Каким прибором пользуются для измерения электрического сопротивления в каких единицах его измеряют

Как измерить сопротивление мультиметром

У каждого человека хотя бы раз в жизни возникала необходимости провести те или иные измерения электрических величин. Будь то напряжение в розетке или просто проверить зарядку аккумулятора в автомобиле все мы прибегаем к помощи измерительных приборов. Во времена СССР с измерительными приборами было очень туго, достать их было очень трудно, и не все понимали, как ими пользоваться.

На сегодняшний день проблем с приобретением того или иного инструментами нет можно купить что душе угодно хоть лабораторию для измерений, как говорится – «любой каприз за ваши деньги».

Но речь в сегодняшней статье пойдет не о лаборатория для измерений (это уже на профессиональном уровне), а об обычных мультиметрах которыми так часто пользуются электрики включая меня.

Приветствую всех друзья на сайте « Электрик в доме ». Ранее я уже публиковал статьи о том как пользоваться мультиметром при проведении измерений, но ввиду того что мне приходит очень много вопросов и комментариев с просьбой рассказать как можно проверить исправность лампочки или замерить сопротивление резистора, решил опубликовать подробный материал как измерить сопротивление мультиметром.

Метод измерения электрического сопротивления – как работает прибор

Принцип, по которому выполняется измерение электрического сопротивления мультиметром, основан на самом главном законе электротехники — законе Ома. Формула известна нам из школьного курса физики, говорит следующее: сила тока, протекающая по участку цепи прямо пропорциональна напряжению (ЭДС) и обратно пропорциональна сопротивлению на этом участке I (сила тока) = U (напряжение) / R (сопротивление).

Именно по этой связи работает прибор. Зная две из величин, можно легко вычислит третью. В качестве источника напряжения используется встроенный источник (DC) питания прибора, которым является штатная батарейка напряжением 9 В.

По сути измерения выполняются косвенным методом. Если приложить к щупам прибора измеряемое сопротивление, например Rх, ток протекающий в цепи будет зависеть только от него. Зная силу тока и напряжение можно легко вычислить сопротивление.

Настройки прибора перед измерениями

Итак, друзья давайте поближе познакомимся с самим прибором. В моем случает это цифровой мультиметр DT9208A . В стандартном комплекте идет одна пара щупов для силовых измерений и термопара для измерения температуры, которой я еще ни разу не пользовался.

На передней панели имеется круговой переключатель. Именно с помощью этого переключателя выполняется выбор рабочего режима и диапазона измерений. Переключатель работает как «трещетка» и фиксируется в каждом новом положении.

Вся круговая панель разбита не сектора и имеет разноцветную маркировку (это в моем случае). Иногда сектора обводят отдельными линиями, как бы отделяя необходимый параметр.

Сектор измерения сопротивлений расположен вверху и разбит на семь диапазонов: 200, 2k, 20k, 200k, 2M, 20M, 200M. Приставки «k» и «M» означают кило (10 в 3-й степени) и мега (10 в 6-й степени) соответственно.

Для работы необходимо переключатель установить на нужную позицию сектора. Нас интересует сопротивление, соответственно, перед тем как измерить сопротивление мультиметром нужно выставить переключатель в сектор обозначенный значком «Ω».

Для удобства работы с прибором щупы имеют разную расцветку. Разницы нет, куда вставлять какой щуп но общепринятым правилом считается что черный щуп вставляется в клемму обозначенную «com» (сокращенно от common — общий), а красный щуп вставляется в клемму обозначенную «VΩCX+».

Перед выполнением любых измерений необходимо проверить работоспособности самого прибора, так как может оказаться обрыв в измерительной цепи (например, плохой контакт щупов). Для этого концы щупов закорачивают между собой. Если прибор исправен и в цепи нет обрыва, то на дисплее появятся нулевые показания. Возможно, показания будут не нулевыми, а тысячные части Ом. Это связано с сопротивлением проводов измерительных проводов и переходным сопротивлением между щупами и их клеммами.

При разомкнутых щупах на дисплее будет отображаться «1» (единица) с отметкой диапазона измерений.

Такими несложными действиями выполняется подготовка мультиметра для измерения сопротивления.

Некоторые мультиметры оснащаются полезной опцией, называемой «прозвонкой». Если установить переключатель режимов работы на значок диода, при замыкании щупов звучит сигнал (зуммер). Это позволяет проверять исправность цепей и прямые переходы полупроводников сопротивлением до 50 Ом на слух, не отвлекаясь на дисплей.

Как измерить сопротивление резистора мультиметром

С теорией ознакомились и на первый взгляд вроде бы все понятно, однако как показывает практика, именно при практических работах у людей часто возникают вопросы. Поэтому давайте попробуем провести измерения какого-нибудь элемента, например резистора.

Берем вот такой постоянный резистор. Это один из распространенных видов постоянных резисторов. Его сопротивление должно быть 50 кОм, я это точно знаю, так как покупал его в магазине. Проверяем, так ли это? Для этого прикладываем один щуп к одному концу, другой — к другому концу.

Перед тем как измерить сопротивление мультиметром необходимо выставить рабочий переключатель в нужный диапазон. На какую отметку устанавливать ползунок, если не известно номинал резистора?

Необходимо чтобы переключатель всегда находился в ближайшем большем положении измерений. Так как я заведомо знаю, что номинал резистора 50 кОм я выставляю переключатель в ближайшее большее положение , в данном случае это — 200k. Если установить переключатель в положении меньше соответствующему сопротивлению (на отметку 20k) на дисплее НЕ БУДУТ отображаться данные. Сработает внутренняя блокировка.

Это касается не только измерения сопротивлений , но и при измерении таких величин как напряжение и ток. Например если вы хотите измерить напряжение в розетке, а по шкале из рабочих диапазонов положения 200 и 750 В, переключатель необходимо установить в положение 750 В. Если установить переключатель в положение 200 В и сунуть щупы в розетку прибор от этого не повредится так как внутри имеется защитная блокировка на этот счет, но все равно вы ни каких данных не получите.

Еще один из резисторов который у меня оказался под рукой номиналом 10 Ом, давайте замерим его сопротивление.

Выставляем переключатель мультиметра на отметке 200 (это является ближайшее большее положение для данного номинала) и измеряем.

Друзья хочу отметить, что переключатель необходимо выставлять именно на ближайшее большее положение это этого будет зависеть точность измерений . Чем выше предел измерений от номинала измеряемого сопротивления, тем большую погрешность будет давать прибор.

Измеряем сопротивление переменного резистора

Друзья это мы замеряли сопротивление постоянного резистора, электрическое сопротивление которого не изменятся и не может регулироваться. Давайте теперь попробуем выполнить замеры для переменного резистора.

Отличие между ними в том, что сопротивление последнего можно менять вручную переключая ползунок в нужное положение.

У меня имеется переменный резистор на 10 кОм о чем свидетельствует надпись на нем.

Как измерить сопротивление мультиметром в этом случае? Все очень просто значение 10 кОм соответствует между двумя крайними контактами. Контакт который расположен по середине является «плавающим». Если приложить щупы между крайним и средним контактом и регулировать ползунок (крутить по или против часовой стрелки), то можно увидеть, как изменяется сопротивление в зависимости от положений ползунка.

Сопротивление должно равномерно и непрерывно возрастать или уменьшаться от нуля до номинального значения. Самая частая неисправность – исчезновение контакта токосъемника при прокручивании проявится показанием «бесконечности» прибором.

Проверка лампочек накаливания мультиметром

А теперь давайте рассмотрим практическое применение мультиметра в бытовых условиях. Часто дома возникают такие неприятные ситуации как неисправность освещения.

Причем причина может быть самой неординарной от перегорания самой лампочки до неисправности светильника или выключателя освещения либо куда хуже повреждение в распределительной коробке.

Наиболее частые неисправности, конечно же, является перегорание лампочки, поэтому прежде чем ковырять распредкоробку, нужно проверить целостности лампочки. Визуально осмотром целостности нити не всегда удается выявить неисправность. Тем более, не обязательно может произойти перегорание нити. Реже случается короткое замыкание в цоколе и токовых вводах (электродах).

Поэтому с помощью обычного тестера можно легко проверить не только домашнюю лампу накаливания, но и фару автомобиля или мотоцикла.

Как измерить мультиметром сопротивление нити? Нужно установить минимальный предел измерения «Ω». Одним щупом надо прикоснуться к корпусу цоколя, другой кончик прижать к верхнему контакту цоколя.

Как можно видеть сопротивление рабочей лампы накаливания мощностью 100 Вт составляет 36,7 Ом.

Если при измерениях на дисплее мультиметра будет отображаться «1», а для аналоговых (стрелочных) приборов показание «бесконечность» это будет свидетельствовать о внутреннем обрыве/перегорании нити в лампе.

На этом все дорогие друзья, надеюсь, в данной статье был полностью раскрыт вопрос как измерить сопротивление мультиметром. Если остались вопросы задавайте их в комментариях. Если статья была для вас интересной буду признателен за репост в соц.сетях.

Измерение электрического сопротивления

Измерение методом амперметра и вольтметра. Сопротивление какой-либо электрической установки или участка электрической цепи можно определить с помощью амперметра и вольтметра, пользуясь законом Ома. При включении приборов по схеме рис. 339, а через амперметр проходит не только измеряемый ток Ix, но и ток Iv, протекающий через вольтметр. Поэтому сопротивление

При включении приборов по схеме рис. 339, б вольтметр будет измерять не только падение напряжения Ux на определенном сопротивлении, но и падение напряжения в обмотке амперметра UA = IRА. Поэтому

Смотрите так же:  Схема подключения люминесцентного светильника на две лампы

В тех случаях, когда сопротивления приборов неизвестны и, следовательно, не могут быть учтены, нужно при измерении малых сопротивлений пользоваться схемой рис. 339,а, а при измерении больших сопротивлений — схемой рис. 339, б. При этом погрешность измерений, определяемая в первой схеме током Iv, а во второй — падением напряжения UА, будет невелика по сравнению с током Ix и напряжением Ux.

Измерение сопротивлений электрическими мостами. Мостовая схема (рис. 340,а) состоит из источника питания, чувствительного прибора (гальванометра Г) и четырех резисторов, включаемых в плечи моста: с неизвестным сопротивлением Rx (R4) и известными сопротивлениями R1, R2, R3, которые могут при измерениях изменяться. Прибор включают в одну из диагоналей моста (измерительную), а источник питания — в другую (питающую).

Сопротивления R1 R2 и R3 можно подобрать такими, что при замыкании контакта В показания прибора будут равны нулю (в та-

Рис. 339. Схемы для измерения сопротивления методом амперметра и вольтметра

Рис. 340. Мостовые схемы постоянного тока, применяемые для измерения сопротивлений

ком случае принято говорить, что мост уравновешен). При этом неизвестное сопротивление

В некоторых мостах отношение плеч R1/R2 установлено постоянным, а равновесие моста достигается только подбором сопротивления R3. В других, наоборот, сопротивление R3 постоянно, а равновесие достигается подбором сопротивлений R1 и R2.

Измерение сопротивления мостом постоянного тока осуществляется следующим образом. К зажимам 1 и 2 присоединяют неизвестное сопротивление Rx (например, обмотку электрической машины или аппарата), к зажимам 3 и 4 — гальванометр, а к зажимам 5 и 6 — источник питания (сухой гальванический элемент или аккумулятор). Затем, изменяя сопротивления R1, R2 и R3 (в качестве которых используют магазины сопротивлений, переключаемые соответствующими контактами), добиваются равновесия моста, которое определяется по нулевому показанию гальванометра (при замкнутом контакте В).

Существуют различные конструкции мостов постоянного тока, при использовании которых не требуется выполнять вычисления, так как неизвестное сопротивление Rx отсчитывают по шкале прибора. Смонтированные в них магазины сопротивлений позволяют измерять сопротивления от 10 до 100 000 Ом.

При измерении малых сопротивлений обычными мостами сопротивления соединительных проводов и контактных соединений вносят большие погрешности в результаты измерения. Для их устранения применяют двойные мосты постоянного тока (рис. 340,б). В этих мостах провода, соединяющие резистор с измеряемым сопротивлением Rx и некоторый образцовый резистор с сопротивлением R0 с другими резисторами моста, и их контактные соединения оказываются включенными последовательно с резисторами соответствующих плеч, сопротивление которых устанавливается не менее 10 Ом. Поэтому они практически не влияют на результаты измерений. Провода же, соединяющие резисторы с сопротивлениями Rx и R0, входят в цепь питания и не влияют на условия равновесия моста. Поэтому точность измерения малых сопротивлений довольно высокая. Мост выполняют так, чтобы при регулировках его соблюдались следующие условия: R1 = R2 и R3 = R4. В этом случае

Двойные мосты позволяют измерить сопротивления от 10 до 0,000001 Ом.

Если мост не уравновешен, то стрелка в гальванометре будет отклоняться от нулевого положения, так как ток измерительной диагонали при неизменных значениях сопротивлений R1, R2, R3 и э. д. с. источника тока будет зависеть только от изменения сопротивления Rx. Это позволяет проградуировать шкалу гальванометра в единицах сопротивления Rx или каких-либо других единицах (температура, давление и пр.), от которых зависит это сопротивление. Поэтому неуравновешенный мост постоянного тока широко используют в различных устройствах для измерения неэлектрических величин электрическими методами.

Применяют также различные мосты переменного тока, которые дают возможность измерить с большой точностью индуктивности и емкости.

Измерение омметром. Омметр представляет собой миллиамперметр 1 с магнитоэлектрическим измерительным механизмом и включается последовательно с измеряемым сопротивлением Rx (рис. 341) и добавочным резистором RД в цепь постоянного тока. При неизменных э. д. с. источника и сопротивления резистора RД ток в цепи зависит только от сопротивления Rx. Это позволяет отградуировать шкалу прибора непосредственно в омах. Если выходные зажимы прибора 2 и 3 замкнуты накоротко (см. штриховую линию), то ток I в цепи максимален и стрелка прибора отклоняется вправо на наибольший угол; на шкале этому соответствует сопротивление, равное нулю. Если цепь прибора разомкнута, то I = 0 и стрелка находится в начале шкалы; этому положению соответствует сопротивление, равное бесконечности.

Питание прибора осуществляется от сухого гальванического элемента 4, который устанавливается в корпусе прибора. Прибор будет давать правильные показания только в том случае, если источник тока имеет неизменную э. д. с. (такую же, как и при градуировке шкалы прибора). В некоторых омметрах имеются два или несколько пределов измерения, например от 0 до 100 Ом и от 0 до 10 000 Ом. В зависимости от этого резистор с измеряемым сопротивлением Rx подключают к различным зажимам.

Измерение больших сопротивлений мегаомметрами. Для измерения сопротивления изоляции чаще всего применяют мегаомметры магнитоэлектрической системы. В качестве измерительного механизма в них использован логометр 2 (рис. 342), показания кото-

Рис. 341. Схема включения омметра

Рис. 342. Устройство мегаомметра

рого не зависят от напряжения источника тока, питающего измерительные цепи. Катушки 1 и 3 прибора находятся в магнитном поле постоянного магнита и подключены к общему источнику питания 4.

Последовательно с одной катушкой включают добавочный резистор Rд, в цепь другой катушки — резистор сопротивлением Rx.

В качестве источника тока обычно используют небольшой генератор 4 постоянного тока, называемый индуктором; якорь генератора приводят во вращение рукояткой, соединенной с ним через редуктор. Индукторы имеют значительные напряжения от 250 до 2500 В, благодаря чему мегаомметром можно измерять большие сопротивления.

При взаимодействии протекающих по катушкам токов I1 и I2 с магнитным полем постоянного магнита создаются два противоположно направленных момента М1 и М2, под влиянием которых подвижная часть прибора и стрелка будут занимать определенное положение. Как было показано в § 100, положение подвижной

Рис. 343. Общий вид мегаомметра (а) и его упрощенная схема (б)

части логометра зависит от отношения I1/I2. Следовательно, при изменении Rx будет изменяться угол ? отклонения стрелки. Шкала мегаомметра градуируется непосредственно в килоомах или мегаомах (рис. 343, а).

Чтобы измерить сопротивление изоляции между проводами, необходимо отключить их от источника тока (от сети) и присоединить один провод к зажиму Л (линия) (рис. 343,б), а другой — к зажиму 3 (земля). Затем, вращая рукоятку индуктора 1 мегаомметра, определяют по шкале логометра 2 сопротивление изоляции. Имеющийся в приборе переключатель 3 позволяет изменять пределы измерения. Напряжение индуктора, а следовательно, частота вращения его рукоятки теоретически не оказывают влияние на результаты измерений, но практически рекомендуется вращать ее более или менее равномерно.

При измерении сопротивления изоляции между обмотками электрической машины отсоединяют их друг от друга и соединяют одну из них с зажимом Л, а другую с зажимом 3, после чего, вращая рукоятку индуктора, определяют сопротивление изоляции. При измерении сопротивления изоляции обмотки относительно корпуса его соединяют с зажимом 3, а обмотку — с зажимом Л.

Каким прибором пользуются для измерения электрического сопротивления в каких единицах его измеряют

Электрическое измерение – это нахождение (экспериментальными методами) значения физической величины, выраженного в соответствующих единицах (например, 3 А, 4 В). Значения единиц электрических величин определяются международным соглашением в соответствии с законами физики и единицами механических величин. Поскольку «поддержание» единиц электрических величин, определяемых международными соглашениями, сопряжено с трудностями, их представляют «практическими» эталонами единиц электрических величин. Такие эталоны поддерживаются государственными метрологическими лабораториями разных стран. Например, в США юридическую ответственность за поддержание эталонов единиц электрических величин несет Национальный институт стандартов и технологии. Время от времени проводятся эксперименты по уточнению соответствия между значениями эталонов единиц электрических величин и определениями этих единиц. В 1990 государственные метрологические лаборатории промышленно развитых стран подписали соглашение о согласовании всех практических эталонов единиц электрических величин между собой и с международными определениями единиц этих величин.

Электрические измерения проводятся в соответствии с государственными эталонами единиц напряжения и силы постоянного тока, сопротивления постоянному току, индуктивности и емкости. Такие эталоны представляют собой устройства, имеющие стабильные электрические характеристики, или установки, в которых на основе некоего физического явления воспроизводится электрическая величина, вычисляемая по известным значениям фундаментальных физических констант. Эталоны ватта и ватт-часа не поддерживаются, так как более целесообразно вычислять значения этих единиц по определяющим уравнениям, связывающим их с единицами других величин. См. также ЕДИНИЦЫ ИЗМЕРЕНИЯ ФИЗИЧЕСКИХ ВЕЛИЧИН.

Электроизмерительные приборы чаще всего измеряют мгновенные значения либо электрических величин, либо неэлектрических, преобразованных в электрические. Все приборы делятся на аналоговые и цифровые. Первые обычно показывают значение измеряемой величины посредством стрелки, перемещающейся по шкале с делениями. Вторые снабжены цифровым дисплеем, который показывает измеренное значение величины в виде числа. Цифровые приборы в большинстве измерений более предпочтительны, так как они более точны, более удобны при снятии показаний и, в общем, более универсальны. Цифровые универсальные измерительные приборы («мультиметры») и цифровые вольтметры применяются для измерения со средней и высокой точностью сопротивления постоянному току, а также напряжения и силы переменного тока. Аналоговые приборы постепенно вытесняются цифровыми, хотя они еще находят применение там, где важна низкая стоимость и не нужна высокая точность. Для самых точных измерений сопротивления и полного сопротивления (импеданса) существуют измерительные мосты и другие специализированные измерители. Для регистрации хода изменения измеряемой величины во времени применяются регистрирующие приборы – ленточные самописцы и электронные осциллографы, аналоговые и цифровые.

Во всех цифровых измерительных приборах (кроме простейших) используются усилители и другие электронные блоки для преобразования входного сигнала в сигнал напряжения, который затем преобразуется в цифровую форму аналого-цифровым преобразователем (АЦП). Число, выражающее измеренное значение, выводится на светодиодный (СИД), вакуумный люминесцентный или жидкокристаллический (ЖК) индикатор (дисплей). Прибор обычно работает под управлением встроенного микропроцессора, причем в простых приборах микропроцессор объединяется с АЦП на одной интегральной схеме. Цифровые приборы хорошо подходят для работы с подключением к внешнему компьютеру. В некоторых видах измерений такой компьютер переключает измерительные функции прибора и дает команды передачи данных для их обработки.

Смотрите так же:  Защита от перенапряжения схема подключения

Аналого-цифровые преобразователи . Существуют три основных типа АЦП: интегрирующий, последовательного приближения и параллельный. Интегрирующий АЦП усредняет входной сигнал по времени. Из трех перечисленных типов это самый точный, хотя и самый «медленный». Время преобразования интегрирующего АЦП лежит в диапазоне от 0,001 до 50 с и более, погрешность составляет 0,1–0,0003%. Погрешность АЦП последовательного приближения несколько больше (0,4–0,002%), но зато время преобразования – от

1 мс. Параллельные АЦП – самые быстродействующие, но и наименее точные: их время преобразования порядка 0,25 нс, погрешность – от 0,4 до 2%.

Методы дискретизации . Сигнал дискретизируется по времени путем быстрого измерения его в отдельные моменты времени и удержания (сохранения) измеренных значений на время преобразования их в цифровую форму. Последовательность полученных дискретных значений может выводиться на дисплей в виде кривой, имеющей форму сигнала; возводя эти значения в квадрат и суммируя, можно вычислять среднеквадратическое значение сигнала; их можно использовать также для вычисления времени нарастания, максимального значения, среднего по времени, частотного спектра и т.д. Дискретизация по времени может производиться либо за один период сигнала («в реальном времени»), либо (с последовательной или произвольной выборкой) за ряд повторяющихся периодов.

Цифровые вольтметры и мультиметры . Цифровые вольтметры и мультиметры измеряют квазистатическое значение величины и указывают его в цифровой форме. Вольтметры непосредственно измеряют только напряжение, обычно постоянного тока, а мультиметры могут измерять напряжение постоянного и переменного тока, силу тока, сопротивление постоянному току и иногда температуру. Эти самые распространенные контрольно-измерительные приборы общего назначения с погрешностью измерения от 0,2 до 0,001% могут иметь 3,5- или 4,5-значный цифровой дисплей. «Полуцелый» знак (разряд) – это условное указание на то, что дисплей может показывать числа, выходящие за пределы номинального числа знаков. Например, 3,5-значный (3,5-разрядный) дисплей в диапазоне 1–2 В может показывать напряжение до 1,999 В.

Измерители полных сопротивлений . Это специализированные приборы, измеряющие и показывающие емкость конденсатора, сопротивление резистора, индуктивность катушки индуктивности или полное сопротивление (импеданс) соединения конденсатора или катушки индуктивности с резистором. Имеются приборы такого типа для измерения емкости от 0,00001 пФ до 99,999 мкФ, сопротивления от 0,00001 Ом до 99,999 кОм и индуктивности от 0,0001 мГ до 99,999 Г. Измерения могут проводиться на частотах от 5 Гц до 100 МГц, хотя ни один прибор не перекрывает всего диапазона частот. На частотах, близких к 1 кГц, погрешность может составлять лишь 0,02%, но точность снижается вблизи границ диапазонов частоты и измеряемых значений. Большинство приборов могут показывать также производные величины, такие, как добротность катушки или коэффициент потерь конденсатора, вычисляемые по основным измеренным значениям.

Для измерения напряжения, силы тока и сопротивления на постоянном токе применяются аналоговые магнитоэлектрические приборы с постоянным магнитом и многовитковой подвижной частью. Такие приборы стрелочного типа характеризуются погрешностью от 0,5 до 5%. Они просты и недороги (пример – автомобильные приборы, показывающие ток и температуру), но не применяются там, где требуется сколько-нибудь значительная точность.

Магнитоэлектрические приборы . В таких приборах используется сила взаимодействия магнитного поля с током в витках обмотки подвижной части, стремящаяся повернуть последнюю. Момент этой силы уравновешивается моментом, создаваемым противодействующей пружиной, так что каждому значению тока соответствует определенное положение стрелки на шкале. Подвижная часть имеет форму многовитковой проволочной рамки с размерами от 3 ґ 5 до 25 ґ 35 мм и делается как можно более легкой. Подвижная часть, установленная на каменных подшипниках или подвешенная на металлической ленточке, помещается между полюсами сильного постоянного магнита. Две спиральные пружинки, уравновешивающие крутящий момент, служат также токопроводами обмотки подвижной части.

Магнитоэлектрический прибор реагирует на ток, проходящий по обмотке его подвижной части, а потому представляет собой амперметр или, точнее, миллиамперметр (так как верхний предел диапазона измерений не превышает примерно 50 мА). Его можно приспособить для измерения токов большей силы, присоединив параллельно обмотке подвижной части шунтирующий резистор с малым сопротивлением, чтобы в обмотку подвижной части ответвлялась лишь малая доля полного измеряемого тока. Такое устройство пригодно для токов, измеряемых многими тысячами ампер. Если последовательно с обмоткой присоединить добавочный резистор, то прибор превратится в вольтметр. Падение напряжения на таком последовательном соединении равно произведению сопротивления резистора на ток, показываемый прибором, так что его шкалу можно проградуировать в вольтах. Чтобы сделать из магнитоэлектрического миллиамперметра омметр, нужно присоединять к нему последовательно измеряемые резисторы и подавать на это последовательное соединение постоянное напряжение, например от батареи питания. Ток в такой схеме не будет пропорционален сопротивлению, а потому необходима специальная шкала, корректирующая нелинейность. Тогда можно будет производить по шкале прямой отсчет сопротивления, хотя и с не очень высокой точностью.

Гальванометры . К магнитоэлектрическим приборам относятся и гальванометры – высокочувствительные приборы для измерения крайне малых токов. В гальванометрах нет подшипников, их подвижная часть подвешена на тонкой ленточке или нити, используется более сильное магнитное поле, а стрелка заменена зеркальцем, приклеенным к нити подвеса (рис. 1). Зеркальце поворачивается вместе с подвижной частью, а угол его поворота оценивается по смещению отбрасываемого им светового зайчика на шкале, установленной на расстоянии около 1 м. Самые чувствительные гальванометры способны давать отклонение по шкале, равное 1 мм, при изменении тока всего лишь на 0,00001 мкА.

Регистрирующие приборы записывают «историю» изменения значения измеряемой величины. К таким приборам наиболее распространенных типов относятся ленточные самописцы, записывающие пером кривую изменения величины на диаграммной бумажной ленте, аналоговые электронные осциллографы, развертывающие кривую процесса на экране электронно-лучевой трубки, и цифровые осциллографы, запоминающие однократные или редко повторяющиеся сигналы. Основное различие между этими приборами – в скорости записи. Ленточные самописцы с их движущимися механическими частями наиболее подходят для регистрации сигналов, изменяющихся за секунды, минуты и еще медленнее. Электронные осциллографы же способны регистрировать сигналы, изменяющиеся за время от миллионных долей секунды до нескольких секунд.

Измерительный мост – это обычно четырехплечая электрическая цепь, составленная из резисторов, конденсаторов и катушек индуктивности, предназначенная для определения отношения параметров этих компонентов. К одной паре противоположных полюсов цепи подключается источник питания, а к другой – нуль-детектор. Измерительные мосты применяются только в тех случаях, когда требуется наивысшая точность измерения. (Для измерений со средней точностью лучше пользоваться цифровыми приборами, поскольку они проще в обращении.) Наилучшие трансформаторные измерительные мосты переменного тока характеризуются погрешностью (измерения отношения) порядка 0,0000001%. Простейший мост для измерения сопротивления носит имя своего изобретателя Ч.Уитстона.

Двойной измерительный мост постоянного тока . К резистору трудно подсоединить медные провода, не привнеся при этом сопротивления контактов порядка 0,0001 Ом и более. В случае сопротивления 1 Ом такой токоподвод вносит ошибку порядка всего лишь 0,01%, но для сопротивления 0,001 Ом ошибка будет составлять 10%. Двойной измерительный мост (мост Томсона), схема которого представлена на рис. 2, предназначен для измерения сопротивления эталонных резисторов малого номинала. Сопротивление таких четырехполюсных эталонных резисторов определяют как отношение напряжения на их потенциальных зажимах ( р 1 , р 2 резистора R s и р 3 , p 4 резистора R x на рис. 2) к току через их токовые зажимы ( с 1 , с 2 и с 3 , с 4 ). При такой методике сопротивление присоединительных проводов не вносит ошибки в результат измерения искомого сопротивления. Два дополнительных плеча m и n исключают влияние соединительного провода 1 между зажимами с 2 и с 3 . Сопротивления m и n этих плеч подбирают так, чтобы выполнялось равенство M / m = N / n . Затем, изменяя сопротивление R s , сводят разбаланс к нулю и находят

Измерительные мосты переменного тока . Наиболее распространенные измерительные мосты переменного тока рассчитаны на измерения либо на сетевой частоте 50–60 Гц, либо на звуковых частотах (обычно вблизи 1000 Гц); специализированные же измерительные мосты работают на частотах до 100 МГц. Как правило, в измерительных мостах переменного тока вместо двух плеч, точно задающих отношение напряжений, используется трансформатор. К исключениям из этого правила относится измерительный мост Максвелла – Вина.

Измерительный мост Максвелла – Вина . Такой измерительный мост позволяет сравнивать эталоны индуктивности ( L ) с эталонами емкости на не известной точно рабочей частоте. Эталоны емкости применяются в измерениях высокой точности, поскольку они конструктивно проще прецизионных эталонов индуктивности, более компактны, их легче экранировать, и они практически не создают внешних электромагнитных полей. Условия равновесия этого измерительного моста таковы: L x = R 2 R 3 C 1 и R x = ( R 2 R 3 ) / R 1 (рис. 3). Мост уравновешивается даже в случае «нечистого» источника питания (т.е. источника сигнала, содержащего гармоники основной частоты), если величина L x не зависит от частоты.

Трансформаторный измерительный мост . Одно из преимуществ измерительных мостов переменного тока – простота задания точного отношения напряжений посредством трансформатора. В отличие от делителей напряжения, построенных из резисторов, конденсаторов или катушек индуктивности, трансформаторы в течение длительного времени сохраняют постоянным установленное отношение напряжений и редко требуют повторной калибровки. На рис. 4 представлена схема трансформаторного измерительного моста для сравнения двух однотипных полных сопротивлений. К недостаткам трансформаторного измерительного моста можно отнести то, что отношение, задаваемое трансформатором, в какой-то степени зависит от частоты сигнала. Это приводит к необходимости проектировать трансформаторные измерительные мосты лишь для ограниченных частотных диапазонов, в которых гарантируется паспортная точность.

Смотрите так же:  Как соединить провода с разным сечением

Заземление и экранирование . Измерительные мосты необходимо тщательно заземлять и экранировать, чтобы паразитные емкости между разными частями схемы моста не вносили ошибку уравновешивания.

Типичные нуль-детекторы . В измерительных мостах переменного тока чаще всего применяются нуль-детекторы двух типов. Нуль-детектор одного из них представляет собой резонансный усилитель с аналоговым выходным прибором, показывающим уровень сигнала. Нуль-детектор другого типа – это фазочувствительный детектор, который разделяет сигнал разбаланса на активную и реактивную составляющие и пригоден в тех случаях, когда требуется точно уравновешивать только одну из неизвестных составляющих (скажем, индуктивность L , но не сопротивление R катушки индуктивности).

В случае изменяющихся во времени сигналов переменного тока обычно требуется измерять некоторые их характеристики, связанные с мгновенными значениями сигнала. Чаще всего желательно знать среднеквадратические (эффективные) значения электрических величин переменного тока, поскольку мощности нагревания при напряжении 1 В постоянного тока соответствует мощность нагревания при напряжении 1 В (эфф.) переменного тока. Наряду с этим могут представлять интерес и другие величины, например максимальное или среднее абсолютное значение. Среднеквадратическое (эффективное) значение напряжения (или силы) переменного тока определяется как корень квадратный из усредненного по времени квадрата напряжения (или силы тока):

где Т – период сигнала Y ( t ) . Максимальное значение Y макс – это наибольшее мгновенное значение сигнала, а среднее абсолютное значение Y AA – абсолютное значение, усредненное по времени. При синусоидальной форме колебаний Y эфф = 0,707 Y макс и Y AA = 0,637 Y макс .

Измерение напряжения и силы переменного тока . Почти все приборы для измерения напряжения и силы переменного тока показывают значение, которое предлагается рассматривать как эффективное значение входного сигнала. Однако в дешевых приборах зачастую на самом деле измеряется среднее абсолютное или максимальное значение сигнала, а шкала градуируется так, чтобы показание соответствовало эквивалентному эффективному значению в предположении, что входной сигнал имеет синусоидальную форму. Не следует упускать из виду, что точность таких приборов крайне низка, если сигнал несинусоидален. Приборы, способные измерять истинное эффективное значение сигналов переменного тока, могут быть основаны на одном из трех принципов: электронного умножения, дискретизации сигнала или теплового преобразования. Приборы, основанные на первых двух принципах, как правило, реагируют на напряжение, а тепловые электроизмерительные приборы – на ток. При использовании добавочных и шунтовых резисторов всеми приборами можно измерять как ток, так и напряжение.

Электронное умножение . Возведение в квадрат и усреднение по времени входного сигнала в некотором приближении осуществляются электронными схемами с усилителями и нелинейными элементами для выполнения таких математических операций, как нахождение логарифма и антилогарифма аналоговых сигналов. Приборы такого типа могут иметь погрешность порядка всего лишь 0,009%.

Дискретизация сигнала . Сигнал переменного тока преобразуется в цифровую форму с помощью быстродействующего АЦП. Дискретизированные значения сигнала возводятся в квадрат, суммируются и делятся на число дискретных значений в одном периоде сигнала. Погрешность таких приборов составляет 0,01–0,1%.

Тепловые электроизмерительные приборы . Наивысшую точность измерения эффективных значений напряжения и тока обеспечивают тепловые электроизмерительные приборы. В них используется тепловой преобразователь тока в виде небольшого откачанного стеклянного баллончика с нагревательной проволочкой (длиной 0,5–1 см), к средней части которой крохотной бусинкой прикреплен горячий спай термопары. Бусинка обеспечивает тепловой контакт и одновременно электроизоляцию. При повышении температуры, прямо связанном с эффективным значением тока в нагревательной проволочке, на выходе термопары возникает термо-ЭДС (напряжение постоянного тока). Такие преобразователи пригодны для измерения силы переменного тока с частотой от 20 Гц до 10 МГц.

На рис. 5 показана принципиальная схема теплового электроизмерительного прибора с двумя подобранными по параметрам тепловыми преобразователями тока. При подаче на вход схемы напряжения переменного тока V ас на выходе термопары преобразователя ТС 1 возникает напряжение постоянного тока, усилитель А создает постоянный ток в нагревательной проволочке преобразователя ТС 2 , при котором термопара последнего дает такое же напряжение постоянного тока, и обычный прибор постоянного тока измеряет выходной ток.

С помощью добавочного резистора описанный измеритель тока можно превратить в вольтметр. Поскольку тепловые электроизмерительные приборы непосредственно измеряют токи лишь от 2 до 500 мА, для измерения токов большей силы необходимы резисторные шунты.

Измерение мощности и энергии переменного тока . Мощность, потребляемая нагрузкой в цепи переменного тока, равна среднему по времени произведению мгновенных значений напряжения и тока нагрузки. Если напряжение и ток изменяются синусоидально (как это обычно и бывает), то мощность Р можно представить в виде P = EI cos j , где Е и I – эффективные значения напряжения и тока, а j – фазовый угол (угол сдвига) синусоид напряжения и тока. Если напряжение выражается в вольтах, а ток в амперах, то мощность будет выражена в ваттах. Множитель cos j , называемый коэффициентом мощности, характеризует степень синхронности колебаний напряжения и тока.

С экономической точки зрения, самая важная электрическая величина – энергия. Энергия W определяется произведением мощности на время ее потребления. В математической форме это записывается так:

Если время ( t 1t 2 ) измеряется в секундах, напряжение е – в вольтах, а ток i – в амперах, то энергия W будет выражена в ватт-секундах, т.е. джоулях (1 Дж = 1 Вт Ч с). Если же время измеряется в часах, то энергия – в ватт-часах. На практике электроэнергию удобнее выражать в киловатт-часах (1 кВт Ч ч = 1000 Вт Ч ч).

Счетчики электроэнергии с разделением времени . В счетчиках электроэнергии с разделением времени используется весьма своеобразный, но точный метод измерения электрической мощности. Такой прибор имеет два канала. Один канал представляет собой электронный ключ, который пропускает или не пропускает входной сигнал Y (или обращенный входной сигнал — Y ) на фильтр нижних частот. Состоянием ключа управляет выходной сигнал второго канала с отношением временных интервалов «закрыто»/«открыто», пропорциональным его входному сигналу. Средний сигнал на выходе фильтра равен среднему по времени произведению двух входных сигналов. Если один входной сигнал пропорционален напряжению на нагрузке, а другой – току нагрузки, то выходное напряжение пропорционально мощности, потребляемой нагрузкой. Погрешность таких счетчиков промышленного изготовления составляет 0,02% на частотах до 3 кГц (лабораторных – порядка всего лишь 0,0001% при 60 Гц). Как приборы высокой точности они применяются в качестве образцовых счетчиков для поверки рабочих средств измерения.

Дискретизирующие ваттметры и счетчики электроэнергии . Такие приборы основаны на принципе цифрового вольтметра, но имеют два входных канала, дискретизирующих параллельно сигналы тока и напряжения. Каждое дискретное значение e ( k ) , представляющее мгновенные значения сигнала напряжения в момент дискретизации, умножается на соответствующее дискретное значение i ( k ) сигнала тока, полученное в тот же момент времени. Среднее по времени таких произведений есть мощность в ваттах:

Сумматор, накапливающий произведения дискретных значений с течением времени, дает полную электроэнергию в ватт-часах. Погрешность счетчиков электроэнергии может составлять всего лишь 0,01%.

Индукционные счетчики электроэнергии . Индукционный счетчик представляет собой не что иное, как маломощный электродвигатель переменного тока с двумя обмотками – токовой и обмоткой напряжения. Проводящий диск, помещенный между обмотками, вращается под действием крутящего момента, пропорционального потребляемой мощности. Этот момент уравновешивается токами, наводимыми в диске постоянным магнитом, так что частота вращения диска пропорциональна потребляемой мощности. Число оборотов диска за то или иное время пропорционально полной электроэнергии, полученной за это время потребителем. Число оборотов диска считает механический счетчик, который показывает электроэнергию в киловатт-часах. Приборы такого типа широко применяются в качестве бытовых счетчиков электроэнергии. Их погрешность, как правило, составляет 0,5%; они отличаются большим сроком службы при любых допустимых уровнях тока.

Атамалян Э.Г. и др. Приборы и методы измерения электрических величин . М., 1982
Малиновский В.Н. и др. Электрические измерения . М., 1985
Авдеев Б.Я. и др. Основы метрологии и электрические измерения . Л., 1987

Похожие статьи:

  • Защита от перенапряжения на стабилитроне Защита от перенапряжения: что выбрать? Защита от коммутационных выбросов напряжения схем на основе тиристоров или транзисторов с полевым управлением – рядовая задача в проектировании практически любого преобразователя. Для выполнения […]
  • Да будет свет сказал электрик и перерезал провода Да будет свет сказал электрик и перерезал провода Из Библии. Ветхий Завет, Книга Бытия (гл. 1, ст. 3): «И сказал Бог: да будет свет. И стал свет». . Иногда встречается в латинской версии: Fiat lux [фиат люкс]. Иносказательно: поощрение […]
  • Обжимные гильзы для провода Обжимные соединительные гильзы Опрессовка проводов с использованием обжимных соединительных гильз в настоящее время по праву занимает достойное место среди множества способов соединения проводов. Применяя данный способ для коммутации […]
  • Беспроводной выключатель схема подключения Подключение дистанционного выключателя света Нередко бывают ситуации, когда использование дистанционного выключателя света, единственная возможность организации удобного управления освещением в квартире или доме. Вот и у нас, в качестве […]
  • Выбор узо по нагрузке Таблица выбора двухполюсных УЗО. Пример выбора Пример выбора УЗО В качестве примера использования таблицы выбора УЗО, можно попробовать выбрать защитное УЗО для стиральной машины. Электрическое питание бытовой стиральной машины обычно […]
  • 220 вольт фотореле Что такое фотореле для уличного освещения Люди всегда создают для себя то, что улучшает качество их жизни, делая ее более удобной и комфортной. Последние десятилетия нашей истории характеризуются изобретением компьютеров, телефонов, […]