корпусе.

Мультиметр переводится в режим измерения напряжения постоянного тока, если он не поддерживает функцию автоматической настройки. Иногда контакты разъема ЗУ настолько малы, что добраться до них щупами мультиметра не представляется возможным. В этом случае можно аккуратно воспользоваться обычными стальными швейными иглами. Если и в этом случае произвести измерение невозможно, необходимо разобрать корпус ЗУ и найти выводы, к которым припаиваются концы электрошнура.

Электроинструменты и бытовая техника

Зарядку аккумуляторов электроинструментов производят при помощи более совершенных приборов. Такие ЗУ имеют, как правило, три вывода: два силовых и один управляющий. Управляющий служит для передачи информации о состоянии батареи в ЗУ. При достижении номинального заряда или перегреве аккумулятора, ток ЗУ ограничивается.

Для проверки измеряется напряжение на выводах силовых контактов. На этом проверка и закончилась бы, но бывают случаи, когда при исправном ЗУ аккумуляторы не заряжаются, или же оно отключается очень быстро, не зарядив батарею.

В этом случае необходимо измерять напряжение зарядки при подключенном аккумуляторе. Так как зарядные устройства выполнены с контактами, защищенными от доступа посторонних предметов, придется разобрать корпус и припаять к выводам провода. Иногда это сделать просто, а иногда приходится приложить усилие, проделывая борозды в корпусе острым ножом.

После этого можно проверить заряд с помощью мультиметра, используя для подключения провода. Если измеряемая величина колеблется от номинальной до нуля, скорее всего, произошло ослабление силовых контактов. Если происходит преждевременное отключение, необходимо обратить внимание на управляющий контакт.

Если после восстановления контакта происходит неполный заряд батареи, причина не в зарядном устройстве, а в терморезисторе, установленном в самом аккумуляторе.

Автомобили и мотоциклы

Особого внимания заслуживает способ проверки зарядных устройств для автомобильных аккумуляторов. Они используются для периодической зарядки, когда автомобиль или мотоцикл используется редко и зарядка от генератора не производится.

Такие ЗУ могут быть довольно мощными, использоваться и как пусковые устройства, выдающие большой ток. В их конструкцию могут быть включены вентиляторы охлаждения, измерительные приборы – вольтметр и амперметр или контрольная лампа в качестве тестера зарядки.

Проверка ЗУ заключается в проверке параметров выдаваемого тока, проверке правильности показаний приборов. В этом случае необходимо четко представлять, как проверять зарядное устройство мультиметром.

В первую очередь измеряется выходное напряжение зарядки. Для заряженного аккумулятора с напряжением 12 В, оно должно быть в пределах 13,2 – 14,4 В.

Напряжение измеряется мультиметром, в режиме DCV, подключенным параллельно выводам ЗУ. Если при полностью разряженной батарее ЗУ не обеспечивает напряжение зарядки более 13,2 В, то применять его нельзя, подзарядка не будет происходить. Одновременно производится поверка вольтметра на корпусе, если он предусмотрен конструкцией.

Следующим шагом производится измерение силы зарядного тока. Если ЗУ автоматическое, он должен соответствовать 1/10 емкости батареи. Если предусмотрено ручное управление, ток выставляется при помощи регулятора. Его измеряется мультиметром в режиме амперметра, включенным в цепь последовательно.

Для пусковых устройств производится проверка при максимальном пусковом токе. Исправное зарядное устройство после отключения должно обеспечить заряд не менее 13,2 В.

Как проверить напряжение usb мультиметром

Или войдите с помощью этих сервисов

  • Новые темы форума
  • Вся активность
  • Главная
  • Вопрос-Ответ. Для начинающих
  • Песочница (Q&A)
  • Измерить Силу Тока В Usb

Объявления

Прочитайте перед созданием темы! 26.10.2016

Автор Гость Данил , 17 марта, 2012

28 сообщений в этой теме

Ваша публикация должна быть проверена модератором

Как измерить эффективность USB-порта?

Представляем вашему вниманию тестеры USB-порта ROBITON USB Power Meter и ROBITON USB Rapid Meter.
Они помогут измерить:

— Напряжение USB-порта
— Ток, потребляемый подключенным устройством

Эти компактные измерительные приборы подходят для тестирования любых устройств, оснащенных USB — ноутбуков, блоков питания, зарядных устройств и т. п. Оснащены двумя светодиодами и ярким LCD дисплеем.
В отличие от USB Power Meter – модели, предназначенной только для измерения выходных характеристик USB порта, ROBITON USB Rapid Meter также позволяет управлять скоростью заряда, путем включения/отключения возможности передачи данных.
Помимо этого, тестер ROBITON USB Rapid Meter автоматически определяет тип подключенного устройства и максимальный потребляемый им ток. Если USB порт или зарядное устройство имеют максимальный ток более 500мА, USB Rapid Meter автоматически увеличит ток заряда до максимально возможного.

Как проверить кабель USB — микро USB

С помощью тестера KCX 017 и нагрузочного резистора мы можем не только узнать реальные характеристики USB зарядных устройств, но и проверить качество USB кабеля. Иногда возникает такая ситуация — сам блок питания проверен, характеристики реальные, а вот телефон все равно продолжает заряжаться в два раза дольше положенного. Причина — некачественный кабель. Проверить это очень легко. Нам понадобятся:
1) Блок питания , характеристики которого мы заблаговременно проверили с помощью того же тестера и резистора. 2) Тестер USB KCX 017 . 3) Нагрузочный резистор 1-2А .

Итак, наши «подопытные»). У нас в наличии 3 кабеля USB — микро USB
№1 — кабель от повер банка TOMO V8
№2 — кабель «фабричного» китайского производителя.
№3 — кабель неизвестного производства, скорее всего, тоже китайского)
(длина каждого кабеля не превышает 30см)

Подключаем кабель №1 к разъему USB нашего блока питания, а штекер микро USB к тестеру KCX 017 . Переключатель на резисторе сперва устанавливаем на значение 1А, потом на 2А.


Нагрузка 1А: ток 1А, напряжение 5,23V
Нагрузка 2А: ток 1,91А, напряжение 5,11V
Вывод: кабель №1 прекрасно справляется со своими обязанностями, будет заряжать устройства быстро и качественно!

Проделываем то же с кабелем №2:


Нагрузка 1А: ток 0,99А, напряжение 5,17V
Нагрузка 2А: ток 1,88А, напряжение 4,98V
Вывод: небольшое падение напряжения при токе 2А, но настолько незначительное, что никак не отразится на скорости заряда. Стоит отметить, что данный кабель может быть использован не только для заряда устройств, но и для синхронизации данных с ПК. Вердикт: годен!)

И наконец, экземпляр №3:


Нагрузка 1А: ток 0,90А, напряжение 4,65V
Нагрузка 2А: ток 1,53А, напряжение 4,09V
Вывод: если на токах до 1 ампера кабель хоть как-то справляется с возложенными для него обязанностями (хотя напряжение проседает до 4,65v), то при токах близких к 2А он уже никуда не годится. Напряжение падает почти до 4V, а этого совсем недостаточно для заряда современных смартфонов!

Вот так, с помощью тестера KCX 017 и нагрузочного резистора , мы нашли слабое звено в цепочке «зарядник USB — телефон» и избавились от некачественной продукции, заполонившей полки наших магазинов.

Приобрести тестеры USB и нагрузочные резисторы вы можете в наших магазинах МАГИЯ ЗАРЯДА и LaCrosse-NN

Питание по USB — как это работает?

  • Вопрос задан более двух лет назад
  • 3279 просмотров

rromm:
на 1 гнездо USB тем не менее ПК выдает 0,5А (USB2.0) и 0,9А (USB 3). Больше с одного порта снимать даже пробовать не стоит. Более того, это максимум, что вы можете запросить от USB следуя протоколу.
Да, вы можете найти материнки с усиленными по току USB-портами, но их там будет штуки 4 максимум.

>> думаю, что устройство должно в таких случаях либо отказывать в питании, либо должно спокойно переносить нагрев от работы при макс. нагрузке.
О, вы слишком хорошего мнения о разработчиках этих устройств. У меня одно из таких при превышении лимита по току начинает просто на секунду уходить в отключку с последующим возвратом. Как вы думаете, это полезно для того же телефона? Хотя зарядник не из дешевых.

rromm:
>>перегрузки чего ? ноута? он должен с ней справляться.
Вы адски тупите. По пунктам:
-допустим ваш ноут может без проблем выдать на периферийное устройство USB до 5А. При превышении этого тока он однозначно определяет КЗ и отключает питание устройства.
-вы сделали устройство с номинальным током потребления около 200мА и запитали его от ноута используя первый найденный кабель, потому что такой маленький ток пропустит любой кабель и любой USB разъем. Естественно такой кабель не рассчитан на большой ток.
-ваше устройство стало неисправным и начало кушать 4А по причине пробоя неких элементов. При этом ноут не определяет КЗ, так как ток в пределах допустимого и блок питания его может предоставить в порт.
-Кабель перегрелся, разъемы перегрелись, изоляция стекла, пластик подплавился.
-Кабель таки коротнул, ноут вырубил ваше устройство, но уже поздно: неисправность привела к разрушению как минимум кабеля.

Смотрите так же:  Старые провода связи

А поставили бы вы лимит по порту на 500мА, ничего бы вышеописанного не случилось. Порт бы сразу откинул питание и привет.

Вы можете возразить, что подключенное устройство должно иметь свой предохранитель, но зачем? Есть же механизм интеллектуального отключения и не надо дополнительно менять еще и предохранитель в вышедшем из строя устройстве. Удешевляет ремонт.

>>лишней она является потому, что для неё нужна инициализация, а это только мешает.
ой, беда то какая. Вы не в силах разобраться с инициализацией USB устройства, поэтому она не нужна. Хорошая логика, правильная. Одобряю.

Если вам нужно для вашего девайса стянуть питание в несколько ампер с напряжением 5В — подключайтесь сразу к шине питания ПК, не насилуйте USB. А если нужно питание именно через USB — оптимизируйте потребление тока, тем более что разъемы microUSB не рассчитаны на большие токи и пресловутые QuickCharge не повышают ток, а повышают напряжение для достижения большей мощности. Так уже ток в пару-тройку ампер хорошо прогревает разъемы USB.

1. Сам зарядник (или любое другое устройство с USB хостом) просаживается, когда с него берут больше тока, чем он может дать. В обычном режиме напряжение на выходе заряди поддерживается на уровне 5.0в — 5.2в
А вот на другом конце кабеля уже возможна просадка! Чем более качественные провода и разъёмы в них используются, тем меньше просадка напряжения. (именно потому не получится выжать 2А, используя плохой кабель — напряжение просядет, телефон это увидит и умерит аппетит)

2+3. Стандарт USB (до 2.1 включительно) обязывает производителей устройств потреблять не более 0.5А при работе. В USB 3.0 этот порог поднят до 1А. Более того, USB хост не обязан поддерживать устройства с потреблением даже 0.5А — по стандарту, при первоначальном подключении, устройство сообщает, какой ток ему требуется для работы, и хост отвечает, может ли он это обеспечить. Согласно стандарту, при инициализации устройство не должно потреблять более 0.1А
И здесь вступает в дело индустрия телефонов и стандарт разъёма для зарядки microUSB. Когда стандарт USB, предназначенный для коммуникации, начали применять «тупо» для обеспечения устройств питанием, началась путаница. Если при подключении к ПК телефон мог «спросить», сколько тока он может выдавать, «тупые» зарядки не поддерживали никакой инициализации и установления соединения, и от них можно было брать . а как узнать, сколько можно взять ампер от зарядки? Какой ток потреблять телефону, когда втыкается 5 вольт?? И вообще, вдруг это не тупая зарядка, а кабель с перебитыми шинами данных, подключенный к ПК, с которого нельзя брать больше 0.5А.
В общем, придумали проверять, замкнуты ли шины данных, и если замкнуты — брать, например, 1А. У других производителей, того же Apple, зарядка подавала на шину данных определенное напряжение, которое телефон определял, распознавал зарядку как «свою» и потреблял уже, например, 2А.
Потом Qualcomm придумал QuickCharge, сделал умную зарядку и пустил по кабелю вместо 5 вольт целых 9. В новых версиях вольтаж поднялся до 12, а потом и вообще до 20. И всё это по USB. Что-то не туда меня занесло. Какой там дальше пункт?

4. Предохранителей в зарядках я не видал. Обычно проседает напряжение, вольт эдак до четырех. На такой напруге телефон уже не может брать много ампер и автоматически уменьшает потребляемый ток.

5. Стандартный вольтаж, на котором теоритически могут заряжаться девайсы — в диапазоне 4.0-5.5 вольт (у меня есть зарядка с 5.5). С QuickCharge 3.0 — вольтаж до 20 вольт. В зависимости от качества кабеля, через него может течь до 2 ампер. Ну максимум 3, больше не стоит — перегреется место контакта и все поплавится нафиг.

6. В каком направлении? Зарядка это вообще побочная вещь в стандарте USB. Если вы про подключение телефона к ПК, при котором он заряжается — обычно всегда такое работает. Если OTG — на своем телефоне мне удавалось сделать так, чтобы он при этом ещё и заряжался. Но далеко не всегда. В этом режиме согласно стандарту USB, телефон должен служить источником питания, а не наоборот, заряжаться от подключенного к нему устройства.

MS8250D, Мультиметр с USB интерфейсом,авто.выбор диапозона измерения, детектор напряжения, TRUE RMS

Мультиметр, имеет стандартный функционал – измерения напряжения, тока, сопротивления, емкости, частоты, прозвонки цепи и проверки диодов. Но так же прибор обладает встроенным устройством бесконтактного обнаружения напряжения, предусматривает возможность измерения минимальных, максимальных и относительных значений.
Результаты измерений фиксируются на дисплее, на котором отображаются не только 6600-разрядные показатели, но и аналоговая шкала на 66 сегментов и дополнительное поле для отображения частоты или напряжения.

Благодаря уникальному методу измерения True RMS результаты максимально точны, а погрешности не превышают 3%.
Наличие интерфейса USB в устройств и компьютерного ПО с кабелем в комплекте становится возможным подключение мультиметра к компьютеру для переноса данных в отчетную документацию.
Разрядность шкалы основного дисплея 600 отсчетов
Дополнительный дисплей для отображения частоты измеряемого тока или напряжения
Графическая аналоговая шкала 66 сегментов USB интерфейс для передачи данных
Автоматический выбор пределов измерений
Возможность ручного выбора пределов измерений
Метод измерений True RMS
Бесконтактное обнаружение напряжения (NCV)
Постоянное напряжение 0.1 мВ … 1000 В, базовая погрешность 0.5% ±5 единиц счета
Переменное напряжение 0.1 мВ … 1000 В, базовая погрешность ±1.0% ±3 единицы счета
Постоянный ток 0.1 мкА … 10 А, базовая погрешность ±1% ±5 единиц счета
Переменный ток 0.1 мкА … 10 А, базовая погрешность ±1.5% ±5 единиц счета
Сопротивление 0.1 Ом … 66 МОм, базовая погрешность ±0.8% ±5 единиц счета
Емкость 1 пФ. 66 000 мкФ, базовая погрешность ±3% ±3 единицы счета
Частота 0.01 Гц. 66 МГц, погрешность ±1.5% ±5 единиц счета
Рабочий цикл (1/скважность1% … 99 )
Звуковая прозвонка: сигнал при сопротивлении менее

50 Ом
Тест диодов: обратное напряжение

3.2 В
Программное обеспечение для работы с компьютером
Фиксация показаний дисплея (HOLD)
Измерение максимальных и минимальных значений
Режим относительных измерений
Время автоотключения15 мин
Подсветка дисплея
Входной импеданс 10 МОм
Время выборки показаний графической шкалы – 0.04 сек./цифровых дисплеев – 0.4 сек.
Индикация перегрузки символ «OL » или «-OL» на ЖК-дисплее
Индикатор разряда батарей
Диапазон рабочих температур 0°С. +40°С
Диапазон температур хранения -10°С. +50°С
Максимальное допустимое напряжение1000 В CAT III
Предохранители 600мА/1000В и 10А/1000В плавкие, быстродействующие
Питание батарея 1 шт. х 9 В тип 6F22
Размеры 180 х 86 х 52 мм
Масса 50 г

Комплектность: Прибор, батарея питания, кабель USB, Диск с ПО, щупы

Как проверить напряжение usb мультиметром

Кабель USB состоит из 4 медных проводников — 2 проводника питания и 2 проводника данных в витой паре, и заземленной оплётки (экрана).

Устройства могут быть запитаны от шины, но могут и требовать внешний источник питания. По умолчанию устройствам гарантируется ток до 100 мА, а после согласования с хост-контроллером — до 500 мА. Поддерживается и дежурный режим для устройств и разветвителей по команде с шины со снятием основного питания при сохранении дежурного питания и включением по команде с шины.

USB поддерживает «горячее» подключение и отключение устройств. Это достигнуто увеличенной длиной заземляющего контакта разъёма по отношению к сигнальным. При подключении разъёма USB первыми замыкаются заземляющие контакты, потенциалы корпусов двух устройств становятся равны и дальнейшее соединение сигнальных проводников не приводит к перенапряжениям.

  • Проверить внешний вид на отсутствие повреждений.
  • Произвести осмотр контактов на отсутствие ржавчины, сколов диэлектрика, наличие контактов.
  • Подключить устройство (рабочее) к компьютеру в USB разъём (рабочий) и увидеть на экране определение данного устройства.

  • Взять тестер и включить режим прозвона
  • Проверить прозвоном с двух сторон каждый контакт по распиновке приведённой на рисунке

Как пользоваться мультиметром

В сегодняшней статье я хочу рассказать Вам, как пользоваться мультиметром. Использовать мы будем цифровой мультиметр, поскольку он — намного проще в освоении своих аналоговых «коллег» и обеспечивает вполне сносное качество замеров.

Пользоваться мультиметром — просто! И сейчас Вы в этом убедитесь 🙂

Мультиметр также часто называют «мультитестером», потому что он предназначен для снятия довольно широкого спектра показателей: измерение постоянного и переменного напряжения, сопротивления и силы тока. Во многих мультиметрах также присутствует возможность измерения коэффициента усиления транзисторов и предусмотрен специальный режим для тестирования диодов, прозвонка цепи на короткое замыкание и т.д. Одним словом — «мульти» (для многого) «тестер«, в народе — напряжометр! 🙂

Дорогие модели подобных измерительных устройств включают в себя и дополнительные функции: замера температуры (с помощью щупа-термопары), индуктивности катушек, емкости конденсаторов.

Мы уже касались темы использования данного типа измерителя в статье, которая называлась: как проверить блок питания. Сейчас же — разберем все немного подробнее.

Учиться пользоваться мультиметром мы будем на примере бюджетного устройства китайского производства стоимостью в 10-15 долларов «XL830L», каким пользуюсь я.

Для полноты картины, посмотрите на аналоговый (стрелочный) мультиметр, который использует мой коллега:

Итак, кратко рассмотрим основные характеристики нашего цифрового мультитестера.

В комплект его поставки входит набор простеньких «щупов» (красный и черный провода на фото выше), при помощи которых и производятся измерения. Их, по необходимости, можно заменить на более качественные или — удобные.

Примечание: будьте готовы сразу же чем-то (скотчем, изолентой) зафиксировать места входа обеих проводов в полые пластмассовые трубки-держатели. Дело в том, что проводники в трубках жестко не зафиксированы и при поворотах и изгибах «щупа» могут запросто оторваться (в силу крайне хлипкого припоя) возле основания измерительного наконечника.

Перед тем, как начать пользоваться мультиметром по полной программе — посмотрим на наш цифровой тестер поближе:

В его верхней части мы видим семисегментное цифровое табло, которое может отображать до четырех цифр (9999 — максимальное значение). При разряде питающей батареи на нем появляется соответствующая надпись: «bat».

Под табло находятся две кнопки. Слева кнопка «Hold» — удержание показаний последнего значения (чтобы не держать в памяти при переписывании в блокнот). И справа — «Back Light» — подсветка экрана синим цветом (при замерах в условиях плохого освещения). С тыльной стороны на корпусе мультиметра имеется откидная ножка-подставка (для удобного размещения тестера на столе).

Питается цифровой мультиметр 9-ти вольтовой батарейкой типа «Крона». Правда чтобы добраться до нее нам придется снять резиновый защитный чехол и заднюю крышку тестера.

Внизу красным обведен наш элемент питания, а вверху — плавкий предохранитель, который (я надеюсь) защитит наш измеритель от выхода из строя в случае перегрузки.

Итак, перед тем, как начать пользоваться мультиметром надо правильно подсоединить к нему измерительные «щупы». Общий принцип здесь следующий:

Черный провод (его называют по разному: общий, com, common, масса) это — минус. Мы подсоединяем его к соответствующему гнезду мультитестера с подписью «COM». Красный — в гнездо справа от него, это — наш «плюс«.

Оставшееся свободным гнездо слева — для измерения постоянного тока с пределом до 10-ти ампер (большие токи) и — без предохранителя, о чем свидетельствует предупреждающая надпись «unfused». Так что будьте внимательны — не сожгите устройство!

Также обратите внимание на знак предупреждения (красный треугольник). Под ним написано: MAX 600V. Это — максимально допустимый предел измерений напряжения для данного мультиметра (600 Вольт).

Предупреждение ! Запомните следующее правило: если измеряемые значения напряжения (Вольты) или силы тока (Амперы) заранее неизвестны, то для предотвращения выхода мультитестера из строя устанавливайте его переключатель на максимально возможный предел измерений. И только после этого (если показания слишком малы или — не точны) переключайте прибор на предел, ниже текущего.

Теперь, собственно, — как пользоваться мультиметром и как переключать эти самые «пределы»? 🙂

Работать с мультиметром надо с помощью кругового переключателя с указывающей стрелкой. По умолчанию она выставлена в положение «OFF» (прибор выключен). Стрелку мы можем вращать в любом направлении и таким образом «говорим» мультитестеру что именно хотим измерить или — с каким максимальным пределом будем работать.

Тут есть один очень важный момент! Работая с цифровым мультиметром, мы имеем возможность измерять значения как переменного, так и постоянного тока и напряжения. Сейчас в промышленности и быту в подавляющем большинстве используется переменный ток. Именно он «течет» по высоковольтным линиям проводов от генераторов электростанций в наши дома, «зажигает» наши лампы освещения и «питает» различные бытовые электроприборы.

Переменный ток, по сравнению с постоянным, намного легче преобразовывать (с помощью трансформаторов) в ток другого (нужного нам) напряжения. Например: 10 000 Вольт могут быть с легкостью превращены в 220 и совершенно спокойно направлены для нужд жилого дома. Переменный ток (по сравнению с постоянным) также намного проще «добывать» в промышленных масштабах и передавать его (с меньшими потерями) на большие расстояния.

Двигаемся дальше. Внутри системного блока всегда течет постоянный ток, так как блок питания компьютера преобразовывает переменный ток (подающегося в жилые дома с подстанции) в постоянный низкого напряжения (необходимый для питания комплектующих компьютера).

Пользоваться мультиметром надо, учитывая все сказанное выше. Поэтому, запомните наизусть следующие сокращения:

  • DCV = DC Voltage — (анг. Direct Current Voltage) — постоянное напряжение
  • ACV = AC Voltage — (анг. Alternating Current Voltage) — переменное напряжение
  • DCA — (анг. Direct Current Amperage) — сила тока постоянного напряжения (в амперах)
  • ACA — (анг. Alternating Current Amperage) — сила тока переменного напряжения (в амперах)

Теперь, — можем учиться пользоваться мультиметром дальше. Приглядитесь к циферблату своего измерителя и Вы обязательно увидите, что он делится строго на две части: одна для измерения постоянного и вторая — переменного напряжений.

Видите — две буквы «DC» в левом нижнем углу на фото выше? Это значит что левее (относительно положения «OFF») мы будем работать с мультиметром, измеряя постоянные значения напряжения и силы тока. Соответственно правая часть мультитестера отвечает за измерения тока переменного.

Теперь предлагаю Вам сразу закрепить полученные знания на практике. Покажем пример использования мультиметра для замера емкости обычной батарейки для биоса «CR 2032» номиналом 3,3 Вольта.

Помните наше предупреждение красного цвета? 🙂 Всегда выставлять предел выше, чем измеряемые значения. Мы знаем, что в батарейке — 3,3V и это — ток постоянный. Соответственно — выставляем на круговом переключателе «предел» измерений по шкале постоянного тока в 20 Вольт. Как показано на фото ниже.

Затем — берем наш гальванический элемент (батарейку) и прикладываем к ней измерительные «щупы» мультиметра. Точно так, как на фото ниже:

Обратите внимание на отмеченный красным знак «+» на батарейке. К этой ее стороне мы прикладываем «плюс» (красный щуп), а к обратной стороне — «землю» (черный).

Примечание: если перепутать полярность (к плюсу — минус, а к минусу — плюс) т.е. — поменять «щупы» местами — ничего страшного не произойдет, просто перед результатом на цифровом табло Вы увидите знак «минус». Сами значения измерений останутся верными.

Итак, мы воспользовались мультиметром и каков результат? Посмотрите (фото выше) на цифровое табло тестера. Там отображаются цифры «1.42». Значит в нашей батарейке сейчас 1.42 Вольта (вместо положенных трех). С размаху ее — в мусорное ведро ! 🙂 Сбрасывать настройки биоса с такой батарейкой компьютер будет автоматически при каждом включении.

Для каких еще целей (с пользой для Отечества) мы можем пользоваться мультиметром? 🙂 Вот, к примеру, мне недавно нужно было выяснить, как правильно к старой материнской плате подключить внешний USB разъем, который оконцован вот такими вот четырьмя коннекторами:

Здесь «+5V» — питающее напряжение для устройства, подключаемого к разъему, «ground» — «земля» и два средних коннектора — кабели для передачи данных.

Прежде всего, находим на плате контакты (в данном случае — восемь штырьков) для подключения USB. Смотрим на фото ниже:

Каждая линия контактов это — один USB разъем на выходе. Всего — два. Для правильного подключения (дабы не сжечь втыкаемое в конечный разъем устройство) нам важно знать, на какой из «штырьков» подается напряжение? Остальные мы и методом «научного тыка» подобрать сможем, а вот если мы коннектор данных оденем на 5-ти Вольтовый «штырек» и подключим к такой связке флешку, то ей сразу настанет капец! 🙂

Поэтому пользоваться мультиметром надо четко представляя что и зачем мы делаем. Замеры тестером, естественно, производим при включенном компьютере. Нажимаем кнопку «пуск» и прикладываем черный «щуп» мультиметра к любому месту металлического корпуса компьютера (иначе мы просто не увидим результатов на экране). Затем, красным «щупом» начинаем последовательно прикасаться ко всем «ножкам» разъема на плате, следя за показаниями мультиметра на экране.

Внимание ! касаться измерительным «щупом» штырьков нужно аккуратно, чтобы не закоротить одновременно два из них (так можно сжечь сам USB контроллер на плате).

Следуя такой схеме, мы выяснили, что пять Вольт находятся на двух крайних контактах (смотрите фото выше). Выключаем компьютер и начинаем постепенно заполнять наш разъем. Сначала одеваем контакты, имеющие маркировку «+5V», на обозначенные штырьки, два кабеля данных — сразу за ними и последним — коннектор с надписью «ground».

Визуально проверяем все ли в порядке и снова включаем системный блок. Берем флеш-накопитель и вставляем в один из двух USB портов, только что подключенных нами к материнской плате. Светодиод на «флешке» загорается (пошло питание), а после загрузки операционной системы мы видим, что и кабели данных мы подключили правильно, так как съемный диск успешно определяется системой!

Тем, кому вся эта техническая «лабудень» еще не надоела, предлагаю двигаться дальше 🙂 Чтобы научиться пользоваться мультиметром и эффективно с ним работать, нам надо знать (запомнить, записать, вызубрить, вытатуировать) 🙂 следующие обозначения, которые мы наверняка встретим на аналогичных измерителях, не зависимо от их модели.

Более совершенные образцы мультиметров показывают еще и емкость элементов — «F» (она измеряется в Фарадах) и индуктивность — «L» (вычисляется в Генри — «Гн»).

Предлагаю Вам бегло «пройтись» по всему дисковому переключателю мультиметра и рассмотреть все его указатели и функции. Для удобства пользования сделаем так: откройте следующую ссылку в новом окне и смотрите на картинку по мере прочтения текста, сверяясь с положениями переключателя.

Будем продвигаться слева-направо. Итак, в положении «OFF» мультиметр полностью выключен. Следующая позиция переключателя — 600 Вольт по шкале переменного тока. Она как нельзя лучше подходит для измерения напряжения в бытовой электросети (ток — переменный и значение шкалы — в несколько раз выше необходимого — 220-ти V.).

Проверим это утверждение на практике!

Внимание ! Напряжения в 200 и 600 Вольт — опасны для жизни ! Поэтому работая с ними, будьте предельно внимательны и осторожны!

Порядок «щупов» в розетке роли не играет.

Следующая позиция — 200 Вольт (вот на ней напряжение в розетке мерить не нужно — сгорит мультиметр ! ). Правее у нас — цифра «200» со значком «µ» (микроампер — миллионная часть ампера). Подобные значения величин могут использоваться в разного рода электрических схемах.

Следующим на шкале — «2m» (два миллиампера — две тысячных Ампера). Показатель встречается преимущественно в транзисторах. Далее — «200m» — аналогично, но отсчет начинается с двухсот миллиампер. Следующее положение переключателя — «10A» (максимальная сила тока — десять Ампер). Это — территория больших токов, будьте внимательны ! Здесь нам нужно будет красный «щуп» включить в специальное гнездо, обозначенное на фото как «10ADC».

Можно успешно пользоваться мультиметром и для измерения значений «hFE» транзисторов различной проводимости (NPN и PNP транзисторов). Давайте один из них мы и проверим:

Как видите, три «ножки» элемента просто вставляются в соответствующие гнезда на мультиметре. Распространяться об этом типе измерения сейчас не будем (у нас все таки сайт на компьютерную тематику), но запомните на всякий случай:

  • B — база (base)
  • C — коллектор (collector)
  • E — эмиттер (emitter)

Значок акустической волны (прозвонка) линии на короткое замыкание. Какая нам от этого польза? Давайте разберем на примере.Я Вам, заодно, пару фотографий покажу интересных 🙂

Фотография первая — последняя стадия заключительной части финального этапа прокладки СКС сети на одном из этажей у нас на работе! 🙂

Сто кабелей типа «витая пра», свисающие с кабельных каналов, закрепленных в пространстве подвесного потолка.

Представьте себе такую ситуацию (как оказалось — весьма реальную), что часть кабелей забыли подписать. Получается следующее: на другом крыле здания (у компьютерной розетки пользователя) мы не можем сказать, какому именно кабелю из ста принадлежит данное конкретное окончание и поиск «счастливого конца» автоматически превращается в отдельную задачу 🙂

Вот тут-то нам на выручку и придет режим использования мультитестера в качестве «звонилки» кабеля на короткое замыкание. Поскольку в самом названии заключена подсказка, то нам остается следующее — организовать это самое КЗ (короткое замыкание).

В слаботочных сетях (к которым относятся компьютерные ЛВС) это — совсем не страшно 🙂 На концах кабелей с обеих сторон снимаем защитное покрытие, выбираем один конкретный кабель (который мы хотим найти (прозвонить)) и также очищаем от изоляции любую пару его проводников. А затем — просто скручиваем их между собой, создавая в линии «петлю». Ей богу, это быстрее показать на фото, чем описывать словами 🙂

Теперь мы идем к нашей «лапше», свисающей с потолка, и переводим переключатель мультиметра в нужное нам положение:

Начинаем «прозванивать» каждый из неподписанных кабелей. Естественно — выбираем пары того же цвета, что и скрученные нами на другом конце линии! И я Вам гарантирую, что один из тестируемых кабелей отзовется на наши усилия характерным «писком», поскольку, таким образом, мы окончательно замкнули линию, а граница срабатывания звукового сигнала мультиметра это — 70 Ом. И если сопротивление между щупами меньше этого значения, то тестер издает специфический высокочастотный звуковой сигнал.

Порядок прикладывания «щупов» не важен. Конечно, это — такой «экспрес-метод», использования мультиметра, правильнее и надежнее было бы на удаленном конце кабеля установить резистор, а тестером с нашей стороны замерить сопротивление резистора через линию. Но, в условиях описанной выше ситуации, первый метод — более быстрый. Ну, и просто иногда — лень заморачиваться 🙂

Давайте отработаем элементарную процедуру: прозвоним кабель на обрыв. Исследовать будем три разных типа кабелей:

  • обжатый сетевой кабель (патчкорд)
  • VGA кабель к монитору
  • силовой кабель компьютера

Проверим нет ли обрыва в нашем патчкорде? Для этого прикладываем один щуп мультиметра к первой жиле в первом коннекторе, а второй — к той же жиле во втором. При этом, переводим сам измеритель в режим «прозвона».

Примечание: щупы должны быть достаточно тонкими, чтобы добраться до медных пластинок в коннекторе RJ-45.

Если мы все сделали правильно, то услышим характерный звуковой сигнал тестера, который свидетельствует о том, что проводник замкнут и обрыва нет. При обрыве, естественно, сигнала на будет. Так последовательно проверяем каждую пару проводников.

На очереди — VGA кабель передачи сигнала от видеокарты на монитор. Проверим и его! Для этого — прикладываем один щуп мультитестера к одному из штырьков в первом разъеме кабеля, а второй — к симметричному штырьку во втором разъеме.

Касаемся только самого штырька. Если приложим «щуп» к внутренней стороне корпуса разъема, то звуковой сигнал будет раздаваться независимо от того, какой из штырьков мы закоротим на другой стороне кабеля.

А сейчас — прозвоним на обрыв силовой кабель компьютера. Для этого один из «щупов» тестера (не важно какой) вставляем в разъем на одном его конце, а второй измерительный «щуп» прикладываем к одному из выводов электрической «вилки» кабеля.

Среднее отверстие это — «земля». Как и в предыдущих примерах, при одной из комбинаций мы должны услышать звуковой сигнал.

Примечание: все эти тесты можно также проводить в режиме замера сопротивления, но, как мы уже говорили, данный вариант — наиболее простой и экономный по времени. В большинстве случаев рекомендую выбирать именно его.

Пользоваться мультиметром можно и для определения значений сопротивления электрических компонентов. Входим в зону измерения сопротивления (англ. «resistance» или R, оно обозначается вот таким значком и измеряется в Омах). Первое значение на переключателе — «200 Ом». Можно, к примеру, измерить сопротивление резистора. Давайте сделаем это!

Берем резистор на 110 Ом и замеряем его сопротивление:

Далее — расположен переключатель с помощью которого можно «прозвонить» диод без выпаивания его из печатной платы. Мультиметр, в данном случае, будет вычислять значение сопротивления по падению напряжения компонента.

За ним идут позиции в «20k» (20 килоом или 20 тысяч Ом), «200k» (200 килоом — 200 тысяч Ом) и «2M» (два мегаома — 2 миллиона Ом).

Дальше — пороги измерения напряжения по шкале постоянного тока: «200m» (200 милливольт — 0,2 Вольта), «2», «20», «200» и «600» Вольт. Как мы уже поняли, если пользоваться мультиметром исключительно для ремонта компьютеров, то самым востребованным положением переключателя является положение в «20» Вольт по шкале постоянного тока, так как максимальное напряжение, подающееся на все комплектующие составляет всего лишь 12 V.

Примечание: о том, как с помощью подобного тестера проверить некоторые элементы на материнской плате ПК, можете прочитать вот в этой статье.

Давайте сделаем финальный рывок и я покажу Вам, как использовать мультиметр для проверки источника питания постоянного тока. У нас на работе часто стоит такая задача: перекинуть хвостовик (разъем) с одного такого блока питания на другой. Подразумевается именно БП от дешевых сетевых коммутаторов, IP камер, модемов и прочей электронной дребедени. Вот, к примеру, такой 12-ти вольтовый экземпляр, к которому нужно прикрутить другой разъем:

Для начала, берем сам кабель разъема и «прощупываем» его тестером в режиме прозвонки:

Обратите внимание, где находятся «щупы» прибора: один на оголенном конце кабеля, а второй — на внешнем металлическом обводе разъема. Как устроен коннектор? Один кабель идет к земле (этому самому обводу), а второй к штырьку, находящемуся внутри. Дело в том, что именно этот внешний обод и является «землей» (минусом или «массой») в аналогичных источниках питания.

Если мультиметр издал звуковой сигнал, значит мы нашли наш кабель, если нет, передвигаем черный щуп (при прозвонке их порядок не имеет значения) на другой провод. Определив, таким образом, кабель «земли» (можем пометить его, чтобы не забыть), аналогичным образом находим наш «плюс». Для этого один из щупов вставляем внутрь самого разъема (мы также должны услышать звуковой сигнал):

Итак, использование мультиметра помогло нам определить «плюс» и «минус» (землю) кабеля хвостовика. Теперь нам нужно разобраться с тем же моментом применимо к самому блоку питания. Вставляем его в розетку (не бойтесь, 12 вольт Вы вряд ли почувствуете), переводим наш прибор в режим измерения постоянного тока с пределом в 20 Вольт и приклыдываем щупы к проводам, идущим от БП.

Лирическое отступление: мы это делаем затем, что нам нужно определить полярность, т.е. на каком проводе у блока питания «+», а на каком «-». Как мы помним, при работе с источниками постоянного тока мы должны строго соблюдать полярность! Можете потренироваться на обычной батарейке 🙂

Итак, на фото выше на табло мультиметра мы видим знак минус. Что это значит? Запомните! Дисплей показывает полярность в месте подсоединения красного контакта. Отсутствие знака минус рассматривается как плюс! Исходя их этого, красный щуп мультиметра у нас прижат к «минусу» источника питания. Меняем щупы местами:

Видим, что на табло результат показывается без знака «-», а это значит что мы верно определили полярность («плюс» БП у нас на красном проводе). Не обращайте внимание на значение больше 12-ти вольт на табло прибора. Под нагрузкой оно «просядет» до своих законных 12-ти Вольт.

Теперь мы, зная полярность, можем правильно свить между собой два провода.

Подключаем все это дело к розетке и делаем тестовый замер на разъеме получившейся конструкции.

Примечание: иногда разъем слишком узкий и погрузить в него наконечник не получится. В таком случае используют распрямленную скрепку которую вставляют внутрь, а к ней уже прикладывают щуп.

Все нормально. Теперь можем смело спаять проводники между собой при помощи паяльника, изолировать их и подключать источник питания к нужному устройству.

Надеюсь, я не очень «занудил» в данной статье и Вы дотерпели ее до конца? Если так, то — поздравляю! Теперь Вы точно должны знать как пользоваться мультиметром ! 🙂

Напоследок посмотрите видео о том, как происходит обжим сетевого кабеля витая пара. Как правильно расставить проводники в кабеле, мы с Вами разбирали в одном из наших бесплатных уроков курса.

Похожие статьи:

  • Аккумулятор на 380 вольт Инверторная система для дома 5 кВт Код товара: 0800070 Наличие: на удаленном складе в Москве по Москве — от 500 руб. по России — от 500 руб. самовывоз — по предзаказу Инверторная система бесперебойного питания UR-5000 […]
  • Пускатель магнитный 10а ip54 Пускатель ПМ12-010110, без теплового реле, нереверсивный, 10А, IP54, без кнопок Артикул / Модель: ПМ12-010110 Магнитные пускатели серии ПМ12 Российского производства, пожалуй, самые распространенные в нашей стране аппараты для […]
  • Как проверить зарядное устройство шуруповерта мультиметром Своими руками - Как сделать самому Как сделать что-то самому, своими руками - сайт домашнего мастера Ремонт зарядки шуруповерта своими руками ОТЛИЧНЫЙ ИНСТРУМЕНТ ДЛЯ МАСТЕРОВ И РУКОДЕЛИЯ И ВСЕ ДЛЯ САДА, ДОМА И ДАЧИ БУКВАЛЬНО ДАРОМ - […]
  • Узо s201 Автомат 1P 20А тип С 6 kA ABB S201 Индустриальный 12 шт КАД Север 36 шт Софийская 24 шт Таллинское 18 шт Предназначен для защиты электрических установок от перегрузок и коротких замыканий, а также для нечастых включений и […]
  • Измерение выходного сопротивления генератора Измерение выходного сопротивления генератора Измерение основных параметров усилителя Прежде чем проверять динамики, колонки или наушники, убедитесь в том, что ваш усилитель (или стационарный, или встроенный в активные колонки, или […]
  • Электропроводка 3 фазы Как разделить электропроводку на группы? Для чего это нужно? Во-первых для удобства обслуживания. Во-вторых для безопасности эксплуатации электропроводки. Если в какой-либо группе произошел сбой, она отключается, не воздействуя на […]