Кислородный датчик 4 провода

Кислородный датчик 4 провода

Внимание! Сеть автосервисов выгодных цен. Проверка сход-развала БЕСПЛАТНО! Без очередей! Ремонт в день обращения!

Подписаться на тему
Уведомление на e-mail об ответах в тему, во время Вашего отсутствия на форуме.

Подписка на этот форум
Уведомление на e-mail о новых темах на форуме, во время Вашего отсутствия на форуме.

Скачать/Распечатать тему
Скачивание темы в различных форматах или просмотр версии для печати этой темы.

Toyota Carina *Белый кораблик* › Бортжурнал › Замена кислородного датчика (Лямда-зонд)

Лямбда-зонд — датчик кислорода в выпускном коллекторе двигателя, который позволяет оценивать количество оставшегося свободного кислорода в выхлопных газах.

После самодиагностики решил всё таки поменять. Поездив по магазинам и узнав цены (оригинальный Toyota — 5800 руб. и аналог NGK — 2300 руб.) решил взять NGK (в моём случае сопротивление датчика больше 10 Ом, так что перед покупкой уточняйте, какой нужен вам, я выбрал такой, какой был написан в книге по моей машине), т.к. почитав и получив комментарии, что и тот и этот хорош, я остановился на этом. Поехав к другу, мы начали снимать старый датчик. Защиту коллектора до конца не получилось снять, т.к. нужно было открутить болт, вкрученный в автомат. Не знаю зачем, но эта крышка была ещё и прикручена к автомату. Но ключей и головок таких не было, чтобы подлезть и снять его, пришлось не мучиться и идти дальше.

Дальше было ужасно. Отключив фишку, мы подобрали головку под датчик и начали откручивать, но сама фишка не проходила через торцевую головку и пришлось по середине, между фишкой и датчиком откусить провода. Просунув концы проводов в головку, оказалось, что длины головки не хватает. Мучения были долгими. Пытались открутить и простым рожковым ключом, но никак не получалось. Тогда я взял в руки молоток и начал сбивать датчик, стуча по концу, зная что внутри он фарфоровый и сломать смогу. Недолго стуча, мне удалось это сделать.

Как проверить исправность датчика лямбда-зонд

Во всех автомобилях установлена масса датчиков. Каждый из них выполняет определенную функцию. Если какой-то выходит из строя, то водитель сразу об этом узнает. На приборной панели загорается лампа «chek», которая собственно и указывает на ошибку в одной из систем. Один из датчиков, который чаще других выходит из строя — лямбда-зонд. В данной статье речь пойдет о том, что такое лямбда-зонд в машине и как его проверить.

Даже начинающий автослесарь знает, что это — специальное устройство, которое определяет, количество воздуха в выхлопных газах. К сожалению, с принципом его работы знаком далеко не каждый.

Непосредственное предназначение

Разобравшись с определением, следует попытаться понять, за что отвечает датчик. Если в горючую смесь не попадает достаточное количество воздуха, это способствует тому, что углеводороды и угарный газ не могут окислиться полноценно. Если же в смесь попадает чересчур много воздуха, тогда оксиды азота не могут полноценно разлаживаться на азот и воздух. Лямбда-зонд является системообразующим элементом впускной системы, отслеживающим наиболее важные процессы. На определенных автомобилях установлено сразу два датчика. Это необходимо для того, чтобы наиболее эффективно определять остаток воздуха в газах. Разобравшись с тем, для чего нужен лямбда-зонд, следует выяснить, где он расположен.

Где находится датчик

В каждой машине у него разное расположение, однако, существует общий принцип, который поможет его обнаружить. Для того, чтобы поиски не вызвали затруднений, следует воспользоваться специальным алгоритмом действий, который будет приведен ниже.

  1. Для начала открыть капот.
  2. Обратить внимание на мотор. На современных машинах силовой агрегат часто накрыт пластиковой крышкой. Ее нужно полностью снять.
  3. Найти сзади трубы, примыкающие к двигателю и уходящие вглубь подкапотного пространства. В научной литературе они называются «выпускным коллектором». Коллектор, как правило, закрыт тепловым экраном, который нужно снять.
  4. На впускном коллекторе можно будет заметить деталь цилиндрической формы. Ее размер от 4 до 8 сантиметров. Деталь частично вкручена в коллектор, а с обратной стороны к ней подходит провод (несколько проводов). Собственно, это и есть лямбда-зонд.
  5. Если датчика не оказалось на выпускном коллекторе, тогда следует искать его на трубе, которая уходит вглубь подкапотного пространства. Об этой трубе речь велась в пункте 3.

Алгоритм простой. В нем все доступно написано, и он подойдет даже тому человеку, который совершенно не силен в устройстве автомобиля.

Проблемы с датчиком кислорода

Он, как и любой другой агрегат, имеет ресурс, который составляет от 80 до 160 тыс. километров. Странным кажется тот довольно великий разброс в ресурсе. На самом же деле, его работоспособность полностью зависит от условий эксплуатации автомобиля. Следующие факторы оказывают непосредственное влияние на лямбда-зонд:

— Состояние горючей смеси. Если она не соответствует нормам, он начинает перегреваться.

— Выработанные маслосъемные кольца. Масло частично проникает в топливовоздушную смесь, а потом и в выхлопную систему.

— Низкое качество топлива. Из-за этого очень быстро засоряются электроды.

Нормальное, рабочее состояние датчика подтверждается тем фактом, что он не напоминает о себе. Если же водителю приходится про него слишком часто вспоминать, значит, имеются определенные проблемы. Главные признаки неисправности:

  1. Увеличивается расход топлива.
  2. «Плавающие» обороты на холостом ходу.
  3. Силовой агрегат теряет мощность.

Проверка лямбда-зонд

Чтобы убедиться в исправности датчика, следует проверить его. Это можно сделать самому, а можно отправиться на станцию технического обслуживания, заплатить деньги, и ждать результатов. Лучше всего конечно сделать своими руками, особенно, если имеется необходимый опыт. Однако, прежде чем выяснять, как проверить работу лямбда-зонда, следует определиться сколько на нем проводов. Дело в том, что на датчиках может быть от одного до четырех проводов. Если он один, то предназначен для подачи сигнала. Если два — сигнальный и на подогрев. Три — один сигнальный, а два на подогрев. Четыре — сигнальный, масса датчика, два идут на подогрев.

Проверка мультиметром

Вот теперь можно начинать проверку лямбда-зонда мультиметром. Сложного ничего нет. Главное, действовать максимально внимательно.

  1. Прогреть мотор и заглушить.
  2. Провести внешний осмотр датчика.
  3. Отсоединить кислородный регулятор от колодки, и тут же подсоединить его к мультиметру.
  4. Завести мотор, и разогнать его до 2500 – 3 000 оборотов.
  5. Следить за показаниями. Если 0,9 Вт — значит все в порядке, если 0,8 Вт и ниже, значит пора менять датчик.

Проверка тестером с четырьмя проводами

Также датчик лямбда — зонд можно проверить тестером с 4 проводами. Делается это следующим образом:

  1. Минусовой провод датчика подсоединить к корпусу мотора.
  2. Положительный вывод тестера подключить к сигнальному проводу лямбда.
  3. Прогреть мотор до рабочей температуры.
  4. Ожидать включения датчика в работу. Напряжение должно составить от 0,2 до 1 Вт, и поменяться 10 раз за десять секунд.
  5. Если напряжение держится на уровне 0,45 Вт, датчик неисправен.

Схема эмулятора лямбда зонда своими руками

Дата публикации: 16 января 2017 .

Лямбда зонд (также называется кислородным контроллером, датчиком O2, ДК) является неотъемлемой частью выхлопной системы автотранспортных средств, отвечающих экологическим стандартам EURO-4 и выше. Это миниатюрное устройство (обычно устанавливается 2 лямбда зонда и более) контролирует содержание O2 в выхлопных смесях автотранспортного средства, благодаря чему значительно снижается выброс ядовитых отходов в атмосферу.

В случае некорректной работы ДК или если произошло отключение лямбда зонда, функционирование силового агрегата может быть нарушено, из-за чего мотор перейдет в аварийный режим (на панели загорится Check Engine). Чтобы такого не случилось, систему автомобиля можно перехитрить, установив обманку.

Механическая обманка лямбда зонда («ввертыш»)

«Ввертыш» – это втулка, изготовленная из бронзы или теплоустойчивой стали. Внутренняя часть такой «проставки» и ее полости заполняются керамической крошкой со специальным каталитическим покрытием. Благодаря этому отработанные газы дожигаются быстрее, что, в свою очередь, приводит к разным показателям импульсов 1 и 2 ДК.

Важно! Любая обманка устанавливается только на исправный лямбда зонд.

Самодельная обманка лямбда зонда, схема которой представлена ниже, проста в изготовлении. Для этого вам потребуется подготовить:

Делается обманка на обрабатывающем токарном станке. Если такового нет, то можно обратиться к специалисту, предоставив ему чертеж.

Полученная деталь совместима с большинством выхлопных систем как отечественных, так и зарубежных автомобилей.

Установка обманки лямбда зонда производится следующим образом:

  • Поднимите авто на эстакаду.
  • Отключите минусовую клемму на АКБ.
  • Выкрутите первый (верхний) зонд (если их два, то снимите тот, который расположен между катализатором и выпускным коллектором).
  • Вкрутите лямбда зонд в «проставку».
  • Установите «усовершенствованный» датчик на место.
  • Подключите клемму к аккумулятору.

Полезно! Обычно механическая обманка второго лямбда зонда не выполняется, так как этот ДК защищен катализатором и контролирует только его состояние. Самым чутким является именно первый датчик, который установлен ближе всего к коллектору.

После этого системная ошибка «Check Engine» должна исчезнуть. Если этот способ не сработал, можно воспользоваться более дорогостоящей обманкой.

Электронная обманка

Еще один способ устранения проблем с ДК – это электронная обманка лямбда зонда, схема которой представлена чуть ниже. Так как датчик кислорода передает сигнал контроллеру, то схема-обманка, подключенная к проводке от датчика к разъему, позволит «загрубить» систему. Благодаря этому, в ситуации, если лямбда зонд будет неисправен, силовой агрегат будет продолжать работать корректно.

Полезно! Места установки такой обманки могут отличаться в зависимости от модели АТС. Например, она может быть монтирована в центральный тоннель между сиденьями, в торпеде или моторном отсеке.

Схема-обманка – это однокристальный микропроцессор, который анализирует процессы в катализаторе, получает данные от первого ДК, обрабатывает их, преобразует до показателей второго датчика и выдает на процессор автомобиля соответствующий сигнал.

Чтобы установить обманку этого типа, вам потребуется схема подключения лямбда зонда, которая выглядит следующим образом.

Как видите, бывает разная распиновка лямбда зонда (4 провода, три и два). Цвета проводов могут также отличаться, чаще всего встречаются изделия с 4 пинами (2 черных, белый и синий).

Для изготовления обманного устройства, вам потребуется:

  • паяльник с мелким жалом и припой;
  • канифоль;
  • неполярный конденсатор емкостью 1 мкФ Y5V, +/- 20%;
  • резистор (сопротивление) на 1 мОм, С1-4 имп, 0,25 Вт;
  • нож и изоляционная лента.

Полезно! Перед установкой, схему лучше всего поместить в пластиковый корпус и залить ее «эпоксидкой».

Дальше электронная обманка на лямбда зонд своими руками монтируется следующим образом:

  • Отключите минусовую клемму АКБ.
  • «Препарируйте» провод, который идет от самого ДК к разъему.
  • Разрежьте синий провод и подсоедините его обратно через резистор.
  • Впаяйте неполярный конденсатор меду белым и синим проводами.
  • Заизолируйте соединения.

Ниже представлена схема обманки лямбда зонда своими руками для распиновки на 4 провода.

На заключительном этапе, должно получиться следующее.

Такие манипуляции не стоит выполнять, если у вас нет должного опыта. Сегодня в магазинах представлены готовые схемы-обманки, которые без труда сможет установить даже начинающий водитель.

Перепрошивка контроллера

Некоторые особо искушенные автовладельцы решаются на перепрошивку блока управления, благодаря чему блокируется обработка сигналов второго кислородного датчика. Однако необходимо учитывать, что любые изменения алгоритма работы системы могут привести к необратимым последствиям, так как вернуть заводские настройки будет практически невозможно и затратно. Поэтому выполнять такие манипуляции самостоятельно не рекомендуется. То же самое касается и готовых прошивок, которые продаются в интернете.

Полезно! При перепрошивке лямбда зонды удаляются.

Если вы все-таки хотите произвести перепрошивку системы, то обратитесь к грамотному специалисту, который сможет отключить получение данных ДК с помощью специализированного оборудования.

Также стоит учитывать, что практически любое вмешательство в работу систем, может привести к не самым приятным последствиям.

Какие последствия бывают после установки обманок

Нужно понимать, что любая обманка устанавливается на страх и риск автовладельца. Если монтаж был произведен неправильно, то вы можете столкнуться со следующими проблемами:

  • Из-за того, что бортовой компьютер не может регулировать впрыск жидкости, может произойти нарушение работы мотора.
  • Если схема неправильно спаяна, это может привести к повреждению электропроводки.
  • В процессе установки обманки вы можете повредить датчики кислорода, после чего даже не узнаете об их неисправности (так как у вас уже будет установлена обманка).
  • После таких вмешательств (не только при перепрошивке) может произойти сбой в бортовом компьютере.
Смотрите так же:  Электрические схемы обозначения сопротивлений

Любая неточность приведет к плачевным последствиям, поэтому лучше установить более безопасный готовый эмулятор. В отличие от обманки, он не «обманывает» блок управления, а лишь обеспечивает его корректную работу, преобразуя сигнал ДК. Внутри эмулятора также установлен микропроцессор (как и в самодельной электронной обманке), который способен оценивать выхлопные газы и анализировать ситуацию.

В заключении

Многие автовладельцы устанавливают на свои машины самодельные обманки, чтобы сэкономить на покупке новых кислородных датчиков. Однако в такой погоне за выгодой, вы вполне можете столкнуться с большими денежными затратами, если кустарное устройство повлияет на работу «жизненно-важных» систем. Поэтому устанавливать обманки рекомендуется, только если вы смыслите в работах такого плана.

Универсальные кислородные датчики NTK

Транскрипт

1 Универсальные кислородные датчики NTK

2 Отменные рабочие характеристики наряду с возможностью универсальной установки Универсальные кислородные датчики NTK Первые кислородные датчики были разработаныв начале 80 годов, и NTK относиться к пионерам. Практически все производители автомобилей доверяют в первой комплектации качеству NTK, мировому лидеру в производстве кислородных датчиков. Для того, чтобы соответствовать требованиям рынка, NTK представило теперь 5 универсальных кислородных датчиков, которые полностью соответствуют высочайшим стандартам качества. Это стало возможным также благодаря тому, что штекер уже установленного в автомобиль датчика применяется вновь. Специально разработанный способ соеднения обеспечивает долговременное, надежное и влагостойкое функционирование универсального лямбда-зонда. Оригинальные кислородые датчики Наряду с универсальными кислородными датчиками NTK предлагает более 200 готовых к установке оригинальных датчиков для практически всего автомобильного парка. Они непосредственно готовы к установке, поставляются с оригинальными штекерами и полнстью соответствуют датчикам, устанавливаемым в оригинальной комплектации. Выигрывайте от преимуществ универсальных кислородных датчиков NTK: Применяемость практически во всех автомобилях только 5 позициями Низкие расходы по складированию, логистике + минимальное замораживание оборотных средств Бесперебойные и быстрые поставки Простота в применении, монтаже Высочайшее качество Подробная инструкция по установке Наглядное определение проводки по отношению к оригинальным датчикaм Датчики без принудительного подогрева 1 провод Черный провод передает сигнал на устройство управления двигателем. Масса поступает через резьбу датчика и через выпускной коллектор. 2 провода Масса подается через серый провод на датчик. Лямбда-зонды с принудительным подогревом 3 провода Черный провод передает сигнал на устройство управления двигателем. За счет напряжения, подаваемого через белые провода, датчик отапливается. Масса поступает через резьбу датчика и через выпускной коллектор. 4 провода Контакт с массой обеспечивается за счет серого провода. Без подогревa 1 провод 2 провода С принудительным подогревом 3 провода 4 провода 4 провода => нодогрев (2x) => нодогрев (2x) => нодогрев (2x) Масса через корпус => Масса изолирована Масса через корпус => Масса изолирована => Масса проходящая через корпус OZA624-E5 S4CG OZA624-E1 S1 OZA624-E2 S2 OZA624-E3 S3 OZA624-E4 S4

3 Инструкция по установке: Шаг 1. Запомните, как проложена проводка установленного датчика. Таким же образом нужно будет проложить позже проводку датчика NTK. Отсоедините штекер старого датчика от электроники автомобиля (не размыкайте и не перерезайте проводку самого датчика). Демонтируйте старый датчик соответствующим инструментом. Шаг 2. Сравните старый датчик с датчиком NTK. Проводка датчика NTK должна быть как мин. 40мм короче проводки старого датчика. При необходимости соответственно укоротите проводку датчика NTK. 2 Шаг 3. Теперь укоротите проводку датчика NTK таким образом, чтобы каждый отдельный провод был короче предыдущего на 40мм, начиная с одного произвольного. Шаг 4. Теперь укоротите проводку старого датчика. 3 Шаг 5. После этого наденьте на каждый отдельный провод спец. изоляционную трубку, прилагаемую к комплекту датчика NTK. Шаг 6. На каждый отдельный провод наденьте водозащитную изоляцию. Обратите внимание на то, что широкий конец водозащитной изоляции показывает на конец провода (место соединение). 4 Шаг 7. С помощью подходящего инструмента (изоляционные кусачки) снимите 8мм изоляции с каждого конца провода. Теперь наденьте на провода датчика NTK контактное соединение и с помощью соответствующего инструмента сожмите конструкцию. Следите за тем, чтобы не торчали неизолированные провода, и соединение было безупречно. Шаг 8. Еще раз обратите внимание на таблицу соответствия проводки и убедитесь, что провода подобраны правильно. Теперь соедините провода старого датчика с проводкой датчика NTK, надев на провода контактное соединение. И здесь убедитесь в том, чтобы не торчали неизолированные части проводки, и сожмите соединение соответственно. Для упрощения процесса мы рекомендуем начинать с самого короткого провода датчика NTK. 5 Шаг 9. Подвиньте водозащитную изоляцию к крепежному соединению с двух концов проводки. После этого наденьте специальную изоляционную трубку на контактное соединение так, чтобы трубка полностью закрывало соединение и водозащитную изоляцию. 6 Шаг 10. Используйте фен с горячим воздухом для закрепления изоляционной трубки посередине над контактным соединением. Для того, чтобы обеспечить должную гидроизоляцию проводки, водозащитная изоляция должна находится внутри изоляционной трубки. 7 Шаг 11. Снимите защитный колпачок датчика NTK и монтируйте датчик. Используйте усилие: М18 = Нм Проводка датчика должна быть проложена так же, как было проложена старая проводка. Оригинальные крепежи должны быть зафиксированы. Избегайте прикосновения проводки с горячими частями автомобиля (Коллектор, нейтрализатор). Если необходимо, используйте крепежи для прикрепления проводов друг к другу. 8 Таблица соответствия проводки Производитель Нагревательный провод (х2) Сигнальный Массовый провод датчика (только на 3-4 провод (только на 2,4 контактных датчиках) контактных датчиках) NTK Белый Черный Серый Марка I Черный Белый Зеленый Марка II Черный Синий Белый Марка III Темно-коричневый Фиолетовый Светло-коричневый Марка IV Белый Черный серый 9

4 Лямбда Выброс вредных веществ увеличивается тогда, когда соотношение подаваемого воздуха и топлива в камеру сгорания не оптимально. Только при топливно-воздушно смеси с соотношением 1 кг топлива на 14,7 кг кислорода обеспечивается полное сгорание топлива и каталитический нейтрализатор может оптимально переработать вредные газы. Для достижения этого необходимо подавать на двигатель всегда точно дозированное соотнoшение топлива/воздуха. Это соотношение топлива/воздуха обозначается греческой буквой Лямбда ( ). Кислородный датчик измеряет количество остаточного кислорода в отработанных газах и определяет таким образом, является ли соотношение смеси стехиометрическим. Это означает, что соотношение воздуха и топлива (интернационально: A/F = air/ fuel = топливно-воздушная смесь) в идеальном случае должно соответствовать стехиометрической смеси, то есть при лямбде =1 ( =1). Если результат замера ниже 1 ( 1) речь идет о бедной смеси, в котором слишком много кислорода. Для того, чтобы обеспечить выполнение требовании по норме выбросов вредных веществ на сегодняшний день практически все бензиновые вигатели эксплуатируются со стехиометрической смесью ( =1) (График 1 и 2). Только при этих идеальных условиях каталитический нейтрализатор может наиболее эффективно работать и нейтрализовать все три вредных газа углеводород, углерод и окисли азота. 100 Надежно и всегда готовая к старту Лямбда-зонд отвечает за то, чтобы в двигатель поступало правильно отрегулированная смесь воздуха и топлива и является таким образом гарантом ровной работы двигателя, минимизации выбросов и расхода топлива и обеспечивает бесперебойную работы каталитического нейтрализатора. Преимущества: При использовании кислородных датчиков NGK: По сравнению со старым (дефектным) датчиком уменьшается расход топлива на 15% Уменьшается выброс вредных веществ Увеличивается срок службы каталитического нейтрализатора oбеспечивается более ровная работа двигателя Степень переработки газов нейтрализатором HC 50 NOx 1,0 Богатая смесь (недостаток кислорода) 0,9 Стехиометрическая смесь 1,0 Бедная смесь (Избыток кислорода) 1,1 CO V Напряжение зонда 0,2 0 0,9 богатая 1,0 стехиометрическая 1,1 бедная Количество кислорода (рис. 2) Функционирование * Стехиометрической смесью обозначает смесь воздуха с топливом в соотношении 14,7:1

5 Методы диагностики для мастерских OBD-датчик на: Накопитель ошибок Вычислить Проблема с датчиком Тестирование Проверка Проверить проводку Визуальная проверка проводки Провод разорван либо поврежден штекер? Изоляция проводки нарушена? Влажность в штекере? Контакты штекера окислились? Проводка проложена правильно? проверить датчик Визуальная проверка датчика Датчик заметно поврежден? анализ датчика Осциллограф тест Методика Результат Если не подтвердилось Проверка 1 сигнал напряжения датчика 1. Выключить зажигание, отсоединить штекер датчика 2. Подсоединить осциллограф к сигнальному проводу датчика (черный провод) и к массе. 3. Снова подсоединить датчик 4. Тест проводить при прогретом двигателе, температура охл. жидкости >80 5. Примерно 2 мин. двигатель должен работать ири 2000 оборотах в мин. Напряжение осциллографирован но между 0 В и 1 В При нагрузке прим. 0 В. напряжение датчика 1. Датчик не работает, если напряжение не изменяется 2. Демонтировать датчик и проверить поверхность на наличие масленых либо других отложении 3. Поменять датчик 1. Проверить выпускной коллектор на герметичность 2. Проверить соединение электрики 3. Проверить, есть ли повышенный расход топлива (напр. за счет повреденных маслосъемных колец) 2 нагревательный элемент 1. Отсоединить штекер датчика 2. Осциллограф подсоединить к белым проводам Сопротивление нагревателя составляет при комн. температуре примерно 14 Ω (Oм) 1. Элемент подогрева не работает Датчик должн быть заменен 3 напряжение сети 1. Выключить зажигание, отсоединить штекер датчика 2. Осциллограф подсоединить к клемме + и массе к штекеру 3. Включить зажигание Напряжение более >10,5 В 1. Проверить как проложена проводка и есть ли масса

6 Положитесь на универсальные датчики и на лучшее качество от NTK Ведущему производителю кислородных датчиков Гаранту качеству благодаря многолетему опыту и постоянному усовершенствованию продукции Поставщику на конвейеры всех именитых производителей автомобилей Наш успех это Ваш успех NGK во всем мире рядом с Вами со своими сбытовыми организациями. Так мы можем гарантировать нашим партнерам на вторичном рынке короткие сроки поставок, всеохватывающий сервис и всегда самый актуальный ассортимент продукции. NGK SPARK PLUG EUROPE GMBH Harkortstr Ratingen-Tiefenbroich Telefon 02102/ Fax 02102/

Кислородный датчик 4 провода

Часто задаваемые вопросы о кислородных датчиках.

Купить кислородный датчик можно в нашем интернет-магазине

Какие функции выполняет кислородный датчик?
Датчик кислорода определяет содержание кислорода в выхлопных газах и передаёт эту информацию блоку управления двигателем (компьютеру), который, в свою очередь, регулирует состав топливо/воздушной смеси. Кислородные датчики также называют лямбда-датчиком. Лямбдой называют отношение реального количества воздуха к необходимому количеству воздуха. Если лямбда равна единице то состав топливо/воздушной смеси оптимален и составляет 1/14,7, если лямбда больше единицы – смесь бедная (много кислорода, мало топлива), если меньше единицы – смесь богатая (мало кислорода, много топлива). Слишком большое количество кислорода в выхлопных газах говорит о бедности смеси (малом содержании топлива), что приводит к снижению мощности двигателя и пропускам в зажигании (двигатель “троит”). Слишком малое количество кислорода, свидетельствует о переобогащенной смеси (большом количестве топлива), что приводит к повышенному расходу топлива и повышению токсичности выхлопных газов.

Почему ломается кислородный датчик?
Воздействие высокой температуры, давления, вибрации и различных химических соединений на кислородный датчик приводят к постепенному выходу его из строя. После его поломки наблюдается повышенный расход топлива, снижение мощности двигателя, повышение токсичности выхлопных газов. Именно поэтому проверка работоспособности и при необходимости замена кислородного датчика является важным элементом технического обслуживании автомобиля.

Где расположен кислородный датчик?
Кислородный датчик определяет количество кислорода в выхлопных газах и располагается в выхлопной трубе. Практически все автомобили с бензиновым двигателем, выпущенные после 1986 года имеют как минимум один кислородный датчик. Большинство современных автомобилей имеют как минимум два кислородных датчика, один из которых расположен, как правило, после катализатора. Сигнал с посткаталитического (нижнего) кислородного датчика позволяет оценивать качество работы катализатора. Точное расположение кислородного датчика на конкретном автомобиле указывается в техническом руководстве к данному автомобилю.

Почему следует заменить неисправный кислородный датчик?
Замена неисправного кислородного датчика на новый датчик позволяет экономить топливо, улучшить динамику автомобиля, уменьшить токсичность выхлопных газов, является профилактикой преждевременного выхода из строя дорогостоящего катализатора.

Когда кислородный датчик нужно заменить?
Существуют рекомендованные интервалы замены кислородных датчиков, однако межсменные интервалы являются не единственными критериями замены датчиков кислорода. Если имеются признаки повышенного расхода топлива, ухудшение динамики или экологических характеристик работы двигателя необходимо проверит работоспособность кислородного датчика. Следует учитывать, что кислородный датчик изнашивается постепенно, зачастую незаметно для хозяина автомобиля. Кислородные датчики с одним или двумя проводами при эксплуатации автомобиля в Европе или США требуют замены при пробеге в 50000-80000 км. 3- и 4-проводные датчики требуют замены после 100000 км пробега.

Виды кислородных датчиков.
Существует несколько классификаций автомобильных кислородных датчиков:
1. По количеству проводов: 1-,2-,3-,4-,5-,6-контактные датчики.
2. По дизайну сенсорного элемента: “пальчиковые” и пластинчатые
3. По способу крепления в выхлопную трубу: резьбовые и фланцевые.
4. По ширине измерений лямбды: узкополосные (детектируют лямбду при величине >1) и широкополосные (детектируют лямбду от 0,7 до 1.6).

Принцип работы кислородного датчика.
Принцип работы кислородного датчика – электрохимический. Большинство кислородных датчиков изготавливаются на основе оксида циркония ZnO2 (окислитель) и платины (катализатор химической реакции окислении/восстановления). При работе двигателя выделяются раскалённые выхлопные газы, имеющие сложный химический состав. Основными составляющими их являются азот N2, углекислый газ CO2, кислород O2 и вода H2O. Однако в выхлопных газах содержаться и недоокисленные продукты горения топлива — CO и CH. Именно с недоокисленными продуктами вступает в реакцию окисления/восстановления оксид циркония кислородного датчика. Непременными условиями протекания этих химических реакций является высокая температура (360 градусов Цельсия) и присутствие катализатора (платина). При восстановлении двуокиси циркония ZnO2 в окись циркония ZnO возникает электрический ток, который детектируется на контактах кислородного датчика. Так как окись циркония ZnO, является недоокисленным продуктом, она постоянно стремится окислится в двуокись циркония ZnO2, поэтому при работе двигателя на поверхности кислородного датчика происходит постоянное чередования процессов окисления и восстановления, что детектируется как волнообразное изменение напряжения на контактах кислородного датчика. Напряжение генерируемое кислородным датчиком колеблется на уровне от 100 mV (бедная смесь) до 900 mV (богатая смесь). При оптимальном соотношении топливо/воздушной смеси датчик генерирует напряжение порядка 465 mV.

Смотрите так же:  Вывести провода для магнитолы

Количество проводов, которые имеет кислородный датчик, может колебаться от одного до пяти и даже шести. Этот внешний признак отражает особенности внутреннего устройства кислородного датчика.
Одноконтактные датчики – имеют один сигнальный провод, по которому передаются генерируемые датчиком электрические импульсы.
Двухконтактные датчики – имеют один сигнальный провод и один провод “на массу” (дублирует заземление через корпус датчика). Заземляющий провод позволяет более точно оценивать показания сигнального провода блоком управления двигателем.
Трёхконтактные датчики – имеют один сигнальный провод, один провод “на массу” и один провод на нагревательный элемент. Эти датчики характеризуются следующими достоинствами:
1. Короткое время достижения датчиком рабочей температуры (более 350 градусов) вследствие чего снижается количество вредных выбросов при работе холодного двигателя;
2. увеличивается срок службы датчика, так как у нагреваемых датчиков изменение температуры происходит, более плавно, чем у датчиков без нагревательного элемента;
3. датчики, снабжённые нагревательным элементом, имеют менее строгие требования к месторасположению в выхлопной системе, что упрощает их техобслуживание.
Мощность нагревательного элемента в кислородном датчике составляет либо 12Вт, либо 18Вт. Следует учитывать, что установка датчика с неправильно подобранной мощностью нагревательного элемента может привести к перегреву датчика и быстрому выходу его из строя.
Четырёхконтактные датчики – обязательно имеют один сигнальный провод, один питающий на нагревательный элемент и один заземляющий провод. Функция последнего провода может быть различной и зависит от особенностей устройства системы управления конкретным двигателем. Четвёртый провод может быть либо ещё одним заземляющим (в случаях, когда заземление через корпус датчика не предусмотрено), либо питающим проводом для второго нагревательного элемента. Следует учитывать, что при ошибочной установки датчика с заземлением на корпус вместо датчика без заземления на корпус или наоборот может привести к тому, что блок управления двигателем не распознает сигналы, поступающие с кислородного датчика.

Кислородный датчик 4 провода

ЗАМЕНА ДАТЧИКА КИСЛОРОДА (ЛЯМБДА ЗОНД).

Что такое лямбда зонд и какие они бывают.

(по материалам статьи размещенной на сайте http://www.autocitychannel.com/news/s2947.html ,полную версию читайте там же)

Зачем нужен лямбда-зонд

Жесткие экологические нормы давно узаконили применение на автомобилях каталитических нейтрализаторов (в обиходе – катализаторы) – устройств, способствующих снижению содержания вредных веществ в выхлопных газах. Катализатор вещь хорошая, но эффективно работает лишь при определенных условиях. Без постоянного контроля состава топливно-воздушной смеси обеспечить катализаторам «долголетие» невозможно – вот тут и приходит на помощь датчик кислорода, он же О2-датчик, он же лямбда-зонд (ЛЗ).

Название датчика происходит от греческой буквы l (лямбда), которая в автомобилестроении обозначает коэффициент избытка воздуха в топливно-воздушной смеси. При оптимальном составе этой смеси, когда на 14,7 части воздуха приходится 1 часть топлива, l равна 1.

Зависимость мощности двигателя (P) и расхода топлива (Q) от коэффициента избытка воздуха (l)

«Окно» эффективной работы катализатора очень узкое: l=1±0,01. Обеспечить такую точность возможно только с помощью систем питания с электронным (дискретным) впрыском топлива и при использовании в цепи обратной связи лямбда-зонда.

Избыток воздуха в смеси измеряется – путем определения в выхлопных газах содержания остаточного кислорода (О2). Поэтому лямбда-зонд и стоит в выпускном коллекторе перед катализатором. Электрический сигнал датчика считывается электронным блоком управления системы впрыска топлива (ЭБУ), а тот в свою очередь оптимизирует состав смеси путем изменения количества подаваемого в цилиндры топлива. На некоторых современных моделях автомобилей имеется еще один лямбда-зонд. Расположен он на выходе катализатора. Этим достигается большая точность приготовления смеси

Зависимость напряжений лямбда-зонда от коэффициента избытка воздуха (l) при температуре датчика 500-800оС

А – условная точка средних показаний (Uвых » 0,5 В, при l=1,0). (Обогащение смеси (уменьшение О2 в выхлопе). Обеднение смеси (увеличение О2 в выхлопе).

Полное сгорание и максимальная мощность достигается при l=1. и и контролируется эффективность работы катализатора

Схема l-коррекции с одним и двумя датчиками кислорода двигателя

1 – впускной коллектор; 2 – двигатель; 3 – блок управления двигателем; 4 – топливная форсунка; 5 – основной лямбда-зонд; 6 – дополнительный лямбда-зонд; 7 – каталитический нейтрализатор.

Принцип работы

Лямбда-зонд действует по принципу гальванического элемента с твердым электролитом в виде керамики из диоксида циркония (ZrO2). Керамика легирована оксидом иттрия, а поверх нее напылены токопроводящие пористые электроды из платины. Один из электродов «дышит» выхлопными газами, а второй – воздухом из атмосферы (рис.2). Эффективное измерение остаточного кислорода в отработавших газах лямбда-зонд обеспечивает после разогрева до температуры 300 – 400оС. Только в таких условиях циркониевый электролит приобретает проводимость, а разница в количестве атмосферного кислорода и кислорода в выхлопной трубе ведет к появлению на электродах лямбда-зонда выходного напряжения.

При пуске и прогреве холодного двигателя управление впрыском топлива осуществляется без участия этого датчика, а коррекция состава топливо-воздушной смеси осуществляется по сигналам других датчиков (положения дроссельной заслонки, температуры охлаждающей жидкости, числа оборотов коленвала и др.). Особенностью циркониевого лямбда-зонда является то, что при малых отклонениях состава смеси от идеального (0,97 Ј l Ј 1,03) напряжение на его выходе изменяется скачком в интервале 0,1 — 0,9 В (график 2).

Кроме циркониевых , существуют кислородные датчики на основе двуокиси титана (TiO2) . При изменении содержания кислорода (О2) в отработавших газах они изменяют свое объемное сопротивление. Генерировать ЭДС титановые датчики не могут; они конструктивно сложны и дороже циркониевых, поэтому, несмотря на применение в некоторых автомобилях (Nissan, BMW, Jaguar), широкого распространения не получили.

так выглядит «титановый» лямбда зонд (применяется на двигателе В5252) будьте внимательны при выборе замены.

Для повышения чувствительности лямбда-зондов при пониженных температурах и после запуска холодного двигателя используют принудительный подогрев. Нагревательный элемент (НЭ) расположен внутри керамического тела датчика и подключается к электросети автомобиля

Конструкция датчика кислорода с подогревателем

1 – керамическое основание; 2, 8 – контакты НЭ; 3 – нагревательный элемент (НЭ); 4 – твердый электролит ZrO2 с напыленными платиновыми электродами; 5 – защитный кожух с прорезями; 6 – металлический корпус с резьбой крепления; 7 – уплотнительное кольцо; 9 – выводы датчика.

Если ЛЗ «врет»

В этом случае ЭБУ начинает работать по усредненным параметрам, записанным в его памяти: при этом состав образующейся топливно-воздушной смеси будет отличаться от идеального. В результате появится повышенный расход топлива, неустойчивая работа двигателя на холостом ходу, увеличение содержания СО в отработавших газах, снижение динамических характеристик, но машина при этом остается на ходу. В некоторых моделях автомобилей ЭБУ реагирует на отказ лямбда-зонда очень серьезно и начинает так рьяно увеличивать количество подаваемого в цилиндры топлива, что запас горючего в баке «тает» на глазах, из трубы валит черный дым, СО «зашкаливает», а двигатель «тупеет» и на ближайшую СТО вам, скорее всего, придется добираться на буксире.

Перечень возможных неисправностей лямбда-зонда достаточно большой и некоторые из них (потеря чувствительности, уменьшение быстродействия) самодиагностикой автомобиля не фиксируются. Поэтому окончательное решение о замене датчика можно принять только после его тщательной проверки, которую лучше всего поручить специалистам. Следует особо отметить, что попытки замены неисправного лямбда-зонда имитатором ни к чему не приведут – ЭБУ не распознает «чужие» сигналы, и не использует их для коррекции состава приготавливаемой горючей смеси, т.е. попросту «игнорирует».

При сгоревшем или отключенном лямбда-зонде содержание СО в выхлопе возрастает на порядок: от 0,1 – 0,3% до 3 – 7% и уменьшить его значение не всегда удается, т. к. запаса хода винта качества смеси может не хватить. В автомобилях, система l-коррекции которых имеет два кислородных датчика, дело обстоит еще сложнее. В случае отказа второго лямбда-зонда (или «пробивки» секции катализатора) добиться нормальной работы двигателя практически невозможно.

Вообще лямбда-зонд – наиболее уязвимый датчик автомобиля с системой впрыска. Его ресурс составляет 40 – 80 тыс. км в зависимости от условий эксплуатации и исправности двигателя. Плохое состояние маслосъемных колец, попадание антифриза в цилиндры и выпускные трубопроводы, обогащенная топливно-воздушная смесь, сбои в системе зажигания сильно сокращают срок его службы. Применение этилированного бензина категорически недопустимо – свинец «отравляет» платиновые электроды лямбда-зонда за несколько бесконтрольных заправок.

Схема датчика кислорода на основе диоксида циркония, расположенного в выхлопной трубе

1 – твердый электролит ZrO2; 2, 3 – наружный и внутренний электроды; 4 – контакт заземления; 5 – «сигнальный контакт»; 6 – выхлопная труба.

Махнем не глядя!

Рекомендованный заводом-изготовителем лямбда-зонд и сходные по конструкции циркониевые датчики взаимозаменяемы. Возможна замена неподогреваемых датчиков на подогреваемые (но не наоборот!). Однако при этом может возникнуть проблема несовместимости разъемов и отсутствия в машине цепи питания для нагревателя лямбда-зонда. Недостающие провода можно проложить самостоятельно, а вместо разъема использовать стандартные автомобильные контакты.

Цветовая маркировка выводов лямбда-зондов может различаться, но сигнальный провод всегда будет иметь темный цвет (обычно – черный). «Массовый» провод может быть белым, серым или желтым (рис. 4). Титановые лямбда-зонды от циркониевых легко отличить по цвету «накального» вывода подогревателя – он всегда красный. При замене 3-контактного лямбда-зонда на 4-контактный необходимо надежно соединить с «массой» автомобиля провод заземления подогревателя и сигнальный «минус», а накальный провод подогревателя через реле и предохранитель подключить к «плюсу» аккумулятора.

Подключение напрямую к катушке зажигания нежелательно, т. к. в цепи ее питания может стоять понижающее сопротивление. Подключиться к контактам топливного насоса достаточно сложно. Лучше всего подключить реле подогревателя лямбда-зонда к замку зажигания.

Редакция благодарит специалистов фирмы «ЭСО-Автотехникс» и центра «Инжектор-сервис» за помощь в подготовке статьи.

Теперь о наших Вольво 850 и как менять лямбда зонд

На аналогичный от ВАЗ.

Распайка лямбды выглядит сл. образом.

  • два белых провода, чёрный провод, серый провод. Итого: 4 провода.
  • Лямбда дает сигнал по чёрному проводу,
  • Белые провода — это подогрев.
  • Серый — масса .

Для Вольво 850. Выпускалось несколько видов датчиков и все они комплектовались разными разъемами.

10 клапанна версия двигателя В5252 — например один четырех контактный разъем.

Внимание ВАЖНО. На данных моделях двигателей установлена система управления впрыском Fenix 5.2 и в составе используется лямбда зонд на основе двуокиси титана ( фото и об особенностях читайте выше). Заменить его на обычный (циркониевый) датчик от ВАЗ невозможно из-за другой характеристики работы.

  • Белый и красный провода- подогрев.
  • черный-сигнал
  • желтый-масса

20 клапанная версия В5254 — два двух контактных разъема. У меня на машине 1996 года установлен уже четырех контактный разъем. («циркониевый» датчик)

  • белые провода — подогрев
  • черный — сигнал
  • серый — масса

На турбированных моторах с двумя датчиками до и после катализатора -четырех контактные разъемы

  • белые провода — подогрев
  • черный — сигнал
  • серый — масса

Замечу что все датчики взаимозаменяемы, необходимо только перепаять разъем и развести соответственно маркировке. Можно использовать от ГАЗ и ВАЗ . Не нравится от нашемарок, купите любой BOSCH , и дерзайте в руках с паяльником и отверткой.

Лямбда зонд фирмы BOSH, для ВАЗ 2110 стоит 700 рублей! Он представляет собой четырехконтактное устройство, с чёрной вилкой. Провод длиной 30 см. Вилку отсекаем. Провода зачищаем.

Теперь следующая проблема. Необходимо снять старый датчик. Он находится на приемной трубе рядом с катализатором.

Не забудьте отключить минусовой провод от аккумулятора. Если хочется слушать магнитолу, то отключите только провода лямбды.

  • Рассоедините разъём. Сия процедура отключает лямбду от системы.

  • Отсоедините пистоны крепления проводки датчика от опоры двигателя.

  • Далее н ужен: Ключ на 22х24, примерьте то, что подойдёт вам. Если справитесь с ним, то хорошо, а ежели нет, то берёте вариант два
Смотрите так же:  Электропроводка мт 10-36

  • Понадобится: ключ газовый, дрель с тонкими свёрлами,отвёртка шлицевая (не тонкая), молоток. Что мы делаем: для начала попробуйте захватить лямбду газовым ключом, дёрнуть в низ; если не помогает, берём дрель.
  • Н ачинаем сверлить. Лямбда очень прочная, так что, будьте готовы к паре сломанных свёрл.
  • Затем берём отвёртку, вставляем её в отверстие от сверла; если повезёт, вы откручиваете лямбду.
  • Если нет, то стучите молотком по ней, пока она не развалится. Затем газовым ключом откручивается всё, что осталось.

Есть еще один способ. Снять катализатор. И пяльной лампой или газосваркой нагреть место крепления лямбды. Дать остыть , а потом легко все выкручивается ,без эмоций. Самый простой вариант кстати.

Берём новый зонд, вкручиваем его предварительно распаяв контакты по схеме, которую я расписал выше. Сотрите коды ошибок. Сделайте пробные поездки. Если ошибки появляются вновь , то » поздравляю » ! Вы что-то не туда припаяли; разбирайте конструкцию и приступайте к поиску истины. А если всё работает, то расход топлива составит примерно 9-10 литров на 100 км.

ДАТЧИК КИСЛОРОДА от Volvo 850Т двигатель В5234Т с двумя лямбда зондами,( на фото передний зонд и его замена )

LSH 25 BOSCH 0 258 005 062 9125 371 Made in Germany

LSH 25 BOSCH 0 258 005 247 387082 12V Russia

Выдержки из VADIS 2005 А о работе лямбдазонда

(00 ОБЩИЕ ПОЛОЖЕНИЯ – СИСТЕМА ДВИГАТЕЛЯ)

Вне зависимости от эффективности сгорания, в выхлопных газах всегда остается немного кислорода O2. Датчик кислорода (7), который также называется нагреваемым датчиком кислорода, измеряет содержание кислорода в выхлопных газах.

Модуль управления точно регулирует количество топлива, используя сигнал от датчика кислорода.

Модуль управления может отрегулировать исходное количество топлива на +/- 25%, основываясь на сигналах от датчика кислорода. Например, исходное количество соответствует времени открытия форсунки в 4 мс. Датчик кислорода может воздействовать на это так, чтобы оно стало минимум 3 мс или максимум 5 мс.

”Регулировка подачи топлива”

Модуль управления реагирует на сигнал от датчика кислорода немедленно. Он увеличивает или уменьшает время открытия форсунки. В результате топливовоздушная смесь в один момент может содержать слишком мало топлива, а в последующий момент слишком много топлива. Однако, среднее значение всегда будет близким к идеальному значению, другими словами λ = 1. Так как топливовоздушная смесь быстро меняется с бедной на богатую, сигнал от датчика кислорода будет колебаться.

Задний датчик кислорода

Некоторые системы оборудованы 2 датчиками кислорода. Второй датчик (8) тогда устанавливается после каталитического преобразователя тройного действия (TWC). Цель заднего датчика кислорода — обеспечить еще более точную регулировку количества топлива. Более того, модуль управления может проверять эффективность каталитического преобразователя тройного действия (TWC). Это производится путем сопоставления сигналов от обоих датчиков.

00 КОНСТРУКЦИЯ И РАБОТА – БЕНЗИНОВЫЕ ДВИГАТЕЛИ

Смещенный вперед задний датчик кислорода

На B5254T, у которого как и всех двигателей есть каталитический преобразователь с дополнительным металлическим блоком до обычных керамических блоков, задний датчик кислорода смещен вперед по сравнению с B5254S оборудованным Motronic 4.4.

28 ДРУГИЕ ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ — СИСТЕМА УПРАВЛЕНИЯ ДВИГАТЕЛЕМ MOTRONIC 4.3

Нагреваемый датчик кислорода HO2S, передний и задний

Передний: черный провод

Задний: серый провод

Задний датчик HO2S устанавливается только в некоторых странах.

Сопротивление на терморезисторе:

-Холодный HO2S (+20°C): 1,5 — 2,5 Ω

-Горячий HO2S (больше +350 °C): 6 — 10 Ω

Момент затяжки: 56 Нм

Используйте герметик, Шифр 1161 408, для всех резьбовых соединений датчика HO2S.

28 КОНСТРУКЦИЯ И РАБОТА — ФУНКЦИИ УПРАВЛЕНИЯ

Когда HO 2 S (7/15) (или два HO 2 S на автомобилях для некоторых стран) достигает рабочей температуры, этот сигнал также используется для вычисления количества топлива.

Основная программа ECM вычисляет продолжительность (цикл) впрыска на основании информации о нагрузке двигателя, т.е. массового расхода воздуха и оборотов двигателя. Вычисляемая таким образом продолжительность впрыска не используется напрямую, а изменяется интегратором, использующим сигнал HO 2 S для настройки продолжительности впрыска, при которой достигалась бы λ =1, соответствующая оптимальному составу горючей смеси. На автомобилях с двумя датчиками HO 2 S (только для некоторых стран), ECM также использует сигнал заднего датчика HO 2 S для корректирования интегратора, и, в результате, продолжительности впрыска. Помимо всего прочего, это обеспечивает более точн ую регулировк у .

Управление осуществляется быстро, до нескольких раз за секунду. Эта функция краткосрочной регулировки подачи топлива может изменять продолжительность впрыска, вычисленную основной программой, приблизительно на ±25 %.

Адаптивные настройки цикла впрыска, называемые долгосрочной регулировкой подачи топлива, хранятся в ECM после остановки двигателя. Это означает, что сразу же после запуска двигателя будут восстановлены условия, необходимые для обеспечения оптимальной пропорции горючей смеси, еще до того, как HO 2 S достаточно нагреется для начала работы.

28 КОНСТРУКЦИЯ И РАБОТА — ФУНКЦИИ ДИАГНОСТИКИ

Диагностика HO2S (только для некоторых стран)

В некоторых странах Motronic 4.3 SFI использует два устройства HO2S. Эти устройства HO2S проверяются на предмет короткого замыкания и разрыва проводки. Если обнаружена неисправность, то выводится код DTC 2–1–2 (передний датчик HO2S) или DTC 1–5–3 (Задний датчик HO2S), и будет произведена проверка правильности сигнала переднего датчика HO2S.

ECM получает информацию о содержании кислорода в выхлопных газах от переднего датчика HO2S. Этот сигнал используется при вычислении продолжительности впрыска. Поскольку передний датчик HO2S устанавливается до TWC, он отслеживает загрязненные выхлопные газы. Со временем это приводит к порче устройства и к изменению качества сигнала. Данная ситуация контролируется следующим образом:

Проверкой средней величины сигнала переднего HO2S

Проверкой заднего датчика HO2S

Проверкой периода сигнала переднего датчика HO2S

ECM использует сигнал от заднего датчика HO2S, измеряющего содержание кислорода в газах после TWC, для вычисления среднего значения сигнала переднего датчика HO2S. При помощи этой информации, ECM может принять в расчет старение переднего датчика HO2S при вычислении цикла впрыска.

Среднее напряжение сигнала заднего датчика HO2S должно быть приблизительно 0,6 В при контроле с помощью двух датчиков. Продолжительность впрыска сначала рассчитывается на основании сигнала переднего датчика HO2S и среднего значения, а затем проверяется сигнал заднего датчика HO2S. Если его значение отличается от 0,6 В, рассчитанный Продолжительность впрыска корректируется до достижения правильного среднего значения. DTC 4–3–6 “Компенсация заднего датчика HO2S” записывается при превышении определенного уровня корректировок за несколько последовательных попыток расчета.

При движении автомобиля модуляция сигнала заднего датчика HO2S может быть и положительной, и отрицательной; если нет, то выводится код DTC 4–2–5 для заднего датчика HO2S.

Модуляция для двух HO2S запускается, если:

передний датчик HO2S активен и начинает модуляцию;

задний датчик HO2S достиг рабочей температуры;

температура TWC превышает +300°C (согласно расчетам ECM);

обороты двигателя между 1200 и 3400 об/мин;

внутренняя нагрузка в пределах 1,3–5,0 мс (при 1000 об/мин), 1,3–4,0 мс (при 2000 об/мин) и 1,3–3,0 мс (при 3000 об/мин).

Контроль с помощью двух датчиков прерывается в случае прекращения подачи топлива, когда ECM регистрирует пропуск зажигания (коды DTC 4–5–X, 5–4–2, 5–4–3, 5–4–4, 5–4–5 и 5–5–X) или если ECM обнаруживает неисправность в одном из следующих компонентов:

Система EVAP (DTC 3–1–5)

нагрев HO2S (DTC 5–2–1 или 5–2–2)

Датчик MAF (DTC 1–2–1)

Поскольку даже неисправный датчик HO2S может посылать правильное среднее значение сигнала, цикл сигнала переднего датчика HO2S также отслеживается, ECM измеряет время между несколькими последовательными изменениями сигнала с сильного на слабый. Эта проверка осуществляется на холостом ходу, когда разница между исправным и неисправным датчиками наиболее ощутима. DTC 4–3–5 “передний датчик HO2S, задержка ответа” если цикл подачи сигналов увеличивается в течение нескольких последовательных попыток.

28 КОНСТРУКЦИЯ И РАБОТА — ФУНКЦИИ ДИАГНОСТИКИ – СИГНАЛЫ НА ВХОДЕ

Нагреваемые датчики кислорода HO2S

Передний датчик HO2S

Передний датчик HO2S используется для обеспечения ECM информацией о составе горючей смеси.

HO2S расположен на выхлопной трубе перед TWC. Электрически нагреваемый датчик HO2S выдает импульсы, напряжение которых меняется в зависимости от содержания кислорода в выхлопных газах.

Для измерения содержания кислорода HO2S требуется приток воздуха извне, с которым происходит сравнение. Поскольку приток воздуха извне осуществляется через проводку, для точности измерений необходимо, чтобы кабель не был засорен или поврежден.

Совершенно недопустимо смазывать разъемы HO2S, так как смазка может смешиваться с опорным воздухом.

Задний датчик HO2S

В некоторых странах автомобили также оснащаются задним датчиком HO2S, который устанавливается позади TWC и измеряет содержание кислорода и этой точке. Это делается в следующих целях:

чтобы оптимизировать регулировку подачи топлива;

чтобы отслеживать старение переднего датчика HO2S;

чтобы контролировать работу TWC.

Задний датчик HO2S отличается от переднего тем, что он обладает более медленной реакцией и выглядит несколько иначе.

датчик HO2S работает только при температурах свыше приблизительно 285°C. Нормальная рабочая температура составляет от 350 до 850°C.

Датчик нагревается электрически. На один из контактов подается напряжение 12 В от главного реле, а со второго идет провод на ECM. Когда этот провод заземлен, ток идет через сопротивление PTC. При холодном HO2S, значение сопротивления понижается, а значение тока в цепи возрастает. (Для предотвращения повреждения сопротивления, ECM вначале работает в пульсирующем режиме). При повышении температуры в резисторе PTC и повышении сопротивления резистора, пульсирующий режим постепенно отменяется. Период нагревания составляет приблизительно 30 сек.

Разогретый HO2S может испортиться, если на нем конденсируется влага.

B5234T/B5204T (модели 1994 года): Модуль управления ждет до начала нагрева HO2S; для переднего датчика HO2S — до 1 минуты, а для заднего датчика HO2S — до 7 минут. При этом повышается температура вокруг обоих HO2S, что снижает опасность конденсации.

B5234T/B5204T/B5234T5 (модели 1995 года): Разогрев HO2S начинается сразу же после запуска двигателя, но может быть прерван в первые три минуты при переходе двигателя на холостой ход.

Разогрев заднего датчика HO2S задерживается на 7 минут для того, чтобы дать подняться температуре вокруг HO2S, что снижает опасность конденсации.

B5254S. Разогрев HO2S начинается сразу же после запуска двигателя. Температура HO2S достигает 350°C и остается постоянной до тех пор, пока температура выхлопных газов на переднем HO2S и температура TWC на заднем HO2S не достигнут уровня, исключающего риск конденсации.

Оба провода датчика подсоединены к ECM.

При обогащенной топливной смеси (λ 1), содержание кислорода в выхлопных газах повышается, и напряжение выходного сигнала падает почти до 0 В.

Изменение сигнала с сильного на слабый происходит при идеальном (теоретически необходимом для сгорания) соотношении кислорода и топлива, т.е при 14,2 кг/1кг.

ECM использует сигнал HO2S для контроля впрыска топлива и поддержания значения λ=1.

28 ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ ЭЛЕКТРИЧЕСКОГО ОБОРУДОВАНИЯ – MOTRONIC 4.3 – ОПИСАНИЕ СИГНАЛОВ

#A14Сигнал управления предварительным нагревом переднего датчика HO2S Ubat Предварительный нагрев отключен: U≈U bat Предварительный нагрев включен: U≈ 0,3 В05

#A19Сигнал (-), задний датчик HO2S (Только для некоторых стран, кроме B 5204 T)U≈ 0,7 В Измеряется только при включенном зажигании

Похожие статьи:

  • Masuma провода Отзыв: Провода высоковольтные (бронепровода) Masuma - Отличное качество и низкая цена - вот что сочетается в высоковольтных проводах Masuma Иногда так случается, что в автомобиле из строя выходят высоковольтные провода. Случается такое, […]
  • Вв провода тойота карина Toyota Carina ED M/T › Бортжурнал › Высоковольтные провода нулевого сопротивления Всем привет! Забарахлили у меня старые провода высоковольтные которые еще оригинальные, замерил сопротивление и правда обрыв из 4 проводов 2 живых. Было […]
  • Автопреобразователь 12 220 вольт Автомобильный преобразователь напряжения 12-220 вольт Belttt 800 W Доставка осуществляется по Москве и Московской области, а также возможна доставка по всей России транспортной компанией CDEK Мы предлагаем только те товары, в качестве […]
  • Преобразователь с 36 вольт на 220 вольт Преобразователи напряжения DC/DC Большой диапазон мощностей. ВНИМАНИЕ. Товар из этого раздела поставляется под заказ. В связи с изменением курса доллара, цены в данном разделе могут быть не верны. Уточняйте цену при заказе. Срок […]
  • Карта 220 вольт Подарочный сертификат «220 Вольт» Рязань О сертификате Подарочный сертификат «220 Вольт» - настоящий мужской подарок! 🙂 В сети магазинов «220 Вольт» можно найти все необходимые инструменты, оборудование и расходные материалы для […]
  • Двухклавишный проходной выключатель схема подключения лезард Выключатель СП двухклавишный проходной Пожалуйста, укажите Ваше имя, телефон в формате +7 ХХХ ХХХ ХХ ХХ и (или) e-mail чтобы мы могли связаться с вами. Выключатель скрытой проводки двухклавишный проходной серии MIRA Предназначен для […]