Как вычислить мощность электродвигателя по току

Оглавление:

Как вычислить мощность электродвигателя по току

Здравствуйте, уважаемые читатели и гости сайта «Заметки электрика».

Решил написать статью о расчете номинального тока для трехфазного электродвигателя.

Этот вопрос является актуальным и кажется на первый взгляд не таким и сложным, но почему-то в расчетах зачастую возникают ошибки.

В качестве примера для расчета я возьму трехфазный асинхронный двигатель АИР71А4 мощностью 0,55 (кВт).

Вот его внешний вид и бирка с техническими данными.

Если двигатель Вы планируете подключать в трехфазную сеть 380 (В), то значит его обмотки нужно соединить по схеме «звезда», т.е. на клеммнике необходимо соединить выводы V2, U2 и W2 между собой с помощью специальных перемычек.

При подключении этого двигателя в трехфазную сеть напряжением 220 (В) его обмотки необходимо соединить треугольником, т.е. установить три перемычки: U1-W2, V1-U2 и W1-V2.

Если же Вы решите подключить этот двигатель в однофазную сеть 220 (В), то его обмотки.

как рассчитать номинальный ток на трехфазном асинхронном электродвигателе переменного тока, зная мощность электродвигател

2. Рассчитать и выбрать электродвигатели. Определить номинальные токи двигательной нагрузки
Данные электродвигателя:
Мощность — 3кВт
КПД — 0,85
Iн/Iп — 7
Cos — 0,88
В результате выбранных данных, производим расчет электродвигателя и номинальный ток двигательной нагрузки.
Находим номинальный ток электродвигателя по формуле 2.1:

Где: Iн номинальный ток;
P Мощность;
Uн номинальное напряжение;
— КПД.
Iн = 6,1А
Находим номинальный ток трх тен по 2 кВт по формуле 2.1:
=10.3 А
мне надо, вместо 3кВт пересчитать на 5,5

Мощность пополам — номинальный ток фазы. http://edu .dvgups .ru/METDOC/GDTRAN/DEPEN/ELMASH/ELEKTROT/UMK_DO/PR/7.HTM Мощность асинхронного двигателя Р (Вт) определяется по формуле
P = 1,73*U *I *КПД *Cosф, где 1,73 это корень из трех; U (B) —.

Здравствуйте, уважаемые посетители сайта. Для выбора автоматического выключателя или теплового реле для защиты электродвигателя надо знать его номинальный ток.

Эта информация указывается на бирке двигателя.

Формула для расчета номинального тока трехфазного асинхронного электродвигателя переменного.

Все электрические двигатели выпускаются с табличками на корпусе, из которых можно узнать основные характеристики электродвигателя: его марку, потребляемый номинальный рабочий ток и мощность, частоту вращения, тип двигателя, КПД и cos(fi). Так же эти данные указаны в паспорте к устройству.

Из всех параметров наиболее важное значение для подключения имеют: мощность электродвигателя и потребляемый ток, не стоит его путать с пусковым. Именно эти данные позволяют нам определить достаточность мощности для привода, необходимое сечение кабеля для подключения мотора и подобрать подходящие по номиналу для защиты автомат и тепловое реле.

Но бывает, что нет паспорта или таблички и для определения этих величин необходимо будет сделать измерения. Как узнать мощность, рабочий ток и снизить пусковой, Вы узнаете далее из этой статьи.

Как определить мощность электродвигателя

Проще всего посмотреть на табличку и найти величину в киловаттах. Например, на картинке она.

как рассчитать номинальный ток на трехфазном асинхронном электродвигателе переменного тока, зная мощность электродвигател

Мощность пополам — номинальный ток фазы.Мощность асинхронного двигателя Р (Вт) определяется по формуле
P = 1,73*U *I *КПД *Cosф, где 1,73 это корень из трех; U (B) — линейное напряжение; I (A) интересующий вас ток4 коэфф. полезного действия берется из паспортных данных или в интервале0,8 -0,9; коэфф. мощности CosФ по паспортным данным или в интервале 0,8 — 0,9.
Ток двигателя I = P /(1,73 *U *кпд* Cosф)
Из формулы видно, что для конкретной мощности ток двигателя находится в обратной зависимости от напряжения сети. Чем выше напряжение сети тем меньше ток двигателя. .dvgups .ru/METDOC/GDTRAN/DEPEN/ELMASH/ELEKTROT/UMK_DO/PR/7.HTM2. Рассчитать и выбрать электродвигатели. Определить номинальные токи двигательной нагрузки
Данные электродвигателя:
Мощность — 3кВт
КПД — 0,85
Iн/Iп — 7
Cos — 0,88
В результате выбранных.

В данной статье осветим тему механических и электрических характеристик электродвигателей. На примере асинхронного двигателя рассмотрим такие параметры как мощность, работа, КПД, косинус фи, вращающий момент, угловая скорость, линейная скорость и частота. Все эти характеристики оказываются важными при проектировании оборудования, в котором электродвигатели служат в качестве приводных. Сегодня особенно широко распространены в промышленности именно асинхронные электродвигатели, поэтому на их характеристиках и остановимся. Для примера рассмотрим АИР80В2У3.

Номинальная механическая мощность асинхронного электродвигателя

На шильдике (на паспортной табличке) электродвигателя указывается всегда номинальная механическая мощность на валу данного двигателя. Это не та электрическая мощность, которую данный электродвигатель потребляет из сети.

Так, например, для двигателя АИР80В2У3, номинал в 2200 ватт соответствует именно механической мощности на валу. То есть в.

Как выполнить расчёт потребляемой мощности асинхронного электродвигателя из сети, если по шильдикам можно узнать только номинальную мощность? Для этого необходимо:

обратить внимание на остальные показатели – это.

Составляющие электромашины

Основой для электрической машины является правило электроиндукции с магнитной индукцией. Такой прибор включает в себя статор или как его называют константной частью (характерно для асинхронных, синхронных машин изменяющегося тока) или индуктора (для приборов константного тока) и ротора, его называют активной или движущейся частью (для асинхронных и синхронных машин изменяющегося тока) или якоря (приборов константного тока). В роли константной части для машин тока с малой мощью активно применяются магниты (неизменного состояния).

Мощность электродвигателя

Электрическая мощность – это физическая величина, которая характеризуется скоростью преобразования ну или передачи электрической энергии. Чтобы облегчить понимание движение тока электрики представляют, как передвижение жидкости по трубе, а напряжение – с разницей положения ярусов этой жидкости. Электричество, так же, осуществляя работу, передвигается от высокой возможности.

У всех электродвигателей на корпусе есть табличка, на которой указываются его электрические характеристики. Именно об основных параметрах электродвигателей мы расскажем в этой статье.

Табличка с номинальными данными электродвигателя

Параметры электродвигателя: таблица

Но иногда табличка отсутствует, либо прочесть ее невозможно. При эксплуатации двигатель неоднократно окрашивают, нередко – вместе с табличкой. Поэтому приходится определять его параметры методом измерений.

Параметры электродвигателя №1: мощность

В паспортных данных указывается номинальная активная мощность, потребляемая из сети при номинальной нагрузке на валу. Для производства измерений нужно нагрузить электродвигатель, испытывая его со штатной нагрузкой (в составе устройства, для привода которого он предназначен).

Для измерений можно использовать электросчетчик. Для этого нужно подключить электродвигатель в качестве единственной нагрузки на счетчик на время, засекаемое.

Привет посетители сайта fazanet.ru, и в сегодняшней статье мы с вами разберём, как же сделать, этот непонятный расчёт тока электродвигателя. Каждый уважающий себя электромонтёр, робота которого связана с обслуживанием электрических, машин просто обязан это знать. Я в своё время тоже помню, что меня это очень сильно интересовало, когда меня перевили с одного цеха в другой. А конкретно именно работать электромонтёром.

Перед этим я уже немного затрагивал темы электродвигателей, когда писал о том как запустить асинхронные двигателей, и когда писал какие бывают номиналы электродвигателей.

Ну а теперь приступим конкретно к самому расчёту. Допустим: у вас есть трёхфазный асинхронный электродвигателей переменного тока, номинальная мощность, которого составляет 25 кВт, и вам хочется узнать какой же у него будет номинальный ток.

Для этого существует специальная формула: Iн = 1000Pн.

На этой странице Вы прочитаете о том как рассчитать токи в электродвигателе.

Номинальный ток электродвигателя постоянного тока в а:

Возникла необходимость узнать мощность или частоту оборотов вала и другие параметры электродвигателя, но после внимательного осмотра на его корпусе не нашлось таблички (шылдика) с его наименованием и техническими параметрами. Придется определять самому, для этого есть несколько способов и мы их рассмотрим ниже.

Мощность электродвигателя представляет из себя скорость преобразования электрической энергии, ее принято определять в ваттах.

Чтоб осознать, как это работает, нам понадобится 2 величины: сила тока и напряжение. Сила тока — численность тока, которое проходит через поперечное сечение за некий отрезок времени, ее принято определять в амперах. Напряжение — значение, равная работе по перемещению заряда меж 2-мя точками цепи, ее принято определять в вольтах.

Для расчета мощности используется формула N = A/t, где:

Часто электродвигатель поступает с завода с уже указанными.

Проще воспользоваться токовыми клещами, отсутствуй одно но. В холостом режиме, даже на высоких оборотах двигатель бессилен развить полную мощность. Ниже приведем таблицу, согласно которой можно судить о параметрах прибора по режиму. Не решает задачи целиком. Давайте посмотрим, как определить мощность и ток электродвигателя простыми методами.

Определение тока электродвигателя

Проще использовать токовые клещи. Прибор, дистанционно позволяющий оценить величину напряженности магнитного поля вокруг одиночного провода. Охватывая кольцом шнур питания, получим значение, равное нулю. Поля направлены противоположно фазной и нулевой жил. Работать понадобится сделать розетку с раздельными проводами, показано на снимке. Видим:

Розетка измерения токовыми клещами

Деревянное основание. Очевидный выход, принято монтировать розетку на изолятор. Проще достать небольшой обрезок доски.Накладная розетка показана в разобранном виде: основание, корпус лежат отдельно.Со шнура.

Преобразование электрической энергии в кинетическую осуществляется при помощи различных типов электродвигателей. Данные устройства нашли широкое применение в современном производстве и в быту. Чаще всего электродвигатели выполняют функцию электроприводов машин и механизмов, применяются для обеспечения работы насосного оборудования, вентиляционных систем и многих других агрегатов и устройств. В связи с таким широким применением, особую актуальность приобретает расчет мощности электродвигателя. Для этих целей разработано много различных методов, позволяющих выполнить расчеты, применительно к конкретным условиям эксплуатации.

Основные типы электродвигателей

Существует множество типов и модификаций электродвигателей. Каждый из них обладает собственной мощностью и.

В паспорте электрического двигателя указан ток при номинальной нагрузке на валу. Если, например, указано 13,8/8 А, то это означает, что при включении двигателя в сеть 220 В и при номинальной нагрузке ток, потребляемый из сети, будет равен 13,8 А. При включении в сеть 380 В из сети будет потребляться ток 8 А, то есть справедливо равенство мощностей.

Расчет тока электродвигателя

Привет посетители сайта fazanet.ru, и в сегодняшней статье мы с вами разберём, как же сделать, этот непонятный расчёт тока электродвигателя. Каждый уважающий себя электромонтёр, робота которого связана с обслуживанием электрических, машин просто обязан это знать. Я в своё время тоже помню, что меня это очень сильно интересовало, когда меня перевили с одного цеха в другой. А конкретно именно работать электромонтёром.

Смотрите так же:  Реле напряжения с контролем тока digitop va-protector

Перед этим я уже немного затрагивал темы электродвигателей, когда писал о том как запустить асинхронные двигателей, и когда писал какие бывают номиналы электродвигателей.

Ну а теперь приступим конкретно к самому расчёту. Допустим: у вас есть трёхфазный асинхронный электродвигателей переменного тока, номинальная мощность, которого составляет 25 кВт, и вам хочется узнать какой же у него будет номинальный ток.

Для этого существует специальная формула: Iн = 1000Pн /√3•(ηн • Uн • cosφн),

Где Pн – это мощность электродвигателя; измеряется в кВт

Uн – это напряжение, при котором работает электродвигатель; В

ηн – это коэффициент полезного действия, обычно это значение 0.9

ну и cosφн – это коэффициент мощности двигателя, обычно 0.8.

Последние два значения обычно пишутся на заводской бирке, хотя они у всех двигателей практически одинаковые. Но все же нужно брать данные именно с заводской бирки на двигателе.

Вот как на этой картинке все значения видны, а ток нет. Только если КПД написан 81%, то для расчёта нужно брать 0.81.

Теперь подставим значения Iн = 1000•25/√3 • (0.9 • 380 • 0.8) = 52.81 А

Тем, кто не помнит, сколько будет √3, напоминаю – это будет 1,732

Вот и всё, все расчёты закончены. Всё очень легко и просто. По моему образцу вы можете легко рассчитать номинальный ток электродвигателя, вам всего лишь нужно подставить своих данных.

Как определить ток электродвигателя на практике.

Ещё в заключении, хотел поделиться с вами, тем как я определяю приблизительное значение тока без всяких расчётов. Если реально посмотреть, что у нас с вами получилось при расчёте, то реально вид, что номинальный ток приблизительно в два раза больше чем его мощность. Вот так я определяю ток на практике, мощность умножаю на два. Но это только приблизительное значение.

А ток холостого хода будет обычно в два раза меньше, чем его мощность. Но про то, как определить эти значения, мы поговорим с вами в следующих статьях. Так что подписывайтесь на обновления и не забываете поделиться этой статьёй со своими друзьями в социальных сетях.

Выбор электродвигателя по типу, мощности и другим параметрам

Электродвигатель – механизм, преобразующий энергию электрического тока в кинетическую энергию. Современное производство и быт сложно представить без машин с электроприводом. Они используются в насосном оборудовании, системах вентиляции и кондиционирования, в электротранспорте, промышленных станках различных типов и т.д.

При выборе электродвигателя необходимо руководствоваться несколькими основными критериями:

  • вид электрического тока, питающего оборудование;
  • мощность электродвигателя;
  • режим работы;
  • климатические условия и другие внешние факторы.

Типы двигателей

Электродвигатели постоянного и переменного тока

В зависимости от используемого электрического тока двигатели делятся на две группы:

  • приводы постоянного тока;
  • приводы переменного тока.

Электродвигатели постоянного тока сегодня применяются не так часто, как раньше. Их практически вытеснили асинхронные двигатели с короткозамкнутым ротором.

Главный недостаток электродвигателей постоянного тока – возможность эксплуатации исключительно при наличии источника постоянного тока или преобразователя переменного напряжения в постоянный ток. В современном промышленном производстве обеспечение данного условия требует дополнительных финансовых затрат.

Тем не менее, при существенных недостатках этот тип двигателей отличается высоким пусковым моментом и стабильной работой в условиях больших перегрузок. Приводы данного типа чаще всего применяются в металлургии и станкостроении, устанавливаются на электротранспорт.

Принцип работы электродвигателей переменного тока построен на электромагнитной индукции, возникающей в процессе движения проводящей среды в магнитном поле. Для создания магнитного поля используются обмотки, обтекаемые токами, либо постоянные магниты.

Электродвигатели переменного тока подразделяются на синхронные и асинхронные. У каждой подгруппы есть свои конструктивные и эксплуатационные особенности.

Синхронные электродвигатели

Синхронные двигатели – оптимальное решение для оборудования с постоянной скоростью работы: генераторов постоянного тока, компрессоров, насосов и др.

Технические характеристики синхронных электродвигателей разных моделей отличаются. Скорость вращения колеблется в диапазоне от 125 до 1000 оборотов/мин, мощность может достигать 10 тысяч кВт.

В конструкции приводов предусмотрена короткозамкнутая обмотка на роторе. Ее наличие позволяет осуществлять асинхронный пуск двигателя. К преимуществам оборудования данного типа относятся высокий КПД и небольшие габариты. Эксплуатация синхронных электродвигателей позволяет сократить потери электричества в сети до минимума.

Асинхронные электродвигатели

Асинхронные электродвигатели переменного тока получили наибольшее распространение в промышленном производстве. Особенностью данных приводов является более высокая частота вращения магнитного поля по сравнению со скоростью вращения ротора.

В современных двигателях для изготовления ротора используется алюминий. Легкий вес этого материала позволяет уменьшить массу электродвигателя, сократить себестоимость его производства.

КПД асинхронного двигателя падает почти вдвое при эксплуатации в режиме низких нагрузок – до 30-50 процентов от номинального показателя. Еще один недостаток таких электроприводов состоит в том, что параметры пускового тока почти втрое превышают рабочие показатели. Для уменьшения пускового тока асинхронного двигателя используются частотные преобразователи или устройства плавного пуска.

Асинхронные электродвигатели удовлетворяют требованиям разных промышленных применений:

  • Для лифтов и другого оборудования, требующего ступенчатого изменения скорости, выпускаются многоскоростные асинхронные приводы.
  • При эксплуатации лебедок и металлообрабатывающих станков используются электродвигатели с электромагнитной тормозной системой. Это обусловлено необходимостью остановки привода и фиксации вала при перебоях напряжения или его исчезновения.
  • В процессах с пульсирующей нагрузкой или при повторно-кратковременных режимах могут использоваться асинхронные электродвигатели с повышенными параметрами скольжения.

Вентильные электродвигатели

Группа вентильных электродвигателей включает в себя приводы, в которых регулирование режима эксплуатации осуществляется посредством вентильных преобразователей.

К преимуществам данного оборудования относятся:

  • Высокий эксплуатационный ресурс.
  • Простота обслуживания за счет бесконтактного управления.
  • Высокая перегрузочная способность, которая в пять раз превышает пусковой момент.
  • Широкий диапазон регулирования частоты вращения, который почти вдвое выше диапазона асинхронных электродвигателей.
  • Высокий КПД при любой нагрузке – более 90 процентов.
  • Небольшие габариты.
  • Быстрая окупаемость.

Мощность электродвигателя

В режиме постоянной или незначительно изменяющейся нагрузки работает большое количество механизмов: вентиляторы, компрессоры, насосы, другая техника. При выборе электродвигателя необходимо ориентироваться на потребляемую оборудованием мощность.

Определить мощность можно расчетным путем, используя формулы и коэффициенты, приведенные ниже.

Мощность на валу электродвигателя определяется по следующей формуле:

где:
Рм – потребляемая механизмом мощность;
ηп – КПД передачи.

Номинальную мощность электродвигателя желательно выбирать больше расчетного значения.

Формула расчета мощности электродвигателя для насоса

где:
K3 – коэффициента запаса, он равен 1,1-1,3;
g –ускорение свободного падения;
Q – производительность насоса;
H – высота подъема (расчетная);
Y – плотность перекачиваемой насосом жидкости;
ηнас – КПД насоса;
ηп – КПД передачи.

Давление насоса рассчитывается по формуле:

Формула расчета мощности электродвигателя для компрессора

Мощность поршневого компрессора легко рассчитать по следующей формуле:

где:
Q – производительность компрессора;
ηk – индикаторный КПД поршневого компрессора (0,6-0,8);
ηп – КПД передачи (0,9-0,95);
K3 – коэффициент запаса (1,05 -1,15).

Значение A можно рассчитать по формуле:

или взять из таблицы

Формула расчета мощности электродвигателя для вентиляторов

где:
K3 – коэффициент запаса. Его значения зависят от мощности двигателя:

  • до 1 кВт – коэффициент 2;
  • от 1 до 2 кВт – коэффициент 1,5;
  • 5 и более кВт – коэффициент 1,1-1,2.

Q – производительность вентилятора;
H – давление на выходе;
ηв – КПД вентилятора;
ηп – КПД передачи.

Приведенная формула используется для расчета мощности осевых и центробежных вентиляторов. КПД центробежных моделей равен 0,4-0,7, а осевых вентиляторов – 0,5-0,85.

Остальные технические характеристики, необходимые для расчета мощности двигателя, можно найти в каталогах для каждого типа механизмов.

ВАЖНО! При выборе электродвигателя запас мощности должен быть, но небольшой. При значительном запасе мощности снижается КПД привода. В электродвигателях переменного тока это приводит еще и к снижению коэффициента мощности.

Пусковой ток электродвигателя

Зная тип и номинальную мощность электродвигателя, можно рассчитать номинальный ток.

Номинальный ток электродвигателей постоянного тока

Номинальный ток трехфазных электродвигателей переменного тока

где:
PH – номинальная мощность электродвигателя;
UH — номинальное напряжение электродвигателя,
ηH — КПД электродвигателя;
cosfH — коэффициент мощности электродвигателя.

Номинальные значения мощности, напряжения и КПД можно найти в технической документации на конкретную модель электродвигателя.

Зная значение номинального тока, можно рассчитать пусковой ток.

Формула расчета пускового тока электродвигателей

где:
IH – номинальное значение тока;
Кп – кратность постоянного тока к номинальному значению.

Пусковой ток необходимо рассчитывать для каждого двигателя в цепи. Зная эту величину, легче подобрать тип автоматического выключателя для защиты всей цепи.

Режимы работы электродвигателей

Режим работы определяет нагрузку на электродвигатель. В некоторых случаях она остается практически неизменной, в других может изменяться. Характер предполагаемой нагрузки обязательно учитывается при выборе двигателя. Действующими стандартами предусмотрены следующие режимы эксплуатации:

Режим S1 (продолжительный). При таком режиме эксплуатации нагрузка остается постоянной в течение всего времени, пока температура электродвигателя не достигнет необходимого значения. Мощность привода рассчитывается по формулам, приведенным выше.

Режим S2 (кратковременный). При эксплуатации в этом режиме температура двигателя в период его включения не достигает установившегося значения. За время отключения электродвигатель охлаждается до температуры окружающей среды. При кратковременном режиме эксплуатации необходимо проверять перегрузочную способность электропривода.

Режим S3 (периодически-кратковременный). Электродвигатель работает с периодическими отключениями. В периоды включения и отключения его температура не успевает достигнуть заданного значения или охладиться до температуры окружающей среды. При расчете мощности двигателя обязательно учитывается продолжительность пауз и потерь в переходные периоды. При выборе электродвигателя важным параметром является допустимое количество включений за единицу времени.

Режимы S4 (периодически-кратковременный, с частыми пусками) и S5 (периодически-кратковременный с электрическим торможением). В обоих случаях работа двигателя рассматривается по тем же параметрам, что и в режиме эксплуатации S3.

Режим S6 (периодически-непрерывный с кратковременной нагрузкой). Работа электродвигателя в данном режиме предусматривает эксплуатацию под нагрузкой, чередующуюся с холостым ходом.

Режим S7 (периодически-непрерывный с электрическим торможением)

Режим S8 (периодически-непрерывный с одновременным изменением нагрузки и частоты вращения)

Режим S9 (режим с непериодическим изменением нагрузки и частоты вращения)

Большинство моделей современных электроприводов, эксплуатируемых продолжительное время, адаптированы к изменяющемуся уровню нагрузки.

Климатические исполнения электродвигателей

При выборе электродвигателя учитываются не только его технические характеристики, но и условия окружающей среды, в которых он будет эксплуатироваться.

Современные электроприводы выпускаются в разных климатических исполнениях. Категории маркируются соответствующими буквами и цифрами:

  • У – модели для эксплуатации в умеренном климате;
  • ХЛ – электродвигатели, адаптированные к холодному климату;
  • ТС – исполнения для сухого тропического климата;
  • ТВ – исполнения для влажного тропического климата;
  • Т – универсальные исполнения для тропического климата;
  • О – электродвигатели для эксплуатации на суше;
  • М – двигатели для работы в морском климате (холодном и умеренном);
  • В – модели, которые могут использоваться в любых зонах на суше и на море.
Смотрите так же:  Узо в двухпроводной схеме

Цифры в номенклатуре модели указывают на тип ее размещения:

  • 1 – возможность эксплуатации на открытых площадках;
  • 2 – установка в помещениях со свободным доступом воздуха;
  • 3 – эксплуатация в закрытых цехах и помещениях;
  • 4 – использование в производственных и других помещениях с возможностью регулирования климатических условий (наличие вентиляции, отопления);
  • 5 – исполнения, разработанные для эксплуатации в зонах повышенной влажности, с высоким образованием конденсата.

Энергоэффективность

Рациональное потребление энергии при сохраняющейся высокой мощности сокращает текущие производственные затраты при одновременном увеличении производительности электродвигателя. Поэтому при выборе привода обязательно учитывается класс энергоэффективности.

В технической документации и каталогах обязательно указывается класс энергоэффективности двигателя. Он зависит от показателя КПД.

Проводимые в тестовом и рабочем режимах экспериментальные исследования показывают, что электродвигатель мощностью 55 кВт высокого класса энергоэффективности сокращает потребление электроэнергии на 8-10 тысяч кВт ежегодно.

Как рассчитать мощность электродвигателя

Как определить мощность электродвигателя?

Электрические двигатели сегодня используются в различных технических средствах и оборудовании, потому многих пользователей интересует, как определить мощность и ток электродвигателя? Производители двигателей оснащают свои товары специальными таблицами, устанавливаемыми на корпусах устройств. Эти таблички содержат в себе исчерпывающую информацию о технических характеристиках устройства: марка, номинальный рабочий ток, мощность, частота вращения, КПД, тип двигателя и т.д. Все эти данные содержатся также в технической документации на электродвигатели.

Из всех характеристик двигателей, для пользователей наибольшее значение имеют потребляемый ток и мощность. Эти данные позволяют определить сечение и пропускную способность электрических кабелей, которые необходимо использовать для подключения оборудования, выбрать подходящие по номиналам устройства безопасности – УЗО и автомат.

Несмотря на то, что в большинстве случаев с поиском технических характеристик двигателей не возникает никаких проблем, иногда техническая документация и таблички на устройствах отсутствуют. Подобные проблемы вынуждают пользователей искать другие варианты определения мощности, тока и других параметров работы электродвигателя.

Методика определения мощности электродвигателя

Существуют различные формулы расчета, позволяющие определить точную мощность электродвигателя. Для использования некоторых формул пользователю придется измерить размеры статора двигателя, для других формул – нужно знать величину тока или КПД двигателя. Многие специалисты используют эти формулы на практике, но существует и гораздо более простая, удобная методика определения мощности двигателя – практические измерения. С помощью установленного счетчика потребления электрической энергии в бытовой электросети можно узнать мощность любого оборудования.

Для проведения таких измерений нужно будет отключить от питания все бытовые электрические устройства, чтобы ни один прибор не потреблял электрическую энергию и счетчик «не крутился». Освещение также необходимо отключить, так как даже одна включенная лампочка может навредить испытаниям.

Особенности определения мощности зависят от того, какой именно счетчик потребления электроэнергии у вас установлен. Если на вводе электричества на объект установлен счетчик «Меркурий», достаточно просто включить электродвигатель на полной мощности на 3-5 минут. В процессе работы двигателя счетчик будет показывать величину нагрузки, измеряемую в кВт.

Провести такие измерения можно и с помощью стандартного индукционного счетчика потребления, но нужно помнить, что такие устройства ведут учет в Квт/ч. Итак, сначала нужно записать точные показателя счетчика до начала исследования, затем нужно включить двигатель ровно на 10 минут, не допуская никаких погрешностей. Лучше всего засекать время с помощью секундомера, позволяющего вовремя включить и выключить двигатель. После выключения двигателя нужно снять показания с индукционного счетчика, отнять из показаний записанную перед измерениями величину. Теперь показатели умножаем на 6. Полученные в ходе этих простых измерений и вычислений результаты будут точно отображать активную мощность двигателя в кВт.

Сложнее определить технические характеристики маломощных двигателей, но и их мощность можно рассчитать, хотя это потребует больших усилий. Легче всего определить мощность двигателя путем подсчета полных оборотов диска за единицу времени. К примеру, на счетчике указано, что 1200 оборотов равняется 1 кВт/ч. Если в течение одной минуты счетчик сделает 10 оборотов, то в этом случае 10 нужно умножить на 60 (число минут в часе) и получаем 600 оборотов в час. Делим 1200 на 600 и получаем мощность электродвигателя. Важно отметить, что на точность напрямую влияет продолжительность измерений. Чем дольше измерять показания, тем точнее можно определить мощность двигателя.

Методика определения тока электродвигателя

Для эксплуатации электродвигателя пользователю требуются различные параметры его работы. Второй по важности характеристикой такого устройства является величина потребляемого тока. Методика расчета тока зависит от числа фаз в двигателе и величине потребляемого напряжения. Проще всего рассчитать величину тока для трехфазных двигателей, подключаемых от электрических сетей напряжением 380 В. Величина потребляемого тока для таких устройств равняется умноженной на 2 мощности. К примеру, трехфазный двигатель мощностью 2 кВт умножаем на 2 и получаем потребляемый ток двигателя, равный 4 Ампер.

Величина тока электродвигателя в момент времени может зависеть от вида запуска. Зависимость величины тока от вида запуска представлена на графике ниже.

Это точная формула, однако, требующая определенных дополнений. Обязательно нужно учитывать, что результат таких расчетов – это величина потребляемого тока при номинальной нагрузке. Двигатель на холостом ходу будет иметь куда меньшую величину потребляемого тока.

Для расчета тока трехфазного асинхронного двигателя можно также использовать формулу:

Iн = 1000 Pн / √3 * (ηн * Uн * cosφн),

  • Pн – номинальная мощность;
  • Uн – номинальное напряжение;
  • Ηн – номинальный КПД;
  • Cosφн – номинальный коэффициент мощности.

Потребляемый ток однофазными двигателями рассчитывается по другой формуле. В этом случае для определения тока пользователю нужно будет разделить мощность двигателя на напряжение в электросети. Уровень напряжения в месте подключения двигателя необходимо измерить перед проведением расчетов, так как уровень напряжения при включенном устройстве в месте ввода будет снижаться.

Таким образом, если мощность мотора равняется 2 кВт или 2000 Вт, а напряжение в сети равняется 220 В, то 2000 следует разделить на 220. Получаем величину в 9 А, которая и принимается за величину потребляемого тока электродвигателем.

Методика расчета мощности электродвигателя при неизменяющейся нагрузке.

Существует много механизмов, работающих продолжительно с неизменной или мало меняющейся нагрузкой без регулирования скорости, например насосы, компрессоры, вентиляторы и т.п.

При выборе электродвигателя для такого режима необходимо знать мощность, потребляемую механизмом. Если эта мощность неизвестна, ее определяют теоретическими расчетами или расчетами по эмпирическим формулам с использованием коэффициентов, полученных из многочисленных опытов. Для малоизученных механизмов необходимую мощность определяют путем снятия нагрузочных диаграмм самопишущими приборами на имеющихся уже в эксплуатации аналогичных установках либо путем использования нормативов потребления энергии, полученных на основании статистических данных, учитывающих удельный расход электроэнергии при выпуске продукции.

При известной мощности механизма мощность электродвигателя выбирается по каталогу с учетом КПД промежуточной передачи. Расчетная мощность на валу электродвигателя:

— мощность, потребляемая механизмом;

Номинальная мощность электродвигателя, принятого по каталогу, должна быть равна или несколько больше расчетной.

Выбранный электродвигатель не нуждается в проверке по нагреву или по перегрузке, так как завод-изготовитель произвел все расчеты и испытания, причем основанием для расчетов являлось максимальное использование материалов, заложенных в электродвигателе при его номинальной мощности. Иногда, однако, приходится проверять достаточность пускового момента, развиваемого электродвигателем, учитывая, что некоторые механизмы имеют повышенное сопротивление трения в начале трогания с места (например, транспортеры, некоторые механизмы металлорежущих станков).

Мощность (кВт) электродвигателя для насоса определяется по формуле:

Подставив необходимые значения, Вы можете рассчитать мощность прямо сейчас

где — коэффициент запаса, принимаемый 1,1-1,3 в зависимости от мощности электродвигателя; — ускорение свободного падения; — подача (производительность) насоса, м³/с; — расчетная высота подъёма, м; — плотность перекачиваемой жидкости, кг/м³; — КПД насоса (для поршневого 0,7-0,9; для центробежного с давлением свыше 0,4×10 5 Па 0,6-0,75, с давлением до 0,4×10 5 Па 0,45-0,6); — КПД передачи, равный 0,9-0,95; — давление, развиваемое насосом, Па.

Для центробежного насоса особенно важен правильный выбор частоты вращения электродвигателя, так как производительность насоса Q, расчетная высота H, момент М и мощность Р на валу электродвигателя зависят от угловой скорости W. Для одного и того же насоса значения Q1. H1. M1. P1 при W1 связаны со значениями Q2. H2. M2. P2 при скорости W2 соотношениями Q1 /Q2 =W1 / W2 ; H1 /H2 =M1 /M2 =W 2 1 / W 2 2 ; P1 / P2 =W 3 1 / W 3 2.

Из этих соотношений следует, что при завышении угловой скорости электродвигателя потребляемая им мощность резко возрастает, что приводит к перегреву его и выходу из строя. При заниженной скорости создаваемый насосом напор может оказаться недостаточным, и насос не будет перекачивать жидкость.

Мощность (кВт) электродвигателя для поршневого компрессора

где — подача (производительность) компрессора, м³/с; — работа изотермического и адиабатического сжатия 1 м³ атмосферного воздуха давлением p1 =1,1×10 5 Па до требуемого давления p2. Дж/м³; для давлений до 10×10 5 Па значения A следующие:

Расчет мощности электродвигателя

  1. Основные типы электродвигателей
  2. Расчет мощности электродвигателя для насоса
  3. Формула расчета мощности для компрессора
  4. Формула для вентиляторов
  5. Расчет пускового тока
  6. Режимы работы электродвигателей

Преобразование электрической энергии в кинетическую осуществляется при помощи различных типов электродвигателей. Данные устройства нашли широкое применение в современном производстве и в быту. Чаще всего электродвигатели выполняют функцию электроприводов машин и механизмов, применяются для обеспечения работы насосного оборудования, вентиляционных систем и многих других агрегатов и устройств. В связи с таким широким применением, особую актуальность приобретает расчет мощности электродвигателя. Для этих целей разработано много различных методов, позволяющих выполнить расчеты, применительно к конкретным условиям эксплуатации.

Основные типы электродвигателей

Существует множество типов и модификаций электродвигателей. Каждый из них обладает собственной мощностью и другими параметрами.

Основная классификация разделяет эти устройства на электродвигатели постоянного и переменного тока. Первый вариант применяется значительно реже, поскольку для его эксплуатации требуется обязательное наличие источника постоянного тока или устройства, преобразующего переменное напряжение в постоянный ток. Выполнение данного условия в современном производстве потребует значительных дополнительных затрат.

Но, несмотря на существенные недостатки, двигатели постоянного тока имеют высокий пусковой момент и стабильно работают даже при больших перегрузках. Благодаря своим качествам, эти агрегаты нашли широкое применение на электротранспорте, в металлургической и станкостроительной отрасли.

Тем не менее, большинство современного оборудования работает с двигателями переменного тока. В основе действия этих устройств лежит электромагнитная индукция. которую создает в магнитном поле проводящая среда. Магнитное поле создается с помощью обмоток, обтекаемых токами, или с применением постоянных магнитов. Электродвигатели, работающие на переменном токе, могут быть синхронными и асинхронными .

Использование синхронных электродвигателей практикуется в оборудовании, где требуется постоянная скорость вращения. Это генераторы постоянного тока, насосы, компрессоры и другие аналогичные установки. Различные модели отличаются собственными техническими характеристиками. Например, значение скорости вращения может находиться в пределах 125-1000 оборотов в минуту, а мощность достигает 10 тыс. киловатт.

Во многих конструкциях имеется короткозамкнутая обмотка, расположенная на роторе. С ее помощью, в случае необходимости, производится асинхронный пуск, после чего синхронный двигатель продолжает работу в обычном режиме, максимально сокращая потери электрической энергии. Эти двигатели отличаются небольшими размерами и высоким коэффициентом полезного действия.

Смотрите так же:  Какие провода подключать к телефону

Гораздо более широкое распространение в производственной сфере получили асинхронные двигатели переменного тока. Они отличаются очень высокой частотой вращения магнитного поля, значительно превышающей скорость вращения ротора. Существенным недостатком этих устройств считается снижение КПД до 30-50% от нормы при низких нагрузках. Кроме того, во время пуска параметры тока становятся в несколько раз больше по сравнению с рабочими показателями. Данные проблемы устраняются путем использования частотных преобразователей и устройств плавного пуска.

Асинхронные двигатели используются на тех объектах, где требуются частые включения и выключения оборудования, например, в лифтах, лебедках, и других устройствах.

Расчет мощности электродвигателя для насоса

Выбор электродвигателя для насосной установки зависит от конкретных условий, прежде всего – от схемы водоснабжения. В большинстве случаев подача воды производится с помощью водонапорного бака или водонапорного котла. Для приведения в действие всей системы используются центробежные насосы с асинхронными двигателями.

Выбор оптимальной мощности насоса осуществляется в зависимости от потребности в подаче и напоре жидкости. Подача насоса QH измеряется в литрах, подаваемых в 1 час, и обозначается как л/ч. Данный параметр определяется по следующей формуле: Qн = Qmaxч = (kч х kсут х Qср.сут) / (24 η), где Qmaxч — возможный максимальный часовой расход воды, л/ч, kч — коэффициент неравномерности часового расхода, kсут — коэффициент неравномерности суточного расхода (1,1 — 1,3), η — КПД насосной установки, с учетом потерь воды), Qср.сут — значение среднесуточного расхода воды (л/сут).

Оптимальный напор воды должен обеспечивать ее подачу в установленное место при условии необходимого давления. Требуемые параметры напора насоса (Ннтр) зависят от высоты всасывания (Нвс) и высоты нагнетания (Ннг), которые в сумме определяют показатели статического напора (Нс), потери в трубопроводах (Hп) и разность давлений верхнего (Рву) и нижнего (Рну) уровней.

Исходя из того, что значение напора будет равно H = P/ρg, где Р — давление (Па), ρ — плотность жидкости (кг/м 3 ), g = 9,8 м/с2 — ускорение свободного падения, g — удельный вес жидкости (кг/м 3 ), получается следующая формула: Ннтр = Hc + Hп + (1/ρ) х (Рву — Рну).

После вычисления расхода воды и напора по каталогу уже можно выбрать насос с наиболее подходящими параметрами. Чтобы не ошибиться с мощностью электродвигателя, ее нужно определить по формуле: Pдв = (kз х ρ х Qн х Нн) / (ηн х ηп), где kз является коэффициентом запаса, зависящим от мощности электродвигателя насоса и составляет 1,05 — 1,7. Этот показатель учитывает возможные утечки воды из трубопровода из-за неплотных соединений, разрывов трубопровода и прочих факторов, поэтому электродвигатели для насосов должны иметь некоторый запас мощности. Чем больше мощность, тем меньше коэффициент запаса можно принять.

Например,при мощности электродвигателя насоса 2 кВт — kз = 1,5, 3,0 кВт — kз = 1,33, 5 кВт — kз =1,2, при мощности больше 10 кВт- kз = 1,05 — 1,1. Другие параметры означают: ηп — КПД передачи (прямая передача – 1,0, клиноременная – 0,98, зубчатая – 0,97, плоскоременная – 0,95), ηн — КПД насосов поршневых 0,7 — 0,9, центробежных 0,4 — 0,8, вихревых 0,25 — 0,5.

Расчет мощности двигателя формула для компрессора

Выбирая электродвигатель, наиболее подходящий для работы того или иного компрессора, необходимо учитывать продолжительный режим работы данного механизма и постоянную нагрузку. Расчет требующейся мощности двигателя Рдв осуществляется в соответствии с мощностью на валу основного механизма. В этом случае следует учитывать потери, возникающие в промежуточном звене механической передачи.

Дополнительными факторами являются мощности, назначение и характер производства, на котором будет эксплуатироваться компрессорное оборудование. Они оказывают определенное влияние, в связи с чем оборудование может потребовать незначительных, но постоянных регулировок для поддержки производительности на должном уровне.

Определить мощность двигателя можно по формуле: . в которой:

  • Q – значение производительности или подачи компрессора (м 3 /с);
  • А – работа по совершению сжатия (Дж/м 3 );
  • ηк – индикаторный КПД (0,6-0,8) для учета потерь мощности при реальном сжатии воздуха;
  • ηп – механический КПД (0,9-0,95) учитывающий передачу между двигателем и компрессором;
  • кз – коэффициент запаса (1,05-1,15) для учета факторов, не поддающихся расчетам.

Работа А рассчитывается по отдельной формуле: А = (Аи + Аа)/2, где Аи и Аа представляют собой соответственно изотермическое и адиабатическое сжатие.

Значение работы, которую необходимо совершить до появления требуемого давления, можно определить с помощью таблицы:

Типичная работа компрессора характеризуется продолжительным режимом работы. Реверсивные электроприводы, как правило, отсутствуют, включения и выключения крайне редкие. Поэтому наиболее оптимальным вариантом, обеспечивающим нормальную работу компрессоров, будет синхронный электрический двигатель.

Формула расчета для вентиляторов

Вентиляторы широко применяются в самых разных областях. Устройства общего назначения работают на чистом воздухе, при температуре ниже 80 0. Воздух с более высокой температурой перемещается с помощью специальных термостойких вентиляторов. Если приходится работать в агрессивной или взрывоопасной среде, в этих случаях используются модели антикоррозийных и взрывобезопасных устройств.

В соответствии с принципом действия, вентиляторные установки могут быть центробежными или радиальными и осевыми. В зависимости от конструкции, они развивают давление от 1000 до 15000 Па. Поэтому мощность, потребная для привода вентилятора, рассчитывается в соответствии с давлением, которое необходимо создать.

С этой целью используется формула: Nв=Hв·Qв/1000·кпд, в которой Nв – мощность, потребная для привода (кВт), Hв – давление, создаваемое вентилятором (Па), Qв – перемещаемый объем воздуха (м 3 /с), кпд – коэффициент полезного действия.

Для расчета мощности электродвигателя используется формула. . где значения параметров будут следующие:

  • Q – производительность агрегата;
  • Н – давление на выходе;
  • ηв – коэффициент полезного действия вентилятора;
  • ηп — коэффициент полезного действия передачи;
  • кз – коэффициент запаса, зависящий от мощности электродвигателя. При мощности до 1 кВт кз = 2; от 1 до 2 кВт кз = 1,5; при 5 кВт и выше кз = 1,1-1,2.

Данная формула позволяет рассчитывать мощность электродвигателей под центробежные и осевые вентиляторы. Для центробежных конструкций КПД составляет 0,4-0,7, а для осевых – 0,5-0,85. Другие расчетные характеристики имеются в специальных каталогах для всех типов электродвигателей.

Запас мощности не должен быть слишком большим. Если он будет слишком большой, КПД привода заметно снизится. Кроме того, в двигателях переменного тока может снизиться коэффициент мощности.

Расчет пускового тока электродвигателя

В момент запуска электродвигателя его вал остается в неподвижном состоянии. Для того чтобы он начал раскручиваться, необходимо приложить усилие, значительно больше номинального. В связи с этим пусковой ток также превышает номинал. В процессе раскручивания вала происходит постепенное плавное уменьшение тока.

Влияние пусковых токов негативно сказывается на работе оборудования, в основном из-за резких провалов напряжения. Для того чтобы уменьшить их отрицательное воздействие, применяются различные способы. В процессе разгона, схемы электродвигателя переключаются со звезды на треугольник, используются частотные преобразователи и электронные устройства плавного пуска.

Вначале рассчитывается значение номинального тока двигателя, в соответствии с его типом и номинальной мощностью. Для устройств постоянного тока формула будет выглядеть следующим образом:

У электродвигателей переменного тока номинальный ток определяется по другой формуле:

Все параметры имеют соответствующие обозначения:

  • РН – значение номинальной мощности двигателя;
  • UH – значение номинального напряжения двигателя;
  • ηH–КПД электродвигателя;
  • cosfH – соответствует коэффициенту мощности двигателя.

После расчетов номинального тока можно вычислить значение пускового тока по формуле: . в которой:

  • IH – номинальное значение тока, определенное ранее;
  • Кп–кратность постоянного тока к номиналу.

Значение пускового тока рассчитывается для каждого двигателя, имеющегося в электрической цепи. В соответствии с его величиной выбирается автоматический выключатель, обеспечивающий защиту всей цепи.

Режимы работы электродвигателей

Нагрузка на электродвигатель определяется режимом его работы. Она может оставаться неизменной или изменяться в зависимости от условий эксплуатации. При выборе двигателя обязательно учитывается характер и значение предполагаемой нагрузки. С учетом этого фактора выполняется расчет мощности электродвигателя.

Режимы, в которых работают электродвигатели:

  • S1 – продолжительный режим. Нагрузка не меняется в течение всего периода эксплуатации. Температура двигателя достигает установленного значения.
  • S2 – кратковременный режим. В этом случае в период работы температура не успевает достигнуть нужного значения. При отключении происходит охлаждение двигателя до температуры окружающей среды.
  • S3 – периодически-кратковременный режим. В процессе работы двигателя производятся периодические отключения. В эти периоды температура двигателя не может достигнуть нужного значения или стать такой же, как в окружающей среде. При расчетах двигателя, в том числе и мощности, учитываются все паузы и потери, их продолжительность. Одним из важных критериев выбора агрегата, считается допустимое число включений за определенный отрезок времени.
  • S4 – периодически-кратковременный режим с частыми пусками.
  • S5 — периодически-кратковременный режим с электрическим торможением. Оба режима S4 и S5 работают также, как и S3.
  • S6 – периодически-непрерывный режим с кратковременной нагрузкой. Эксплуатация двигателя осуществляется под нагрузкой, которая чередуется с холостым ходом.
  • S7 – периодически-непрерывный режим с электрическим торможением.
  • S8 – периодически-непрерывный режим, в котором одновременно изменяется нагрузка и частота вращения.
  • S9–режим, когда нагрузка и частота вращения изменяются не периодически.

Похожие статьи:

  • Схема эл двигателя 380 на 220 Схемы соединения обмоток электродвигателей Пазы статора любого трехфазного асинхронного электродвигателя содержат три сдвинутые в пространстве на 120° обмотки, на выведенные концы которых подается питающее напряжение 380 В. Открыв […]
  • Соединение фаз обмотки звездой Соединение обмоток генератора и потребителей электрической энергии звездой Для уменьшения количества проводов между генератором и потребителем фазные обмотки должны быть соединены между собой определённым образом, как в генераторе, так и […]
  • Кусок медного провода Кусок медного провода длиной 5 м имеет массу 430 г. чтобы провести проводку в квартире требуется С метров. Хватит ли для этой цели мотка провода массой М г?(Напишите полностью начиная от названия программы и до end.) Экономь время и не […]
  • Как из 40 вольт сделать 220 Как из 40 вольт сделать 220 подскажите как и на чем собрать схемку с 220 вольт на 24 вольта простейшую без стабилизации и фильтрации,и без транса.не большого размера на не большой ток для включения двух катушек реле.спасибо. резисторы и […]
  • В сеть с напряжением 220 в включены последовательно В сеть с напряжением 220 В включены последовательно реостат и 10 ламп с сопротивлением 24 Ом каждая, рассчитанные на Ответ или решение 1 При последовательном соединении сила тока на реостате и лампах одинакова: I = I1 = I2 = . = In. I = […]
  • Магнитный пускатель трехфазный ТРЕХФАЗНЫЙ ТИРИСТОРНЫЙ ПУСКАТЕЛЬ На рис. 2.6 представлена схема трехфазного тиристорного пускателя. От вторичной обмотки трехфазного разделительного трансформатора ТР1 напряжение поступает на асинхронный двигатель М, если нажать кнопку […]