Магнитный пускатель выбор

Магнитный пускатель выбор

Рис. 1. Схема пуска и защиты двигателя

Требуется выбрать магнитный пускатель (контактор) для управления и защиты асинхронного двигателя типа 4А112М2У3, работающего в продолжительном режиме. Схема прямого пуска и защиты приведена на рис. 1.

По типу двигателя из справочной литературы[1,табл.26.3] определим его технические параметры:

— номинальная мощность, P ном – 7,5 кВт;

— коэффициент полезного действия, η ном – 87,5 %;

— коэффициент мощности, cosφ – 0,88;

— номинальное линейное напряжение на обмотке статора,U ном – 380 В;

— коэффициент кратности пускового тока, КI – 7,5;

— время пуска двигателя, t n – 5 с.

Определим параметры, по которым производится выбор магнитного пускателя:

а) род тока – переменный, частота – 50 Гц;

б) номинальное напряжение – 380В, номинальный ток не должен быть меньше номинального тока двигателя;

в) согласно схеме включения двигателя (рис. 1) аппарат должен иметь не менее трех замыкающихся силовых контактов и одного замыкающегося вспомогательного контакта;

г) категория применения, аппарат должен работать в одной из категорий применения: АС – 3 или АС – 4;

д) режим работы аппарата – продолжительный с частыми прямыми пусками двигателя.

Для выбора аппарата по основным техническим параметрам необходимо произвести предварительные расчеты номинального и пускового токов двигателя. Определим номинальный ток (действующее значение):

Пусковой ток (действующее значение):

Ударный пусковой ток (амплитудное значение):

принимаем

Произведем выбор аппарата по основным техническим параметрам.

Выбираем магнитный пускатель со встроенным тепловым реле по основным техническим параметрам, приведенным в справочнике – типа ПМЛ 221002[2,табл.6.18].

Проверим возможность работы выбранного аппарата в категориях применения АС – 3 и АС – 4.

Согласно справочным данным в категории применения АС – 3 магнитный пускатель должен включать в нормальном режиме коммутации ток:

,

а в режиме редких коммутаций:

.

Оба условия пускателя ПМЛ 221002 выполняются, так как:

В категории применения АС – 4 магнитный пускатель ПМЛ 221002 с номинальным рабочем током 10 А должен отключать в номинальном режиме коммутации ток:

,

который меньше пускового тока двигателя. В режиме редких коммутаций ток:

,

который также ниже ударного пускового тока двигателя. Поэтому пускатель ПМЛ 221002 с номинальным током 20 А, предназначенный для работы в категории АС – 4, для данной схемы (рис. 1) не пригоден.

Как выбрать магнитный пускатель и автоматический выключатель для асинхронного двигателя

Для пуска, реверсирования, принудительной остановки противотоком асинхронных электродвигателей электрики используются контакторы и магнитные пускатели. От правильности выбора коммутационной аппаратуры зависит, как и безотказность системы в целом, так и электробезопасность обслуживающего персонала.

Выбор пускателя и избыточным коммутируемым током ведет к большим финансовым затратам, при его коммутации слышны шлепки большей громкости, чем те что издают маленькие пускатели. Недостаточные по коммутируемой мощности пускатели долго не прослужат, будут греться, и подгорать клеммники и контакты. В результате переходное сопротивление контакта будет расти до тех пор, пока контакт не исчезнет полностью, что приведет к преждевременной замене аппарата.

Автоматические выключатели также должны быть правильно подобраны, особенно при тяжелом пуске двигателя. Слишком чувствительный автомат будет выбивать при пуске, а если он наоборот взят с излишним запасом по току, то в аварийной ситуации может и не отреагировать, что приведет к повреждению кабеля, обмотки двигателя вплоть до возгорания.

Пуск для электродвигателя сопровождается повышенным током в период разгона его до номинальных оборотов, в случае перегрузки и нехватки мощности двигателя для вращения исполнительных механизмов возможно пониженное число оборотов с повышенными токами, в плоть до того, что он вообще не начнет раскручиваться. И наоборот если мощность двигателя избыточна, то потребляемый им ток будет ниже номинального.

Из-за вышеперечисленных причин и появляется необходимость правильного подбора пусковой и защитной аппаратуры в виде магнитных пускателей, контакторов, тепловых реле и автоматических выключателей.

Автоматические выключатели устанавливаются до магнитного пускателя, чтобы в случае необходимости полностью обесточить систему, как силовую цепь, так и цепь управления (питания катушки).

Вместо автоматических выключателей могут использоваться плавкие вставки или предохранители, но в последнее время такие решения встречаются реже, чем раньше. Это усложняет обслуживание и вызывает необходимость иметь в запасе хотя бы комплект предохранителей.

Выбор магнитного пускателя

Магнитные пускатели выпускаются на определенный номинальный ток, из ряда: 6.3 – 10 – 25 – 40 – 63 – 100 – 160 – 250

Часто их разделяют не по токам, а по величинам от 0 до 7, чем больше ток (или величина пускателя) тем больше его габариты и площадь контактов. Опытный электромонтер может отличить по размеру корпуса, конструкции дугогасителя и габаритам контактных площадок примерный коммутируемые ток и напряжение.

Однако если номинальный ток пускателя соответствует току двигателя, это еще не значит, что их можно использовать в паре. Если такое понятие как категория применения, она характеризует режим работы коммутируемой аппаратуры, частоту и условия коммутации. Иначе говоря – это способность переносить пусковые токи. Пусковые токи асинхронного двигателя могут превышать номинальные и в 10 раз, это зависит от условий пуска, напряжения в сети и прочих факторов.

Категории применения обозначаются: «АС-номеркатегории». Сводная таблица величин и категорий применения для магнитных пускателей расположена ниже.

Из неё нас интересует строка «АС-3 – управления двигателями с короткозамкнутым ротором (пуск, отключение без предварительной остановки)». Из этого очевидно, что коммутационные аппараты с такой категорией созданы для того, что бы включать и отключать электродвигателя. Они выдерживают прямой пуск.

Далее нужно определиться с номинальным током пускателя. Для этого нам нужно знать технические характеристики коммутируемого двигателя, а именно:

cos Ф – коэффициент мощности,

P – мощность двигателя номинальная;

U – рабочее напряжение (коммутируемое);

Тогда номинальный ток пускателя равен:

Для быстрых расчетов иногда применяют другую методику, когда мощность двигателя умножают на 2 и получают номинальный ток (приблизительно).

Далее нужно определить пусковой ток, в справочниках это указывается либо как «k» либо как «Iп/Iн». Это кратность или соотношение пускового тока к номинальному. Показывает, насколько ток в момент пуска превышает номинальную величину.

Пускатель с категорией применения АС-3 может коммутировать ток в 5-7 раз больше чем номинальный, для чего это сказано я покажу при расчетах ниже.

Выбираем пускатель

Допустим, у нас есть асинхронный двигатель с мощностью 2.2 кВт типа 4АМ100L6У3. На его шильдике написано, что кпд 81.0%, коэффициент мощности – 0.73, в интернете я нашел его технические данные, чтобы узнать кратность пускового тока, она оказалась – 5.5

1. Быстрый способ: IН=2.2*2 = 4.4А

2. Сложный способ: IНОМ=2200/(380*0.81*0.73*1.73)=5.6А

Результаты такого расчета дали больший ток.

Теперь считаем пусковой ток: IП=5.6*5.5=30.8А

Подбираем пускатель, с номинальным током более чем 5.6 А, с категорией применения АС-3. В результате обзора рынка, нам подходит пускатель ПМЕ 111 на 10А с тепловым реле.

Выбор автоматического выключателя

Автомат может сработать при пуске или затяжном пуске электродвигателя, когда потребляемый ток значительно превышает максимальный. В автоматическом выключателе за защиту отвечают два узла:

1. Электромагнитный расцепитель. Срабатывает при пиковом токе перегрузке. Этот ток зависит от типа автомата.

2. Тепловой расцепитель. Срабатывает при незначительном но длительном превышении номинального тока.

Номинальный ток двигателя у нас 5.6 А, значит нам нужен автомат не меньше этого значения. Типы автоматов куказывают на доустипое превышение по току в пике:

тип D – 10-50 раз.

Так как у нас пусковой ток в 5.5 раз больше чем номинальный, это значит что нам подходит автомат типа С и D. Например, автоматический разъединитель EZ9F34306 Schneider Easy9, рассчитан на 6 А и его тип C, позволит выдержать пусковые токи до 60 А.

Но такой автомат будет работать на пределе да и реальная уставка по току может быть ниже 5.5, т.к. тип С находится в пределах 5-10, нужен запас по току хотя бы в 20%.

Смотрите так же:  Как подключить провода на материнскую плату asus

Поэтому лучше установить автоматический выключатель на тот же ток или немного больший, но типа D, например ИЭК 6-8А ВА47-29

Или на ток 10А с типом C, например PL4-C10/3 Moeller / Eaton

Требования к автомату заключаются в том, чтобы он стабильно выдерживал номинальный ток, и его не выбило при пуске. Если планируется режим работы двигателя с частыми включения и выключениями лучше использовать автомат типа D, он менее чувствителен к всплескам тока.

Заключение

Автоматический выключатель нужен для защиты питающего кабеля и дополнительной защиты двигателя, в случае затяжного пуска или заклинивания вала, дополнительно лучше использовать тепловую защиту. Магнитный пускатель должен выдерживать как напряжение, так и ток, который он будет коммутировать.

Электродвигатель должен быть исправен, отсутствовать витковые замыкания, а его вал должен свободно вращаться. В случае пуска двигателя под нагрузкой лучше брать коммутационную аппаратуру с запасом до 2-х раз для уменьшения вероятности преждевременного подгорания контактов и ложных срабатываний автоматического выключателя.

Питающий кабель должен соответствовать номинальному току, с учетом пусковых токов, как и способ соединения кабеля (использование гильз, наконечников, клеммников и прочего). Состояние всех соединений должно быть в норме – отсутствовать окислы, нагар и прочие механические дефекты, которые могут уменьшить площадь прилягания контакта.

Магнитный пускатель выбор

Выбор магнитных пускателей и тепловых реле

Магнитные пускатели предназначены для дистанционного управления асинхронными электродвигателями. С их помощью также осуществляется нулевая защита. В данном дипломном проекте применяем пускатели серии ПМЛ. Условие выбора магнитного пускателя следующее

где Iном.п — номинальный ток пускателя;

Iном.д — номинальный ток двигателя.

Тепловой элемент магнитного пускателя выбираем из условия

где Iтэ — ток теплового элемента.

Необходимо также учитывать место установки реле (в защищённом кожухе магнитного пускателя или на открытой панели) и температуру помещения.

Рассмотрим пример выбора магнитного пускателя для станка №1 в котором установлен двигатель типа АИР112М4 мощностью 5,5 кВт. Номинальный ток для этого двигателя равен 10,9 А (по таблице 3.1). Выбор магнитного пускателя и теплового реле производим по условиям (3.5) и (3.6) из [2]. Окончательно принимаем к установке магнитный пускатель типа ПМЛ221002 Iном.п= 22 А; а также теплового реле типа РТЛ101604 Iтэ=12 А, предел регулирования (9,5 — 14).

Аналогичные расчёты производим для всех двигателей станков и результаты вычислений сводим в таблицу 3.3.

Выбор защитных аппаратов

В качестве аппаратов защиты электроприёмников и электрических сетей промышленных предприятий от коротких замыканий широко следует применять плавкие предохранители, не допуская необоснованного применения автоматических выключателей. В дипломном проекте будем применять плавкие предохранители с наполнителем типа ПН2.

Выбор плавкой вставки предохранителя производим по двум условиям.

Номинальный ток плавкой вставки Iвс предохранителя определяется по величине длительного расчетного тока Iр

и по условию перегрузок пусковыми токами

где Iкр — максимальный кратковременный (пиковый) ток, А;

— коэффициент кратковременной тепловой перегрузки, который при легких условия пуска принимается равным 2,5, а при тяжелых — 1,6.

При выборе предохранителя для одного электродвигателя в качестве Iр принимается его номинальный ток Iном, а в качестве Iкр — пусковой ток двигателя Iпуск.

Пиковый ток группы электроприёмников определяется по формуле, А

Iкр = Iпм +(Iр — киIном.м) (3.9)

где Iпм — наибольший из пусковых токов электроприемников в группе, А;

Iр — длительный расчетный ток линии, А;

ки — коэффициент использования;

Iном.м — номинальный ток двигателя с максимальной мощностью, А.

По условию селективности номинальные токи плавких вставок двух последовательно расположенных предохранителей по направлению потока энергии должны различаться не менее чем на две ступени.

При осуществлении защиты автоматическими выключателями в данном дипломном проекте применяем выключатели серии ВА с комбинированным расцепителем. Номинальные токи автоматического выключателя Iном.а и его расцепителя Iном.р выбираем по длительному расчётному току линии исходя из условий

Ток срабатывания электромагнитного расцепителя Iср.э. проверяем по максимальному кратковременному току линии

Для определения тока срабатывания электромагнитного расцепителя Iср.э. определяем коэффициент токовой отсечки

Принимаем стандартный коэффициент токовой отсечки. Ток срабатывания электромагнитного расцепителя Iср.э определяем по выражению, А

Рассмотрим пример выбора автоматических выключателей для главного и вспомогательного двигателей токарного станка №2. Данные для расчёта берём из таблицы 3.1.

Выбор автоматического выключателя для главного двигателя производим по условиям (3.10) и (3.11)

Выбираем автоматический выключатель из [2] типа ВА 51Г-25 с Iном.а = 25А, Iном.р =16 А.

Определяем коэффициент токовой отсечки по выражению (3.13)

Принимаем по [2] стандартный коэффициент токовой отсечки кто=14.

Определяем ток срабатывания электромагнитного расцепителя по (3.14)

Ток срабатывания электромагнитного расцепителя Iср.э. проверяем по условию не срабатывания при пуске двигателя (3.12)

Условие выполняется, следовательно, автоматический выключатель при пуске не сработает. Окончательно принимаем к установке автоматический выключатель серии ВА 51Г-25 с Iна = 25 А, Iнр =16 А.

Для вспомогательного электродвигателя данного станка выбор автоматического выключателя аналогичен. Результаты вычислений сводим в таблицу 3.3.

При выборе аппарата защиты многодвигательного электропотребителя необходимо учитывать следующие формулы для определения расчётного тока.

Эффективное число группы электроприёмников определяется по формуле

где п — число электроприёмников в группе, шт.;

рном.i — номинальная активная мощность i-го электроприёмника, кВт.

Расчётная активная нагрузка группы электроприёмников определяется по формуле, кВт

где ки — коэффициент использования электроприёмника, определяемый по [2];

кр — коэффициент расчётной нагрузки, принимаемый в зависимости от пэф и ки по [2].

Расчётная реактивная нагрузка группы электроприёмников определяется по выражению.

Расчётный ток группы электроприёмников определяется по формуле, А:

Рассмотрим пример выбора защитного аппарата (предохранителя) для токарного станка №2. Данные для расчёта берём из таблицы 3.1.

Эффективное число группы электроприёмников определяем по (3.15)

Принимаем nэф=1. По [2] определяем коэффициент расчётной нагрузки: кр=1,33.

Расчётную активную нагрузку группы электроприёмников определяем по (3.16)

Расчётная реактивная нагрузка группы электроприёмников определяется по (3.17)

Расчётный ток группы электроприёмников определяется по (3.18)

Пиковый ток для станка определяем по выражению (3.9)

Iпик=113,55+(11,49 — 0,215,14)=122,01 А.

Так полученное значение расчётного тока меньше номинального значения тока наиболее мощного двигателя, то за рассчитанный ток станка принимаем ток наибольшего двигателя.

Выбор плавкой вставки предохранителя производим по условиям (3.5) и (3.6)

Исходя из расчётов выбираем предохранитель типа ПН2-100, Iвс=50 А.

Для остальных станков, имеющих 2 и более электродвигателей, все расчёты производим аналогично и результаты вычислений сводим в таблицу 3.1, 3.3.

Таблица 3.3 Результаты выбора и технические данные магнитных пускателей, тепловых реле, предохранителей, автоматических выключателей

Iнд,

Магнитный пускатель, для чего он нужен? И по каким параметрам его выбирать

Магнитный пускатель обеспечивает пуск, остановку, принудительное торможение противотоком, реверс (запуск в обратную сторону) и защиту от перегрузок трёхфазных электродвигателей, имеющих пусковой ток в несколько раз больший, чем номинальный рабочий ток.

Магнитный пускатель серии ПМ 12

Конструктивно он состроит из комбинации всех элементов и коммутационных аппаратов, необходимых для нормальной эксплуатации электродвигательных установок. Коммутационными аппаратами называют устройства для коммутации (включения – отключения) тока в электрических цепях.

К ним относятся реле, контакторы, предохранители, автоматические выключатели, разъединители, рубильники, кнопочные посты. Соединённые по определённой схеме контактор, тепловое реле и кнопки управления составляют единое устройство – электромагнитный пускатель. Он обеспечивает функционирование и защиту электродвигателей в различных режимах работы.

Обозначение магнитного пускателя , теплового реле, контакторов на схеме

Принцип коммутации

Замыкание контактов силовой цепи осуществляется контактором – аппаратом, в котором сцеплённая с якорем электромагнитного реле группа контактных пластин замыкается на неподвижные контакты, соединённые с входными и выходными клеммами подключения питающего напряжения сети и линий нагрузки.

Таким образом, с помощью малых токов в катушке электромагнитного реле и слаботочных сигналов управления удаётся коммутировать сильноточные цепи больших нагрузок. Небольшой ток и малое напряжение сигнальной цепи делает работу оператора намного безопаснее, а для автоматических систем контроля и управления даёт широкий простор их применения, благодаря внедрению в процесс компьютеризированных алгоритмов.

Смотрите так же:  Подключение двойной телефонной розетки схема

Параметры пусковых устройств

Для разнообразного предназначения выпускаются такие серии магнитных пускателей: ПА, ПМ, ПМА, ПМЕ, ПМЛ. Исходя из параметров нагрузки, выбор и применение данных устройств происходит по соответствию.

Магнитный пускатель серии ПМЛ

1.Величине электромагнитного пускателя – условный термин, характеризирующий допустимые продолжительные токи контактов главной силовой цепи. На данный момент имеются такие числовые обозначения величин и соответствующие им номинальные токи при напряжении 380В в рабочем режиме АС-3:

2.Режиму работы пускового устройства, определяющему характер коммутируемой нагрузки:

  1. АС-1, нагрузка только активная, или мало индуктивная;
  2. АС-3, запуск электродвигателя и его отключение при вращении;
  3. АС-4, тяжёлый запуск двигателя, отключение его на низких оборотах и при неподвижном роторе, торможение противотоком.

Величины магнитного пускателя и категории их применения

3.Рабочему (коммутационному) напряжению катушки реле, которое бывает таких значений:

  • Переменное: 24; 36; 42; 110; 220; 380 В.
  • Постоянное: 24В.

4.Количеству дополнительных контактов, имеющих такое обозначение латинскими буквами и кириллицей:

  1. Нормально разомкнутые (NO), (НО);
  2. Нормально замкнутые (NC), (НЗ).

Также существуют специальные, защёлкивающиеся на корпус пускателя приставки, дополнительно добавляющие несколько сигнальных контактов.

Магнитный пускатель серии ПМЛ с защелкивающейся приставкой

  • IP00 — открытые, устанавливаются в обогреваемых помещениях в закрытых электрощитах защищённых от попадания посторонних предметов, воды и пыли;
  • IP40 – изготовляются в корпусе, применяются внутри не обогреваемых помещений, где имеется малое количество пыли в воздухе и исключено попадание воды на прибор;
  • IP54 – выпускаются в корпусе, применение внутреннее и наружное в местах, защищённых от воздействия атмосферных осадков и прямой солнечной радиации.

6.Наличию теплового реле, обеспечивающего защиту подключённых цепей от продолжительных перегрузок.

7. Наличию реверса, конструктивно исполненного путём объединения в одном корпусе двух электромагнитных реле, имеющих по три контактных группы, с механической или электрической блокировкой одновременного их включения.

8.Классу износостойкости, означающему возможное количество надёжных коммутаций.

9.Дополнительным элементам управления.

Необходимое соответствие параметров

Поскольку правильный выбор электромагнитного пускателя является залогом успешной и бесперебойной работы подключаемых электроустановок, необходимо соответствие вышеописанным параметрам характеристик коммутируемой цепи, напряжения управления, схемы включения, типа окружающей среды. Важнейшим правилом является требование, чтобы ток нагрузки не превышал допустимого тока контактов.

Для подключения активной нагрузки (без двигателей) определённой мощности Р, силу протекающего тока I определяют из упрощённой формулы:

где U – напряжение сети, 380 (В), .

Соответственно полученному значению выбирают пусковое устройство с номинальным током не меньше расчётного ниже по таблице.

Таблица выбора магнитного пускателя

Народный способ выбора

Для подключения асинхронных электродвигателей с короткозамкнутым ротором также существует «народная» формула, согласно которой номинальный ток Iном двигателя принимается равным удвоенному значению мощности в киловаттах, то есть, если

Р=3,7кВт, то Iном= 3,7*2 =7,4А.

Исходя из этого значения делают выбор контактора магнитного пускателя, чтобы его номинальный рабочий ток был не меньше данного значения. В таких расчётах подразумевается, что контакторы с подходящим номинальным значением нагрузки способны выдерживать запуск электродвигателей, имеющих многократное превышение пусковых токов Iп над рабочим номинальным Iном, поэтому расчёт пусковых токов не производится. Для данного подключения подходит пускатель с номинальным током 10 А.

Расчёт по параметрам двигателя

Для более точного выбора пускового устройства, расчёт начинают с изучения паспорта подключаемого электроприбора и применяют такие формулы, исходя из потребляемой мощности:

где P- мощность нагрузки (Вт), cosφ – коэффициент мощности, а η – коэффициент полезного действия электродвигателя (%), U-напряжение сети 380 (В), √3-3-х фазное напряжение.

где k – кратность пускового тока.

Ударный пусковой ток — это полный ток короткого замыкания , который состоит из трех составляющих и определяется по формуле :

Допустим, двигатель имеет: мощность 3,7 кВт = 3700 Вт; η = 87% =0,87; cosφ = 0,88; k = 7,5.

Iном=3700/(380*0,87*0,88*√3) = 7,34 А.

Определяем стартовые нагрузки:

Iпуск = 7,5*7,34 = 55,05 А.

Нужно учитывать, что в паспорте указывается номинальный ток In магнитного пускателя. В режиме работы АС-3 данный прибор обеспечивает запуск при шестикратном превышении его номинального тока. Imax=6* In.

Проверяем, подходит ли пусковое устройство с In = 10А, выбранное по народному методу, где максимальный ток контактора должен быть больше пускового тока электродвигателя Imax> Iпуск.

Imax = 6*10 = 60А > 55,05 А = Iпуск.

Также определяем ударный пусковой ток (амплитудное значение):

i= 1,3*55,05*√2=101,2 А.

Как видим, условие выбора соблюдается, народный метод себя оправдал.

Также подбор по мощности можно осуществлять по таблицам(см. выше) из справочников, где указано значение её значение в киловаттах и соответствующий ему номинал контактора.

В следующих статьях рассмотрим как правильно необходимо подключать магнитный пускатель к двигателю с реверсом и без него.

Магнитный пускатель выбор

Расчетный ток, А

Ток, увеличенный на 10%, А

Тип магнитного пускателя

Номинальный ток пускателя, А

Тип теплового реле

Пределы регулирования тока, А

Принципиальная схема электроснабжения поселка с указанием типа предохранителей указана на Рисунке 9.

Рисунок 9. Принципиальная схема электроснабжения поселка

Калькулятор

Сервис бесплатной оценки стоимости работы

  1. Заполните заявку. Специалисты рассчитают стоимость вашей работы
  2. Расчет стоимости придет на почту и по СМС

Номер вашей заявки

Прямо сейчас на почту придет автоматическое письмо-подтверждение с информацией о заявке.

Правила выбора магнитного пускателя

Магнитное пусковое устройство – это низковольтный коммутирующий аппарат, применяемый для дистанционного пуска и отключения различных электрических цепей.

Он находит широкое применение как в бытовых, так и в промышленных системах, именно поэтому его правильный выбор так важен. Как это сделать – рассмотрим в настоящей статье.

Функциональные возможности

Магнитные пускатели находят очень широкое применение в различных отраслях хозяйственной деятельности и промышленности.

Наиболее же распространенные сферы их использования следующие:

  • включение уличного освещения, внутризаводской и дворовой подсветки промышленных предприятий;
  • коммутация электрических термонагревательных элементов и приборов (ТЭН-ов и инфракрасных излучателей) в системах электроотопления;
  • управление электрическими асинхронными двигателями;
  • применение в качестве главных пускателей для сетей промышленной автоматики.

При установке пускателя под открытым небом, следует обязательно учитывать класс его климатической стойкости по IP.

Вопрос выбора магнитного пускателя встает еще при разработке той либо иной электрической схемы, требующей его применения, а также при выполнении планового либо экстренного ремонта, когда вместо вышедшего из строя элемента следует подобрать его аналог.

Виды магнитных пускателей

Критерии выбора

Во время выбора пускателя следует руководствоваться его базовыми техническими характеристиками, а также некоторыми конструктивными особенностями, которые и рассмотрим ниже.

Напряжение (номинальное) в коммутируемой цепи

Подавляющее большинство магнитных пусковых устройств используется для запуска асинхронных электродвигателей, имеющих коротко замкнутый ротор и рассчитанных на внутризаводское напряжение 220 В/380 В. В случае, если используются электромоторы под вольтаж 380 В/660 В (что бывает значительно реже), то и пускатель надо выбирать соответствующий им по напряжению.

Для управления электродвигателями с возможностью реверса следует приобретать специальные реверсивные пусковые устройства.

Номинальная величина тока основных контактов

Соотношение величин тока коммутационного устройства и тока подключаемой нагрузки – один из важнейших параметров при выборе пускателя. Для ПУ, производство которых ведется в соответствии с ГОСТами, применяется условное деление на классы.

Для того, чтобы произвести выбор устройства по этому параметру, можно воспользоваться следующей таблицей:

Износостойкость коммутационная

Ее величина равна гарантированному количеству срабатываний, заявленному фирмой-изготовителем. Все пусковые устройства в данном случае делятся на 3 класса износостойкости: А, Б, В. Первый из них – самый высокий. Он гарантирует, что пускатель выдержит не менее 1,5 млн циклов. Классу Б соответствует величина от 630.000 до 1,5 млн циклов. Класс В – самый низкий. Приборы, отнесенные к нему, выдерживают от 100.000 до 500.000 рабочих циклов.

Износостойкость механическая

Это не менее важная характеристика, которая показывает количество возможно допустимых включений/выключений аппарата без выхода из строя (при этом, все манипуляции в данном случае выполняются без нагрузки, а чисто механически). Величина этого параметра, в отличие от срабатывания под напряжением, значительно больше. В зависимости от типа ПУ она может составлять от 3 млн циклов до 20 млн циклов.

Количество полюсов

Для питания трехфазных электромоторов в большинстве случаев используются трехполюсные магнитные пускатели. Но, иногда возникают ситуации (например, когда источником нагрузки являются электронагревательные системы либо сети освещения), когда лучшим вариантом будет выбор многополюсного пускателя (среди таких устройств зарубежного производства встречаются аппараты с восемью и более полюсами).

Смотрите так же:  Измерение сопротивления электрической цепи омметром

Напряжение катушки (номинальное)

Большая часть пускателей, используемых при управлении электрооборудованием, имеют установленные в них катушки, рассчитанные на тоже напряжение, что и питающая сеть. При этом, иногда может возникнуть потребность в пускателе, имеющим катушку с напряжением, отличным от сетевого (к примеру, при обустройстве автоматических цепей). Производимые в настоящее время ПУ позволяют выбрать катушку под любое стандартное напряжение (9, 12,24,36…380 вольт, а некоторые и под более высокое).

Количество вспомогательных контактов и их параметры

Кроме главных контактов, служащих для коммутации основных электрических цепей, большинство магнитных пускателей также имеет и дополнительные (вспомогательные), срабатывание которых происходит одновременно со срабатыванием главных. Основное их предназначение – подключение сигнальных устройств, цепей блокировки, управления и других. Все эти дополнительные контакты делятся на два типа – нормально замкнутые и нормально разомкнутые. Первые замкнуты при выключенной главной катушке, и наоборот, а вторые синхронны с ней.

Возможность реверса

Для управления реверсивными электромоторами следует выбирать реверсивные ПУ, внутри которых находятся два отдельных пускателя, подсоединенных друг к другу.

В базовом исполнении магнитные пускатели, как правило, не имеют систем защиты электрооборудования. При необходимости этот блок можно приобрести дополнительно. Кроме этого, как и для всего электрооборудования, при выборе ПУ следует обратить внимание на величину его климатического параметра (IP) – чем хуже условия среды, в которых он будет работать, тем величина этого параметра должна быть выше.

Пускатель в корпусе

Полезное видео

С советами экспертов по выбору магнитного пускателя вы также можете ознакомиться на видео ниже:

Заключение

Таким образом, подходить к выбору магнитного пускателя стоит очень серьезно – ведь он имеет большое число характеристик, правильный выбор которых обеспечит надежную исправную работу как самого устройства, так и всей электрической цепи.

2.2.3. Выбор магнитных пускателей

Магнитный пускатель – это электрический аппарат,предназначенный для пуска, остановки, реверсирования и защиты асинхронных электродвигателей. Его практически единственное отличие от контакторов – наличие защиты от токовых перегрузок (тепловые реле). Выбор магнитных пускателей осуществляется исходя из следующих условий:

Выбор теплового реле.

В указанных выше соотношениях представлены следующие обозначения: Uном – номинальное напряжение, на которое рассчитан магнитный пускатель; Uном.сети – номинальное напряжение сети; Iном –номинальный ток магнитного пускателя;Iпрод.расч – расчетный ток продолжительного режима (в нашем случае это номинальный ток двигателяIном.дв);Iпред – предельный включаемый и отключаемый ток.

Технические данные некоторых серий магнитных пускателей приведены в табл. 2.10.

Технические данные магнитных пускателей

Номинальный ток, А, при 380/500 В

Предельный включаемый и отключаемый ток, А, при 380 В и cosφ = 0,4

мощность, потребляемая обмоткой, ВА

Магнитные пускатели серии ПМЕ – это пускатели с прямоходовой магнитной системой и управлением на переменном токе. Напряжение от 36 до 500 В. Используются для управления асинхронными двигателями с короткозамкнутым ротором. Выпускаются в открытом, защищенном и пылебрызгонепроницаемом исполнениях, с тепловыми реле и без них, бывают реверсивными и нереверсивными.

Магнитные пускатели серии ПАЕ – это пускатели с управлением на переменном токе. Применяются преимущественно в станкостроении.

Выпускаются в открытом, защищенном исполнении, бывают реверсивными, нереверсивными, с тепловой защитой и без нее.

2.2.4. Выбор тепловых реле

Тепловые реле служат для защиты электроустановок от токовых перегрузок недопустимой продолжительности. Такая защита имеет огромное значение, т.к. тепловые перегрузки вызывают, в первую очередь, ускоренные старение и разрушение изоляции двигателя, что может привести к коротким замыканиям, т.е. к серьезной аварии и преждевременному выходу электрооборудования из строя.

Основой конструкции теплового реле является биметаллический элемент, который при нагреве изгибается, воздействуя на механизм переключения контактов.

Реле срабатывает, если ток перегрузки равен току уставки реле или больше него. Следует отметить, что тепловой процесс инерционен по своей природе, поэтому срабатывание реле происходит с некоторой выдержкой времени, которая тем меньше, чем больше величина перегрузок; при очень больших перегрузках реле срабатывает почти мгновенно. Однако, вследствие инерционности теплового процесса, реле не может обеспечить защиту от режима КЗ, и должно быть само защищено от него. Если этого не сделать, то реле будет нагреваться без отдачи тепла в окружающую среду и выйдет из строя до того, как успеет воздействовать на контактную систему.

При выборе тепловых реле следует ориентироваться на следующие номинальные данные:

номинальное напряжение реле Uном.р – наибольшее из номинальных напряжений сетей, в которых допускается применение данного типа реле;

номинальный ток реле Iном.р – наибольший ток, длительное протекание которого не вызывает срабатывания реле;

номинальный ток нагревателя Iном.нагр – номинальный ток, при длительном протекании которого через реле с данным нагревателем оно не срабатывает;

номинальный ток уставки реле Iном.уст – наибольший длительный ток, на который должно быть настроено реле, не вызывающий его срабатывание.

Iном.уст.мин = (0,75 ÷ 0,85)Iном.нагр.

Iном.уст.макс = (1,15 ÷ 1,25)Iном.нагр.

Тепловое реле может надежно защищать электродвигатель только в том случае, если законы нагревания и охлаждения теплового элемента реле и защищаемого двигателя подобны. А это возможно лишь в длительном режиме работы при спокойном характере нагрузки. Кроме того, при выборе тепловых реле дополнительную трудность представляет влияние на работу реле температуры окружающей среды, которую необходимо учитывать.

Можно рекомендовать следующий порядок выбора тепловых реле (считаем, что работа ведется в длительном режиме, номинальная температура окружающего воздухаtокр.н., как правило, принимается равной 40°С):

1. Выбираем предварительно, что

2. Приводим Iном.нагр к действительной температуре окружающей среды, т.е. к tокр.

, (2.1)

где δ – изменениеIном.нагр на каждые 10°С разницы величиныtокр по сравнению сtокр.н. Берется из паспорта реле.

Принимаем δ в зависимости от серии реле, %:

реле серии РТ – 6%;

реле серии ТРП – 5%;

реле серии ТРТ – 4%;

реле серии ТРН – 2%.

3. Выбираем номинальное значение тока уставки Iном.уст:

Iном.уст. = Iном.дв, если t = tокр;

Iном.уст. =Iном.дв/α, еслиt≠tокр.

4. Окончательно выбираем номинальный ток нагревателя Iном.нагр:

.

Выбранные таким образом тепловые реле при тщательной нагрузке будут вполне надежно защищать двигатель от нежелательных длительных перегрузок свыше 15–20%.

В настоящее время промышленностью широко выпускаются реле серий РТЛ, ТРН, ТРП, ТРТ и некоторые другие.

Технические данные реле серии РТЛ представлены в табл. 2.11, серии ТРН – в табл. 2.12, серии ТРТ – в табл. 2.13, серии ТРП – в табл. 2.14.

Основные технические данные тепловых реле серии РТЛ

Номинальный ток реле, А

Диапазон регулирования номинального тока несрабатывания, А

Максимальный ток продолжительного режима при tокр=40°С, А

Мощность, потребляемая одним полюсом реле, Вт

Похожие статьи:

  • Сечение кабеля ввгнг 3х25 Силовой кабель ВВГнг 3х25+1х16 с медными жилами Силовой кабель ВВГнг 3х25+1х16 медный, с ПВХ изоляцией в ПВХ оболочке, негорючий – не распространяющий горение: Конструкция кабеля ВВГнг 3х25+1х16: Кабель ВВГнг 3х25+1х16 применение: […]
  • Сечение кабеля 16мм Силовой кабель ВВГнг 5х16 с медными жилами Силовой кабель ВВГнг 5х16 медный, с ПВХ изоляцией в ПВХ оболочке, негорючий – не распространяющий горение: Конструкция кабеля ВВГнг 5х16: Кабель ВВГнг 5*16 применение: Медный кабель ВВГнг […]
  • Зажим плашечный для заземляющего провода 066 Зажим плашечный для заземляющего провода КС-066-1 Зажим плашечный для заземляющего провода КС-066-1 Арматура для СИП: Зажим "крокодил" ЗКИ 10А 56мм в изоляции красный (10шт) TDM Зажим "крокодил" ЗКИ 10А 56мм в изоляции красный/черный […]
  • Трансформатор повышающий 12 на 220 вольт Далее изолируем эту обмотку (желательно тканевой изолентой) и мотаем точно такую же обмотку поверх первой. Намотка делается таким же образом, провод опять состоит из 12 жил миллиметровых проводов, количество витков тоже 5. Далее нужно […]
  • Схема запуска трехфазного двигателя с 220 без конденсаторов Бесконденсаторный пуск трехфазных электродвигателей от однофазной сети Как известно, для запуска трехфазного электродвигателя (ЭД) с короткозамкнутым ротором от однофазной сети наиболее часто в качестве фазосдвигающего элемента […]
  • Провода намоточные Провода обмоточные с волокнистой изоляцией Обмоточные провода с волокнистой изоляцией изготовляют из алюминиевой или медной проволоки путем обмотки ее одним, дву­мя или несколькими слоями волокнистых материалов (шелк, хлоп­чатобумажная […]