Как соединяются провода воздушной линии

Как устроена релейная защита линий электропередач

Бесперебойная и надежная транспортировка электроэнергии к потребителям — это одна из основных задач, постоянно решаемых энергетиками. Для ее обеспечения созданы электрические сети, состоящие из распределительных подстанций и соединяющих их линий электропередач. Для перемещения энергии на большие расстояния используются опоры, к которым подвешиваются соединительные провода. Они изолированы между собой и землей слоем окружающего воздуха. Такие линии по виду изоляции называют воздушными.

Если расстояние транспортной магистрали небольшое или в целях безопасности необходимо спрятать линию электропередач в земле, то используются кабели.

Воздушные и кабельные линии электропередач постоянно находятся под напряжением, величина которого определена структурой электрической сети.

Назначение релейной защиты ЛЭП

В случае повреждения изоляции любого места кабельной или протяженной воздушной ЛЭП приложенное к линии напряжение создает ток утечки или короткого замыкания через нарушенный участок.

Причинами нарушения изоляции могут стать различные факторы, которые способны самоустраниться или продолжать свое разрушительное воздействие. Например, пролетающий между проводами воздушной ЛЭП аист создал междуфазное замыкание своими крыльями и сгорел, упав рядом.

Или дерево, выросшее очень близко от опоры, во время бури порывом ветра повалено на провода и закоротило их.

В первом случае короткое замыкание возникло на короткий промежуток времени и исчезло, а во втором — нарушение изоляции носит длительный характер и требует устранения обслуживающим электротехническим персоналом.

Такие повреждения способны нанести большой ущерб энергетическим предприятиям. Токи возникающих коротких замыканий обладают огромной тепловой энергией, способной сжечь не только провода подводящих линий, но и разрушить силовое оборудование на питающих подстанциях.

По этим причинам все возникающие повреждения на ЛЭП необходимо мгновенно ликвидировать. Это достигается снятием напряжения с поврежденной линии на питающей стороне. Если же такая ЛЭП получает питание с обеих сторон, то они обе должны отключить напряжение.

Функции постоянного отслеживания электрических параметров состояния всех линий электропередач и снятия с них напряжения со всех сторон при возникновении любых аварийных ситуаций возложены на сложные технические системы, которые называют по сложившейся традиции релейными защитами.

Прилагательное «релейные» образовано от элементной базы на основе электромагнитных реле, конструкции которых возникли с появлением первых линий электропередач и совершенствуются до наших дней.

Широко внедряемые в практику энергетиков модульные защитные устройства на основе микропроцессорной техники и компьютерных технологий не исключают пока полную замену релейных устройств и по сложившейся традиции тоже заносятся в устройства релейных защит.

Принципы построения релейных защит

Органы контроля состояния сети

Для отслеживания электрических параметров линий электропередач необходимо иметь органы их измерения, которые способны постоянно контролировать любые отклонения нормального режима в сети и, одновременно, отвечать условиям безопасной эксплуатации.

В линиях электропередач всех напряжений эта функция возложена на измерительные трансформаторы. Они подразделяются на трансформаторы:

Поскольку качество работы защит имеет первостепенное значение для надежности всей электросистемы, то к измерительным ТТ и ТН предъявляются повышенные требования по точности работы, которые определяются их метрологическими характеристиками.

Классы точности измерительных трансформаторов для использования в устройствах РЗА (релейных защит и автоматики) нормированы величинами «0,5», «0,2» и «Р».

Измерительные трансформаторы напряжения

Общий вид установки трансформаторов напряжения на ВЛ-110 кВ показан на картинке ниже.

Здесь видно, что ТН устанавливаются не в любом месте протяженной линии, а на распределительном устройстве электрической подстанции. Каждый трансформатор подключается своими первичными выводами к соответствующему проводу ВЛ и контуру земли.

Преобразованное вторичными обмотками напряжение выводится через рубильники 1Р и 2Р по соответствующим жилам силового кабеля. Для использования в устройствах защит и измерений вторичные обмотки соединяются по схеме «звезда» и «треугольник», как показано на картинке для ТН-110 кВ.

Для снижения потерь напряжения и точной работы релейной защиты используется специальный силовой кабель, а к его монтажу и эксплуатации предъявляются повышенные требования.

Измерительные ТН создаются под каждый вид напряжения линии электропередачи и могут включаться по разным схемам для выполнения определенных задач. Но все они работают по общему принципу — преобразование линейной величины напряжения ЛЭП во вторичное значение 100 вольт с точным копированием и выделением всех характеристик первичных гармоник в определенном масштабе.

Коэффициент трансформации ТН определяется соотношением линейных напряжений первичной и вторичной схемы. К примеру, для рассматриваемой ВЛ 110 кВ его записывают так: 110000/100.

Измерительные трансформаторы тока

Эти устройства тоже преобразовывают первичную нагрузку линии во вторичные значения с максимальным повторением всех изменений гармоник первичного тока.

В целях удобства эксплуатации и обслуживания электрооборудования их тоже монтируют на распределительных устройствах подстанции.

Трансформаторы тока включаются в схему ВЛ не так, как ТН: они своей первичной обмоткой, которая обычно представлена всего одним витком в виде прямого токовода, просто врезаются в каждый провод фазы линии. Это хорошо видно на приведенной выше фотографии.

Коэффициент трансформации ТТ определяется соотношением выбора номинальных величин на этапе конструирования ЛЭП. Например, если линия электропередач рассчитывается на транспортировку токов 600 ампер, а на вторичной стороне ТТ будет сниматься 5 А, то применяют обозначение 600/5.

В энергетике принято два стандарта значений вторичных токов, которые применяются:

5 А для всех ТТ до 110 кВ включительно;

1 А для линий 330 кВ и выше.

Вторичные обмотки ТТ соединяются для подключения к устройствам защит по разным схемам:

Каждое соединение имеет свои специфические особенности и применяется для определенных видов защит различными способами. Пример соединения трансформаторов тока линии и обмоток токовых реле в схему полной звезды показан на картинке.

Этот наиболее простой и распространенный фильтр гармоник используется во многих схемах релейных защит. В нем токи от каждой фазы контролируются индивидуальным одноименным реле, а сумма всех векторов проходит через обмотку, включенную в общий нулевой провод.

Способ использования измерительных трансформаторов тока и напряжения позволяет в точном масштабе переносить первичные процессы, происходящие на силовом оборудовании во вторичную схему для использования их в аппаратной части релейных защит и создания алгоритмов работы логических устройств по ликвидации аварийных процессов на оборудовании.

Органы обработки полученной информации

В релейных защитах основным рабочим элементом является реле — электротехнический прибор, который выполняет две основные функции:

отслеживает качество контролируемого параметра, например, тока и в нормальном режиме стабильно поддерживает и не изменяет состояние своей контактной системы;

при достижении критического значения, называемого уставкой или порогом срабатывания, мгновенно переключает положение своих контактов и находится в этом состоянии до тех пор, пока контролируемая величина не вернется в область нормальных значений.

Принципы формирования схем включения реле тока и напряжения во вторичные цепи помогает понять представление синусоидальных гармоник векторными величинами с изображением их на комплексной плоскости.

Внизу картинки показана векторная диаграмма для типичного случая распределения синусоид по трем фазам А, В, С при рабочем режиме электроснабжения потребителей.

Контроль состояния цепей тока и напряжения

Частично принцип обработки вторичных сигналов показан на схеме включения ТТ и обмоток реле по схеме полной звезды и ТН на ОРУ-110. Этот метод позволяет собрать вектора способами, изображенными ниже.

Включение обмотки реле в любую из гармоник этих фаз позволяет полностью контролировать происходящие в ней процессы и отключать схему из работы при авариях. Для этого достаточно использовать соответствующие конструкции релейных устройств тока или напряжения.

Приведенные схемы являются частным случаем многообразного использования различных фильтров.

Способы контроля проходящей по линии мощности

Устройства РЗА контролируют величину мощности на основе показаний все тех же трансформаторов тока и напряжений. При этом используются известные формулы и соотношения полной, активной и реактивной мощностей между собой и выраженные их значения через вектора токов и напряжений.

Здесь учитывается, что вектор тока формируется приложенной ЭДС к сопротивлению линии и одинаково преодолевает его активные и реактивные части. Но при этом происходит падение напряжения на участках с составляющими Ua и Up по законам, описанным треугольником напряжений.

Мощность может передаваться из одного конца линии в другой и даже менять свое направление при транспортировке электроэнергии.

Изменения ее направления возникают в результате:

переключений нагрузок оперативным персоналом;

качаний электроэнергии в системе благодаря воздействию переходных процессов и иных факторов;

возникновения аварийных режимов.

Работающие в составе РЗА реле мощности (РМ) учитывают колебания ее направлений и настраиваются на срабатывание при достижении критической величины.

Способы контроля сопротивления линии

Устройства релейной защиты, оценивающие расстояние до места возникшего короткого замыкания на основе замера электрического сопротивления, называют дистанционными, или сокращенно ДЗ защитами. Они тоже в своей работе используют цепи трансформаторов тока и напряжения.

Для измерения сопротивления применяется выражение закона Ома, описываемое для участка рассматриваемой цепи.

При прохождении синусоидального тока через активные, емкостные и индуктивные сопротивления вектор падения напряжения на них отклоняется в разные стороны. Это учитывается поведением релейным защит.

По этому принципу в устройствах РЗА работают многочисленные виды реле сопротивлений (РС).

Способы контроля частоты на линии

Для поддержания стабильности периода колебаний гармоник тока, передаваемого по линии электропередач, используются реле контроля частоты. Они работают по принципу сравнения эталонной синусоиды, вырабатываемой встроенным генератором, с частотой, получаемой от измерительных трансформаторов линии.

После обработки этих двух сигналов реле частоты определяет качество контролируемой гармоники и при достижении значения уставки изменяет положение контактной системы.

Особенности контроля параметров линии цифровыми защитами

Приходящие на замену релейным технологиям микропроцессорные разработки тоже не могут работать без вторичных величин токов и напряжений, которые снимаются с измерительных трансформаторов ТТ и ТН.

Для работы цифровых защит информация о вторичной синусоиде обрабатывается методами дискретизации, которые заключаются в наложении на аналоговый сигнал высокой частоты и фиксации амплитуды контролируемого параметра в месте пересечения графиков.

За счет малого шага дискретизации, быстрых способов обработки и применения метода математической аппроксимации получается высокая точность измерения вторичных токов и напряжений.

Вычисленные таким способом цифровые величины используются в алгоритме работы микропроцессорных устройств.

Логическая часть релейных защит и автоматики

После того как первичные величины токов и напряжений передаваемой по ЛЭП электроэнергии смоделированы измерительными трансформаторами, выделены для обработки фильтрами и восприняты чувствительными органами релейных устройств тока, напряжения, мощности, сопротивления и частоты наступает очередь работы логических релейных схем.

Смотрите так же:  Узо где вход

В основу их конструкции положены реле, работающие от дополнительного источника постоянного, выпрямленного или переменного напряжения, которое еще называют оперативным, а питаемые им цепи — оперативными. В этот термин вложен технический смысл: очень быстро, без излишних задержек выполнять свои переключения.

От скорости работы логической схемы во многом зависит быстрота отключения аварийной ситуации, а, следовательно, степень ее разрушительных последствий.

По способу выполнения своих задач реле, работающие в оперативных цепях называют промежуточными: они получают сигнал от измерительного органа защиты и передают его коммутацией своих контактов исполнительным органам: выходным реле, соленоидам, электромагнитам отключений или включений силовых выключателей.

Промежуточные реле обычно имеют несколько пар контактов, которые работают на замыкание или размыкание цепи. Они используются для одновременного размножения команд между разными устройствами РЗА.

В алгоритм работы релейных защит довольно часто вводится задержка времени для обеспечения принципа селективности и формирования очередности определенного алгоритма. Она на период действия уставки блокирует работу защиты.

Этот ввод задержки создается с помощью специальных реле времени (РВ), обладающих часовым механизмом, влияющим на скорость срабатывания своих контактов.

Логическая часть релейных защит использует один из множества алгоритмов, созданных для разных случаев, которые могут возникнуть на линии электропередач конкретной конфигурации и напряжения.

В качестве примера можно привести всего лишь некоторые названия работы логики двух релейных защит, основанных на контроле тока ЛЭП:

токовая отсечка (обозначение быстродействия) без выдержки времени или с выдержкой (обеспечение избирательности РВ) с учетом направления мощности (за счет реле РМ) либо без него;

максимальная токовая защита , которая может быть наделена теми же контролями, что и отсечка в комплекте с проверкой минимального напряжения на линии или без нее.

В работу логики релейных защит часто вводятся элементы работы автоматики различных устройств, например:

однофазного или трехфазного повторного включения силового выключателя;

включения резервного питания;

Логическая часть защиты линии может быть выполнена в небольшом релейном отсеке прямо над силовым выключателем, что характерно для комплектных распределительных устройств наружной установки (КРУН) с напряжением до 10 кВ, или занимать несколько панелей 2х0,8 м в релейном зале.

Например, логика защит линии 330 кВ может размещаться на отдельных панелях защит:

ДФЗ — дифференциально фазной;

ВЧБ — высокочастотной блокировки;

Оконечным элементом релейной защиты линии служат выходные цепи. Их логика тоже строится на использовании промежуточных реле.

Выходные цепи формируют порядок работы выключателей линии и определяют взаимодействие с соседними присоединениями, устройствами (например, УРОВ — резервного отключения выключателя) и другими элементами РЗА.

У простых защит линии может быть всего одно выходной реле, срабатывание которого приводит к отключению выключателя. В сложных системах разветвленных защит создаются специальные логические цепи, работающие по определенному алгоритму.

Окончательное снятие напряжение с линии при возникновении аварийной ситуации осуществляется силовым выключателем, который приводится в действие усилием электромагнита отключения. Для его работы подводятся специальные цепи питания, способные выдерживать мощные нагруз ки.

Как соединяются провода воздушной линии

Калькулятор

Сервис бесплатной оценки стоимости работы

  1. Заполните заявку. Специалисты рассчитают стоимость вашей работы
  2. Расчет стоимости придет на почту и по СМС

Номер вашей заявки

Прямо сейчас на почту придет автоматическое письмо-подтверждение с информацией о заявке.

Как заземляют опоры воздушных линий, ведущих к потребителю

Представить себе современную цивилизацию без электричества невозможно. Огромная часть углеводородов используется для генерации именно электроэнергии.

Однако электричество невозможно перевозить, как нефть или уголь. Для его транспортировки используют линии электропередачи (ЛЭП), обеспечивающие трафик электроэнергии большой мощности на необходимые расстояния. Приведение же параметров переданной по ним энергии к стандартам, свойственным ее потребителям, подразумевает использование трансформаторных подстанций, которые обеспечивают необходимое напряжение в сети. Таким образом, осуществляется питание всех электроустановок, начиная от лампочки в комнате и заканчивая промышленным оборудованием.

Для предотвращения травматизма обслуживающего персонала и тем более летальных исходов, учитывая высокий вольтаж, применяются заземляющие устройства воздушных линий и подстанций. Данная публикация ставит перед собой задачу разобраться в причинах их необходимости, а также конструкциях этих приспособлений.

Для чего нужно заземлять ЛЭП и подстанции

По большому счету, воздушная линия (ВЛ) представляет собой ряд столбов (опор), подвергающемуся воздействию природных факторов, таких как перепады температур, атмосферные осадки, прямое воздействие солнечного ультрафиолета и прочих. Ввиду их влияния, могут изменяться свойства диэлектриков и происходить прямое касание токонесущих частей кабеля с опорой. Кроме прочего, нередки кратковременные скачки напряжения в линии со значительным превышением номинального (допустимого) значения, что может приводить к замыканию между кабелем и конструкционными элементами опоры.

При прикосновении к такому столбу человек может получить травму и даже умереть. Поэтому установка заземления на воздушной линии отнюдь не относится к разряду рекомендаций или прихотей органов контроля. Это продиктовано правилами устройства электроустановок (ПУЭ) как основным нормативным документом, регламентирующим требования к энергосистемам, в том числе ВЛ. Согласно этому документу, заземляющие устройства опор воздушных линий обязательны.

Особняком стоит вопрос молниезащиты конструкций. Опоры могут быть выполнены из дерева, железобетона или стали. Для стоящих в чистом поле опор, порой, имеющих весьма значительную высоту, попадание молнии отнюдь не редкое явление. Если для стали или железобетона, имеющих хорошую электропроводность и неспособных к горению, это не принесет серьезных повреждений, то для деревянной конструкции чревато разрушением или воспламенением. Учитывая колоссальное напряжение разряда молнии, возможно разрушение диэлектриков, ограждающих конструкционные элементы от токонесущих частей ВЛ, что, в свою очередь, приводит к аварии.

Все это в равной степени относится и к подстанциям. До сих пор некоторые из них представляют собой большой трансформатор посреди поля, питающий ферму, например. Трансформаторные установки подвержены всем негативным воздействиям, что и ВЛ. Даже если это не так, они должны соответствовать требованиям ПУЭ.

Оборудованная же устройством заземления мачта или подстанция ведет себя иначе. Весь заряд, попавший на опору, стечет на землю, учитывая низкое ее сопротивление и огромную емкость. Это значит, что конструкция не будет находиться под напряжением и будет безопасна для жизни и здоровья людей.

Основные требования

Согласно требованиям ПУЭ, практически каждая опора должна иметь заземляющее устройство. Оно необходимо для предотвращения перенапряжения атмосферного характера (молния), защиты электрооборудования, размещенного на мачте, а также реализации повторного заземления. Его сопротивление при этом не должно превышать 30 Ом. Причем громоотводы и подобные устройства, должны соединяться с заземлителем отдельным проводником. Кроме прочего, обязательному заземлению подлежат растяжки, устанавливаемые для устойчивости опоры, если они присутствуют в ее конструкции. Все межсоединения, провода снижения и заземлителя, например, предпочтительно выполнять сваркой, а, за неимением возможности, скручиваться болтами. Все части заземляющего устройства должны быть выполнены из стали диаметром не менее 6 мм. Сам проводник и места стыковок должны иметь антикоррозийное покрытие. Обычно это стальная оцинкованная проволока соответствующего диаметра.

Железобетонные столбы

Устройство заземления ВЛ зависит от материала опор. В случае железобетонной конструкции все выступающие сверху и снизу элементы арматуры должны быть присоединены к PEN-проводнику (нулевая шина), который впоследствии играет роль заземления. К нему же следует присоединить крюки, кронштейны и другие металлоконструкции, находящиеся на опоре. Все это в равной степени относится и к металлическим мачтам ВЛ.

Деревянные столбы

С деревянными опорами ВЛ дело обстоит несколько иначе. Ввиду диэлектрических свойств древесины, каждая из мачт не нуждается в отдельном устройстве заземления. Оно устанавливается лишь при наличии на мачте молниеотвода или повторного заземления. Кроме того, металлическая оболочка кабеля соединяется с PEN-шиной линии в местах перехода ВЛ в кабельную линию.

Малоэтажная застройка

Все виды опор должны быть оборудованы устройствами заземления, если речь идет о населенных пунктах с малоэтажной застройкой (1 или 2 этажа).

Расстояние между такими мачтами зависит от среднегодового значения часов, в которые случается гроза. Если эта величина не превышает 40, то промежутки между опорами с громоотводами должны составлять менее 200 м. В противном случае это расстояние сокращается до 100 м. Кроме того, обязательному заземлению подлежат опоры, представляющие ветвление от ВЛ к объектам с потенциально массовым скоплением людей, клубы или дома культуры, например.

Установка заземлителей

Заземление ВЛ осуществляется вертикальными или горизонтальными заземлителями. В первом случае это стальные штыри, закопанные или забитые в землю, а во втором представляют собой полосы металла, расположенные параллельно земле под ее поверхностью. Последний вариант применяют для грунта с высоким удельным сопротивлением. После закапывания контура землю трамбуют для обеспечения лучшего ее контакта с металлом. Затем производится измерение сопротивления у заземления опор ВЛ. Оно является произведением значения, полученного прямым измерением, на коэффициент, зависящий от типа и размера заземлителя, а также климатической зоны (есть специальные таблицы).

Особенности подстанций

Все ранее описанное относится и к подстанциям, несмотря на то, что они находятся под крышей. Исключение составляет лишь то, что там довольно часто или постоянно находятся люди, а, следовательно, к их заземлению предъявляются особые требования.

В общем случае заземление подстанции состоит из следующих элементов:

  • внутренний контур;
  • внешний контур;
  • устройство молниезащиты объекта.

Внутренний контур заземления подстанции обеспечивает простое и надежное соединение с землей всех устройств, находящихся внутри подстанции. Для этого по периметру всех помещений объекта на высоте 40 см от пола дюбелями закрепляют стальную полосу. Контуры всех помещений, а также и их составные части соединяются сваркой или резьбовыми соединениями, если таковые предусмотрены. Все металлические части, непредназначенные для прохождения тока (корпуса приборов, ограждения, люки и подобное тому), соединяются с этой шиной. Подобные полосы оснащаются резьбовыми соединениями с шайбами увеличенной ширины и гайками типа «барашек». Это позволяет получить надежное переносное заземление. Нулевая шина силового трансформатора, учитывая схему с глухозаземленной нейтралью, соединяется с полученным контуром.

Внешний контур

Внешний контур заземления также является замкнутым. Он представляет собой горизонтальный заземлитель из стальной полосы, связывающий определенное количество вертикальных штырей. Глубина залегания этой конструкции должна быть не менее 70 см от поверхности, причем полоска ставится ребром.

Требуется расположение устройства по периметру здания не превышая расстояния 1 м от его стен или фундаментной плиты. Общее сопротивление контура не может превышать 40 Ом, если удельное сопротивление почвы менее 1 кОм*м в соответствии с ПУЭ.

Если подстанция имеет металлическую крышу, то ее заземляют, соединив с внешним контуром стальной проволокой диаметром 8 мм. Соединение производится с двух сторон объекта, диаметрально противоположных между собой. Требования ПУЭ предписывают защитить эту шину снижения на внешней стене здания от коррозии и механических повреждений.

Смотрите так же:  Техника безопасности провода

Расчет заземляющего устройства подстанции выполняется для определения сопротивления распространения тока системы в землю.

Эта величина зависит от характеристик грунта, габаритов и конструкции заземляющего устройства и других факторов. Методика достаточно объемна и требует особого рассмотрения. Но стоит отметить, что чаще всего идут от противного. Имея требуемое сопротивление и определенный сортамент стали, например, определяют габариты заземлителя, количество горизонтальных электродов и глубину залегания в известном типе грунта.

Заземляющие устройства подстанций или ВЛ, равно как и заземление электростанции, играют исключительно важную роль в их эксплуатации. Кроме обеспечения нормальной работы этих объектов, они обеспечивают безопасность здоровья и жизни для людей, их обслуживающих.

Глава 2. Монтаж воздушных линий электропередачи

2.1. Подготовительные работы

До начала работ по сооружению воздушных линий электропередачи (ВЛ) должны быть выполнены следующие работы:

получены разрешения на ведение работ по трассе ВЛ, включая территории лесных массивов и сельскохозяйственных угодий;

подготовлены временные помещения для размещения монтажных бригад и прорабских участков;

организованы временные базы для складирования материалов; проверены состояние дорог, мостов и подъездных путей к трассе

ВЛ, при необходимости сооружены временные подъездные дороги; расчищена полоса земли вдоль трассы, а в лесной местности

устроены просеки; осуществлен предусмотренный проектом снос строений,

находящихся на трассе ВЛ или вблизи нее и препятствующих производству работ;

выполнен производственный пикетаж – установка вдоль трассы ВЛ пикетов, отмечающих будущие места установки опор.

После устройства временных баз для хранения материалов выполняется транспортировка этих материалов в район прохождения трассы ВЛ.

Перевозка опор на трассу ВЛ осуществляется специальными стволовозами. Барабаны с проводом перевозят в вертикальном положении, закрепляя их в кузове автотранспорта растяжками из стальной проволоки. Фарфоровые и стеклянные подвесные изоляторы, предварительно проверенные и собранные в гирлянды требуемой длины и транспортируются на трассу ВЛ в специальных деревянных контейнерах, предохраняющих изоляторы от механических повреждений.

Разгрузка опор и барабанов с проводом должна выполняться, как правило, подъемными кранами.

Поставка строительной техники на трассу ВЛ осуществляется своим ходом или на специальных автомобильных платформах.

2.2. Сборка и установка опор

Сборка опор . Стойки деревянных опор (рис. 2.1) соединяются в нахлест с железобетонными приставками (пасынками). Соединения приставок с деревянной стойкой выполняются с помощью бандажей из стальной проволоки или стальных хомутов. Для бандажей применяется мягкая оцинкованная проволока диаметром 4 мм или неоцинкованная проволока диаметром 5…6 мм. Число витков бандажа принимается равным:

12 – при диаметре проволоки 4 мм;

10 – при диаметре проволоки 5 мм;

8 – при диаметре проволоки 6 мм.

Деревянные опоры для ВЛ напряжением 35 кВ и выше поставляются отдельными элементами (стойки, траверса, раскосы), сборка которых между собой выполняется с помощью болтовых соединений.

В стойках деревянных опор ВЛ напряжением до 10 кВ высверливаются отверстия для вкручивания стальных крючьев, на которые с помощью полиэтиленовых колпачков армируются штыревые изоляторы. На траверсах деревянных П-образных опор ВЛ напряжением 35 кВ и выше в просверленные отверстия устанавливаются элементы сцепной арматуры для дальнейшего крепления гирлянд изоляторов. При необходимости по стойке деревянной опоры прокладывается заземляющий спуск из стальной проволоки.

На железобетонных опорах ВЛ с помощью специальных хомутов монтируются стальные траверсы. Для ВЛ напряжением до 10 кВ эти траверсы имеют штыри, на которые с помощью полиэтиленовых колпачков армируются штыревые изоляторы. Для ВЛ напряжением 35 кВ и выше на концы траверс устанавливаются элементы сцепной арматуры для дальнейшего крепления гирлянд подвесных изоляторов.

Металлические опоры поставляются отдельными элементами, сборка которых между собой выполняется с помощью болтовых соединений. После завершения сборки металлических опор производится восстановление их антикоррозийного покрытия в местах его повреждения при транспортировке и сборке.

Сборка опор выполняется по возможности ближе к месту ее будущей установки. При сборке применяются автокраны, домкраты и другие механизмы и инструменты. Собранные опоры должны соответствовать рабочим чертежам проекта ВЛ.

Фундаменты опор . Металлические опоры устанавливаются на железобетонные фундаменты (подножники) или сваи. Котлованы под фундаменты металлических опор разрабатываются экскаваторами. Заглубление железобетонных свай в грунт выполняется виброударным

способом. Глубина заложения фундаментов или свай должна соответствовать проекту ВЛ.

Рис. 2.1. Деревянные (а), железобетонная (б) и стальная (в) опоры ВЛ:

1 – стойка опоры; 2 – железобетонная приставка (пасынок); 3 – бандаж из стальной проволоки или стальной хомут; 4 – крючья для армировки изоляторов; 5 – раскосы для жесткости; 6 — траверсы; 7 — сцепная арматура для крепления гирлянды изоляторов; 8 – железобетонные фундамены.

Одновременно с устройством фундаментов выполняется монтаж заземляющих устройств – устанавливаются искусственные вертикальные и горизонтальные заземлители. В качестве естественных заземлителей используются непосредственно железобетонные фундаменты опор.

Верхние части железобетонных фундаментов нивелируются по горизонтали и на них устанавливается жесткий шаблон, соответствующий размерам нижней части металлической опоры. После этого котлованы засыпаются с послойной трамбовкой грунта. Шаблон снимается после засыпки котлованов.

Железобетонные и деревянные опоры устанавливаются без фундаментов. Котлованы для деревянных и железобетонных опор разрабатываются специальными буровыми машинами. Диаметр котлована должен превышать нижний диаметр (размер) стойки опоры на 5…10 см. Глубина котлованов должна соответствовать проекту ВЛ.

Установка опор . Методы установки опор зависят от их конструкций, фундаментов, а также наличия тех или иных подъемных средств и механизмов. Большинство опор устанавливаются с помощью

подъемного крана соответствующей грузоподъемности. Вылет и рабочий ход стрелы подъема крана должны обеспечивать полный подъем опоры, перемещение ее к месту установки и удержание в вертикальном положении до закрепления опоры на фундаменте или в грунте.

При установке опоры выверяется ее вертикальное положение. Для металлических опор используются металлические прокладки, устанавливаемые между пятой опоры и верхней плоскостью железобетонного фундамента. Вертикальность деревянных и железобетонных опор достигается с помощью временных оттяжек и упоров до окончательного закрепления опоры в грунте. Котлованы под деревянные и железобетонные опоры после выверки их вертикального положения засыпаются гравийно-песчаной смесью с послойным трамбованием.

2.3. Монтаж проводов и грозозащитных тросов

Монтаж проводов (тросов) выполняется отдельно на каждом участке ВЛ, ограниченном двумя ближайшими анкерными опорами (анкерном пролете), и состоит из следующих основных операций:

раскатки проводов, включая их соединения и подъем на опоры; натяжения проводов с регулировкой стрелы провеса; крепления проводов к изоляторам опор.

Перед раскаткой проводов к опорам подвешиваются специальные монтажные ролики (2.2,а), на которые вывешивается провод в процессе раскатки, и по которым выполняется последующее натяжение провода.

Раскатка проводов проводится с помощью тягового механизма (трактора) и может осуществляться двумя способами:

установкой барабана с проводом на стационарном устройстве (козлах или винтовых домкратах) в начале монтируемого участка и закреплением конца провода у движущегося вдоль трассы трактора

закреплением конца провода в начале монтируемого участка и установкой барабана с проводом на движущемся вдоль трассы тракторе.

Второй способ раскатки обеспечивает лучшую сохранность провода от механических повреждений при трении о грунте, однако применение этого способа ограничено. В частности, невозможно раскатать и вывесить средний провод у деревянных П-образных опор с раскосами.

Рис. 2.2. Монтажный ролик (а) и фрагмент раскатки провода (б);

а): 1 — диск; 2 – откидная щека для укладки провода; 3 – подвеска для крепления; б): 1 – анкерная опора; 2, 3 – промежуточные опоры; 4 – барабан с проводом; 5 – провод; 6 – тяговый механизм (трактор); 7 – монтажный ролик.

Указанная технология раскатки применяется для голых (неизолированных) алюминиевых и сталеалюминиевых проводов.

В настоящее время для линий электропередачи напряжением до 20 кВ широко применяются изолированные провода. На напряжение до 1 кВ используются самонесущие изолированные провода (СИП), представляющие собой скрученные в жгут изолированные проводники. Воспринимающий осевую нагрузку (несущий) нулевой проводник может выполняться без изоляции или с изоляцией. В некоторых конструкциях СИП все проводники выполняются несущими. Линии с СИП обозначаются ВЛИ.

На напряжение выше 1 кВ применяются защищенные изоляцией провода (ЗИП) в одножильном исполнении. Линии с такими проводами обозначаются ВЛЗ.

Изолированные провода по сравнению с неизолированными имеют ряд преимуществ, среди которых можно выделить большую надежность и меньшие эксплуатационные расходы.

Главной особенностью раскатки изолированных проводов является соблюдение особой осторожности при монтаже, не допускающей повреждения изолирующего покрытия.

На рис. 2.3 приведена схема раскатки изолированного провода в анкерном пролете. У одной анкерной опоры на раскаточное устройство устанавливается барабан с изолированным проводом. Это раскаточное устройство должно быть оснащено тормозом. У другой анкерной опоры закрепляется раскаточный механизм с электромеханической лебедкой и тросом-лидером соответствующей длины.

Раскатка изолированного провода выполняется в два этапа. На первом этапе осуществляется раскатка троса-лидера от раскаточного

механизма по направлению к барабану с проводом. Лебедка раскаточного механизма включена на размотку троса-лидера. Раскатка выполняется любым тяговым механизмом. Одновременно с раскаткой троса выполняется его подъем на опоры и укладка в раскаточные ролики, диск которых выполнен из пластмассы или металла с пластиковым покрытием.

После раскатки троса-лидера его свободный конец соединяется с помощью монтажного чулка с концом изолированного провода у барабана. Монтажный чулок надевают на провод и закрепляют проволочным бандажом на длине не менее 0,5 м.

Рис. 2.3. Процесс раскатки изолированных проводов: 1, 2 – анкерные опоры; 3, 4, 5 – промежуточные опоры; 6 – барабан с изолированным проводом; 7 – раскаточный механизм с лебедкой; 8 – трос-лидер; 9 – изолированный провод; 10 – место соединения троса и провода; 11 – монтажный ролик

На втором этапе выполняется раскатка изолированного провода. Для этого лебедка раскаточного механизма включается на намотку троса-лидера. Раскатка провода должна производиться под тяжением , обусловленным силой тяги лебедки и тормозным устройством у барабана с проводом. Тяжение необходимо для исключения возможности провисания провода до поверхности земли и повреждения его изоляции от трения о грунт.

Для предотвращения образования петель на СИП при его раскатке между монтажным чулком и тросом-лидером должен быть установлен вертлюг.

При раскатке проводов производится их соединение . Голые алюминиевые и сталеалюминиевые провода сечением до 185 мм 2 соединяются с помощью овальных соединителей, представляющих собой алюминиевую трубку овального сечения. В соединитель с разных сторон вставляются концы соединяемых проводов, после чего с помощью переносных монтажных инструментов производится скручивание соединителя (рис. 2.4,а) или его обжатие (рис. 2.4,б).

Рис. 2.4. Соединения алюминиевых и сталеалюминиевых проводов

Для повышения надежности контактного соединения и уменьшения его переходного сопротивления короткие концы соединяемых проводов, выходящие из овального соединителя, свариваются с помощью термитного патрона (рис. 2.4,г).

Смотрите так же:  Заземление ezetek

Сталеалюминиевые провода сечением 240 мм 2 и более соединяются с помощью прессуемых соединителей, состоящих из двух трубок — стальной и алюминиевой (рис. 2.4,в). Для соединения таких проводов применяется переносный ручной пресс. С помощью стальной трубки 1 опрессовываются концы стальных сердечников соединяемых проводов, с помощью алюминиевой трубки 2, накладываемой поверх стальной, опрессовываются алюминиевые части соединяемых проводов.

В одном пролете ВЛ допускается не более одного соединения на провод каждой фазы.

Для соединения изолированных проводов применяются болтовые,

прессуемые или автоматические (цанговые) зажимы. Последние очень удобны при монтаже, поскольку концы соединяемых проводов после вставки их в зажим автоматически заклиниваются в зажиме, обеспечивая требуемую прочность заделки.

Рис. 2.5. Соединение самонесущего изолированного провода

Соединение СИП показано на рис. 2.5. Соединение неизолированного несущего нулевого провода выполнено с помощью цангового зажима 2, соединения фазных проводов — опрессованием. Освобожденные от изоляции концы соединяемых фазных проводов

вставляются в гильзу 1, покрытую снаружи слоем изоляции, и опрессовываются с помощью ручного пресса. В процессе опрессовки создается надежный электрический контакт и герметизация изоляцией гильзы места соединения. Для предотвращения раскручивания СИП справа и слева от места соединения устанавливаются фиксирующие ремешки 3.

Натяжение проводов (рис. 2.6,а) выполняют с помощью тягового механизма (трактора, лебедки). При натяжении проводов необходимо следить за прохождением через монтажные ролики мест соединений проводов, у пересекаемых проезжих дорог должны быть выставлены сигнальщики.

Рис. 2.6. Натяжение проводов (а) и монтажный график (б)

При натяжении проводов регулируются их стрела провеса f – расстояние между прямой, соединяющей точки подвеса провода на опорах и низшей точкой провисания провода. Регулировка стрелы провеса выполняется по монтажным графикам (рис. 2.6,б) в соответствии с фактической температурой воздуха Θ , маркой провода и длиной пролета l .

Измерение стрел провеса проводов может выполняться различными способами. В частности, для этих целей применяется простейшее приспособление – карманный высотомер (рис. 2.7). Этот прибор представляет собой плоскую коробку 1, имеющую форму равносторонней трапеции, в верхней части которой имеются смотровые отверстия 2, а в основании вставлено стекло, на котором нанесены две риски – верхняя 3 и нижняя 4.

Для определения высоты измеряемого объекта Н наблюдатель удаляется от него, держа прибор смотровыми отверстиями у глаз, на такое расстояние L , при котором верхняя риска совпадет с вершиной объекта, а нижняя – с его основанием. Геометрические размеры прибора и риски на стекле выполнены так, что H = L / 2. Измерение расстояния L проблем не представляет.

Рис. 2.7. Измерение высоты объекта

Для определения стрелы провеса провода измеряется сначала высота подвески провода на опоре, затем расстояние от низшей точки провисания провода до земли и находится разность полученных значений. Погрешность измерений таким прибором составляет 3…4%, что вполне приемлемо.

Крепление голых проводов на анкерных опорах ВЛ напряжением до 1

кВ со штыревыми изоляторами осуществляется закручиванием проводов так называемой «заглушкой» (рис. 2.8, а). На опорах ВЛ напряжением выше 1 кВ со стержневыми изоляторами крепление проводов выполняется петлей, образованной с помощью болтового плашечного зажима (рис. 2.8, б).

Рис. 2.8. Крепление проводов на анкерных опорах со штыревыми изоляторами (а, б); с подвесными изоляторами (в)

Крепление проводов на анкерных опорах с подвесными изоляторами осуществляется с помощью натяжных зажимов (рис. 2.8,в). Зажим 1 с

помощью сцепной арматуры 2 крепится к нижнему изолятору гирлянды 3. Провод в зажиме затягивается прижимными плашками с помощью U- образных шпилек 4.

На анкерных опорах короткие концы проводов (шлейфы), идущие от двух натяжных зажимов одной фазы, соединяются болтовыми зажимами или свариваются с помощью термитного патрона.

Рис. 2.9. Крепление СИП на анкерной опоре: 1– опора; 2 – оттяжка; 3 – крюк; 4 – анкерный зажим; 5 – несущая нулевая жила; 6 – фазные провода; 7 — фиксатор

Рис. 2.10. Крепление ЗИП на анкерной опоре: 1 – опора; 2 – оттяжка; 3 –

траверса; 4 – подвесной изолятор; 5 – натяжной зажим; 6 – изолированный провод; 7

– арматура для крепления изоляторов к траверсе; 8 – арматура для крепления натяжного зажима к изолятору.

Крепление изолированных проводов на анкерных опорах ВЛ напряжением до 1 кВ выполняется без изоляторов (рис. 2.9) с помощью анкерных зажимов, фиксирующих несущую нулевую жилу.

Крепление изолированных проводов на анкерных опорах ВЛ напряжением выше 1 кВ выполняется через подвесные изоляторы и натяжные болтовые зажимы (рис. 2.10). Корпус зажима и прижимная плашка изготавливаются из алюминиевого сплава. Момент затяжки болтов зажима нормируется и обеспечивается динамометрическим ключом. Величина момента указывается на корпусе зажима или в спецификации к нему.

Крепление голых проводов на промежуточных опорах со стержневыми изоляторами осуществляется вязкой из алюминиевых проволок (рис. 2.11, а). На промежуточных опорах с подвесными изоляторами провод с монтажных роликов перекладывается в поддерживающий зажим 1 (рис. 2.11,б), прикрепляемый к нижней части изолятора 2. Провод в зажиме затягивается прижимными плашками с помощью U-образных шпилек 3. На рис. 2.11,б показан полимерный подвесной изолятор.

Рис. 2.11. Крепление проводов на промежуточных опорах со штыревыми изоляторами (а) и подвесными изоляторами (б)

Крепление изолированных проводов на промежуточных опорах ВЛ напряжением до 1 кВ выполняется с помощью укладки нулевой жилы СИП в поддерживающий болтовой зажим (рис. 2.12). Крепление ЗИП на промежуточных опорах ВЛ напряжением выше 1 кВ со штыревыми изоляторами осуществляется вязкой провода к изолятору (рис. 2.13).

Ответвления от линии с СИП (рис. 2.14,а) выполняются с помощью болтовых прокалывающих зажимов (рис. 2.14,б) без снятия изоляции с провода. После монтажа ответвления на зажимы устанавливаются

защитные кожуха, изготовленные из стойкой к атмосферным воздействиям и ультрафиолетовому излучению пластмассы.

Рис. 2.12. Крепление СИП на промежуточной опоре: 1– опора; 2 – крюк; 3 –

поддерживающий болтовой зажим; 4 – несущая нулевая жила; 5 – фазные жилы

Рис. 2.13. Крепление ЗИП на промежуточной опоре: 1 – опора; 2 – траверса; 3 – штыревой изолятор; 4 – провод; 5 – вязка провода к изолятору

Рис. 2.14. Ответвление СИП (а) и болтовой прокалывающий зажим (б):

1 – основная линия с СИП; 2 – ответвление; 3 – прокалывающий зажим в защитном кожухе

Монтаж грозозащитных тросов аналогичен монтажу проводов.

Соединение тросов выполняется, как правило, с помощью стальных прессуемых соединителей. На ВЛ напряжением до 110 кВ крепление троса к опорам выполняется с помощью сцепной арматуры без изолятора. На ВЛ напряжением 220 кВ крепление троса ко всем опорам выполняется через подвесной изолятор, как правило, стеклянный, шунтированный искровым промежутком. В каждом анкерном участке на одной из анкерных опор трос заземляется.

Большинство работ по монтажу проводов и тросов связано с подъемами на опоры. На ВЛ напряжением до 10 кВ монтажники поднимаются на опоры, как правило, с помощью монтажных когтей (лазов) и поясов. На ВЛ более высокого напряжения широко используются телескопические вышки и гидроподъемники.

После окончания всех монтажных работ на опоры ВЛ на высоте 2…3 м наносятся следующие знаки:

порядковые номера опор; номер ВЛ или ее условное обозначение;

информационные знаки с указанием ширины охранной зоны; предупредительные плакаты на всех опорах в населенной

2.4. Монтаж трубчатых разрядников и заземляющих устройств

Трубчатые разряд ники крепятся закрытым концом к элементам опор под углом 15 о к горизонтали при более низком расположении открытого конца. Закрытый конец разрядника соединяется с заземляющим спуском на опоре из древесины или с металлом проводящей опоры (стальной и железобетонной). Длина внешнего искрового промежутка устанавливается в соответствии с проектом ВЛ.

Поскольку срабатывание разрядника сопровождается сильным выхлопом генерированного электрической дугой газа, открытый конец разрядника должен располагаться так, чтобы выхлопные газы не вызвали междуфазных перекрытий или перекрытий на землю. Зоны выхлопа разрядников разных фаз не должны пересекаться и охватывать элементы конструкций и проводов ВЛ.

При монтаже ВЛ напряжением до 1 кВ выполняются заземляющие устройства для повторного заземления нулевого провода (РЕNпроводника), защиты от грозовых перенапряжений, заземления электрооборудования, установленного на опорах ВЛ. Повторные заземления выполняются на концевых опорах линии и опорах с ответвлениями к вводам в здания, в которых может быть сосредоточено большое количество людей (школы) или которые представляют большую материальную ценность (склады). Заземляющие устройства защиты от грозовых перенапряжений совмещаются с повторными заземлениями.

Схема выполнения совмещенного заземления на деревянной опоре ВЛ напряжением до 1 кВ с СИП приведена на рис. 2.15. Заземляющий спуск 1 выполняется стальной проволокой диаметром не менее 6 мм и крепится к телу опоры U-образными скобками. Присоединение заземляющего спуска к нулевому проводу 2 выполняется болтовым зажимом 3. У железобетонных опор нулевой провод соединяется со стальной арматурой, у металлических опор – с телом опоры.

При монтаже ВЛ напряжением выше 1 кВ заземляющие устройства выполняются у опор:

имеющих грозозащитный трос; имеющих трубчатые разрядники, разъединители, предохранители и

прочее оборудование; железобетонных и металлических при напряжении 6…35 кВ.

Заземляющие спуски у деревянных опор выполняются стальным многожильным проводом сечением не менее 35 мм 2 или стальной проволокой диаметром не менее 10 мм.

В качестве заземлителей на ВЛ всех напряжений следует в первую очередь использовать естественные заземлители (железобетонные фундаменты). При недостаточном сопротивлении естественных заземлителей устанавливаются искусственные заземлители 6 (рис.

Похожие статьи:

  • Белый и черный провода где плюс какого цвета провод плюс и минус? в зарядном устройстве 2 провода черный и белый . где плюс где минус? какого цвета провод плюс и минус? в зарядном устройстве 2 провода черный и белый . где плюс где минус? можно определить с помощью […]
  • Заземление гру Заземление гру п. 2.2.19 ПБ 12-529-03: 2.2.19. Надземные газопроводы при пересечении высоковольтных линий электропередачи, должны иметь защитные устройства, предотвращающее падение на газопровод электропроводов в случае их обрыва. […]
  • Отличие провода пунп от ввг Чем отличается ВВГ от ПУНП? Чем отличается ВВГ от ПУНП? Вроде сечение одинаковое, изоляция двойная. Можно ли проводку делать ПУНПом, если она заштукатуривается? Сырьём для ПВХ, методикой испытаний. Этот кабель выпускается по ГОСТ, а […]
  • Можно ли подключить узо без заземления Подключение УЗО без заземления Специальные устройства защитного отключения (УЗО) рекомендуют устанавливать там, где существует высокая вероятность поражения током. Задачей устройства является оперативное отключение всего электрического […]
  • Резисторы на 220 вольт Резистор металлокерамический 30W/R50K (0.5 OM) (9) INMIG150, 180 WESTER Самовывоз (8) Рязань г, Яблочкова проезд д.6, пункт выдачи «220 Вольт», оплата при получении Рязань г, Яблочкова проезд д.6, пункт выдачи «220 Вольт», по […]
  • Помещение с 380 вольт Офис склад в Находке Заметка к объявлению Собственность 380 вольт городской телефон интернет в помещение имеется три отдельных входа парковка назначение производственное высота потолка в складе 3метра расмотривается аренда Объявление […]