Мера измерения тока

Единицы измерения напряжения в системе МКСА

Наименование
величины и ее обозначение

Наименование
единиц

Соотношение
с основной единицей

Единицы измерения тока в системе МКСА

Наименование
величины и ее обозначение

Наименование
единиц

Соотношение
с основной единицей

Единицы измерения сопротивления в системе МКСА

Наименование
величины и ее обозначение

Наименование
единиц

Соотношение
с основной единицей

Единицы электрической энергии в системе МКСА

Наименование
величины и ее обозначение

Наименование
единиц

Соотношение
с основной единицей

Единицы измерения мощности в системе МКСА

Наименование
величины и ее обозначение

Наименование
единиц

Соотношение
с основной единицей

Электрическое напряжение. Определение, виды, единицы измерения

Под электрическим напряжением понимают работу, совершаемую электрическим полем для перемещения заряда напряженностью в 1 Кл (кулон) из одной точки проводника в другую.

Как возникает напряжение?

Все вещества состоят из атомов, представляющих собой положительно заряженное ядро, вокруг которого с большой скоростью кружатся более мелкие отрицательные электроны. В общем случае атомы нейтральны, так как количество электронов совпадает с числом протонов в ядре.

Однако если некоторое количество электронов отнять из атомов, то они будут стремиться притянуть такое же их количество, формируя вокруг себя плюсовое поле. Если же добавить электронов, то возникнет их избыток, и отрицательное поле. Формируются потенциалы – положительный и отрицательный.

При их взаимодействии возникнет взаимное притяжение.

Чем больше будет величина различия – разность потенциалов – тем сильнее электроны из материала с их избыточным содержанием будут перетягиваться к материалу с их недостатком. Тем сильнее будет электрическое поле и его напряжение.

Если соединить потенциалы с различными зарядами проводников, то возникнет электрический ток – направленное движение носителей заряда, стремящееся устранить разницу потенциалов. Для перемещения по проводнику зарядов силы электрического поля совершают работу, которая и характеризуется понятием электрического напряжения.

В чем измеряется

Единицей напряжения называют вольт (В). Один Вольт выражается в разности потенциалов двух точек электрического поля, силы которого совершают работу в 1 Дж для перемещения заряда в 1 Кл из первой точки во вторую. Измеряют напряжение специальным прибором — вольтметром.

Таким образом, значение 220 В подразумевает, что электрическое поле данной сети способно совершить работу (потратить энергию) в 220 Дж для «протаскивания» зарядов через цепь и нагрузку.

От чего зависит напряжение?

Напряжение участка цепи зависит от:

Виды напряжения

Постоянное напряжение

Напряжение в электрической сети постоянно, когда с одной ее стороны всегда положительный потенциал, а с другой – отрицательный. Электрический ток в этом случае имеет одно направление и является постоянным.

Напряжение в цепи постоянного тока определяется как разность потенциалов на его концах.

При подключении нагрузки в цепь постоянного тока важно не перепутать контакты, иначе устройство может выйти из строя. Классическим примером источника постоянного напряжения являются батарейки. Применяют сети постоянного тока, когда не требуется передавать энергию на большие расстояния: во всех видах транспорта – от мотоциклов до космических аппаратов, в военной технике, электроэнергетике и телекоммуникациях, при аварийном электрообеспечении, в промышленности (электролиз, выплавка в дуговых электропечах и т.д.).

Переменное напряжение

Если периодически менять полярность потенциалов, либо перемещать их в пространстве, то и электрический ток устремится в обратном направлении. Количество таких изменений направления за определенное время показывает характеристика, называемая частотой. Например, стандартные 50 герц означают, что полярность напряжения в сети меняется за секунду 50 раз.

Напряжение в электрических сетях переменного тока является временной функцией.

Чаще всего используется закон синусоидальных колебаний.

Так получается за счет того, что переменный ток возникает в катушке асинхронных двигателей за счет вращения вокруг нее электромагнита. Если развернуть вращение по времени, то получается синусоида.

Переменный ток применяют при необходимости передавать энергию на значительные расстояния. В этих случаях эффективно использование трехфазных сетей: потери электроэнергии в проводах минимальны, простая электрогенерация (благодаря трехфазным электродвигателям без коллектора), выгодно экономически.

Трехфазный ток получают в трехфазных электродвигателях

. В них имеются сразу три катушки проводов, расположенных равномерно по кругу – через 120 градусов. Поэтому и синусоиды трехфазного тока отстают друг от друга на этот угол. Геомертическое представление трехфазного напряжения и тока выглядит в виде векторной диаграммы.

Трехфазная электросеть состоит из четырех проводов – трех фазных и одного нулевого. напряжение между проводами нулевым и фазным равно 220 В и называется фазным. Между фазными напряжение также существует, называется линейным и равно 380 В (разность потенциалов между двумя фазными проводами). В зависимости от вида подключения в трехфазной сети можно получить или фазное напряжение, или линейное.

Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и .

Единицы измерения напряжения, тока и сопротивления

Понятие об электрическом токе. Проводники и изоляторы электрического тока. Напряжение. Единицы измерения напряжения — вольт. Сила тока. Единица измерения силы тока — ампер. Сопротивление. Единица измерения сопротивления — ом. Закон Ома. [c.551]

Величина, которая характеризует противостояние вещества электрическому току, называется сопротивлением и обозначается буквой К, измеряется в Омах(1 Ом Единица измерения Ом (иногда обозначается буквой греческого алфавита ii) названа в честь немецкого ученого Георга Симона Ома, который в 1827 году определил отношения между напряжением, током и сопротивлением. [c.334]

Для измерения тока, сопротивления и величины напряжения введены следующие единицы ампер (а), ом и вольт в). [c.10]

Понятие о величине тока, сопротивлении проводника и напряжении тока закон Ома. Измерение величины и напряжения тока, правила включения в электрическую цепь амперметра и вольтметра. Понятие о мощности и работе тока единицы их измерения. [c.520]

Разделим сечения всех тел на элементы с примерно постоянной плотностью тока и запишем для них уравнение (2.74), учитывая, что ZQ = Гр, под Гд и XQp понимаются сопротивления, приходящиеся на единицу длины, а UQ — кусочно-постоянное напряжение на элементах, измеренное относительно некоторого провода, взятого в качестве измерительного и( =Ов для Q B , UQ = [c.90]

Удельное объемное электрическое сопротивление р — величина. равная отношению модуля напряженности электрического поля к модулю плотности тока, скалярная для изотропного вещества и тензорная для анизотропного вещества (ПОСТ 19880-74) [9]. Эта величина позволяет оценить электрическое сопротивление материала при протекании через его объем постоянного тока. Для практических измерений часто используют дольную единицу Ом см. Величина р низкокачественных диэлектриков при нормальной температуре и влажности находится в пределах 10 . 10 Ом м, для высококачественных — в пределах до l0 . 10 Ом м. [c.160]

Измерительная схема (см. рис. 4.1) позволяет регулировкой корректирующих сопротивлений 1 и / к2 изменять К, т. е. устанавливать его величину, например /С=1, /(=0,1 и другие удобные значения в каждом конкретном случае в зависимости от соотнощения Г]/Г2. Регулируя /(к 1 и / к2, мы изменяем потенциалы в точках А ц. В измерительной схемы, тем самым даже при измерении одного и того же ионного пучка на обоих каналах мы изменяем значения К, не регулируя в действительности ни п. Гг, ни 5г. Пусть, например, требуется получить /(=1. Для этого любой ионный пучок, взятый из спектра остаточных газов или полученный при напуске в ионный источник какого-либо газа, поочередно переводится на приемные щели правого и левого усилителей. Напряжение на выходе каждого усилителя измеряют компенсационным методом, для чего декадный делитель напряжения Р подключают к батарее 10—15 в, относительно напряжения которой с помощью мостовой схемы сравнивают напряжение каждого усилителя. Затем регулировкой корректирующих сопротивлений /(кь Рк2 добиваются, чтобы потенциалы в точках А и В схемы были равны. Точное определение равенства контролируют при помощи гальванометра. Этим способом можно установить выходные напряжения усилителей так, чтобы К стал равным единице. Точность установки //1 Пг определяется стабильностью ионного тока измеряемого пика. [c.114]

Примечание. Ь технической литературе и в учебных пособиях и учебниках иногда применяются вместо указанных в таблице нижеследующие единицы измерений напряженность электрического поля — в вольтах на сантиметр (в1см), электрическое смещение — в кулонах на квадратный сантиметр к1см у, плотность тока — в амперах на квадратный миллиметр (а/ммЛ удельное сопротивление — ом, умноженный на сантиметр (омсм) [c.329]

Применение национальных и международных эталонов как эталонов единиц системы не утратило своего значения, так как высокая точность, с которой можно сравнивать между собой разные эталоны одной и той же единицы, оказывается весьма полезной для практики. Дело в том. что относительная погрешность при измерении силы тока с помощью токовых весов, по которым определяется ампер, не меньше 5 Ю . В то же время эталоны электродвижущей силы и сопротивления позволяют производить то же измерение с точностью, па порядок большей. Здесь существенную роль сыграло открытие нового эффекта, теоретически предсказанного английским физиком Б. Джозефсоном в 1962 г.и затем доказанного экспериментально. Сущность эффекта Джозефсона состоит в том, что если. приложить напряжение I к двум сверхпроводникам, Ааежду которыми существует неплотный контакт (например, пленка окисла толщиной около 10″ м), то через этот контакт идет сверхпроводящий [c.280]

Смотрите так же:  Автомат узо 50а

Нелинейные свойства резисторов. Величина сопротивления резистора. может зависеть также от факторов, характеризующих режим его работы (величина приложенного напряжения, протекающий ток, вид переменного поля — непрерывный или импульсный режим). Изхменения сопротивления при этом выражаются в процентах на единицу измерения фактора либо просто в процентах при переходе от не-пргрывного к импульсному режиму и оцениваются соответственно коэффициентами напряжения, нагрузки и импульсной нагрузки. [c.125]

В рассматриваемой нами замкнутой цепи ток создается благодаря воздействию э. д. с. источниг а. Та часть э. д. с., которая затрачивается на преодоление сопротивления внешней цепи или отдельного ее участка, называется напряжением. Напряжение и э. д. с. измеряются одними и теми же единицами — вольтами (в). Для измерения напряжения и э. д. с. служит прибор, называемый вольтметром. Если вольтметр 2 (см. рис. 33) подключить к полюсам источника тока, то при замкнутой цепи этот прибор покажет напряжение источника тока, а при разомкнутой — его а. д. с. [c.88]

Источник электрической энергии производит определенную работу по перемещению электрических зарядов в замкнутой цепи. Работа, соверщаемая источником электрической энергии при перемещении единицы положительного электричества в замкнутой электрической цепи, называется электродвижущей силой источника (ЭДС). Электродвижущая сила источника Е является причиной, поддерживающей разность электрических потенциалов (напряжение) на его зажимах. ЭДС источника вызывает электрический ток в замкнутой цепи, преодолевая ее внешнее и внутреннее сопротивление. Электродвижущая сила источника электроэнергии является одной из важнейших характеристик его. Единицей измерения ЭДС служит волы (В). [c.4]

ЛОГОМЕТРЫ, приборы, измеряющие отношение двух токов. Пользуясь Л., можно изм(рить непосредственно разнообразные величины. Для измерения сопротивления схему включения Л. осуществляют так, чтобы один из двух токов оставался постоянным, а другой изменялся бы в аависимости от искомого сопротивления. Тогда, измеряя отношение этих токов, мошно шкалу Л. градуировать непосредственно в единицах сопротивления. Применение Л. в таких случаях имеет то преимущество, что колебание напряжения источника обоих токов не влияет на измерение, т. к. при изменении напряжения одинаково изменяются оба тока, а их отношение остается неизменным. Для измерения отношения токов можно воспользоваться любой системой измерительных приборов магнитоэлектрический — для постоянного тока, электродинамической, электромагни гной или индукционной — для переменного тока. Во всех случаях Л имеет две цепи, по к-рым протекают два тока. Оба тока протекают по катушкам (подвижным или неподвижным) измеряющего механизма и создают два вращающих момента. Измеряющий механизм осуществляется так, чтобы эти моменты действовали навстречу друг другу. Поэтому один из моментов служит вращаюпцш, а другой противодействующим В Л. механических противодействуюищх моментов нет. Положение равновесия подвижной части прибора определяется равенством двух электрических моментов, создаваемых двумя токами. Показание Л. зависит от соотношения между этими токами и не зависит от абсолютной величины каждого из них. При отсутствии тока подвижная часть находится в безразличном равновесии и может остановиться в любом случайном положении. Это может послужить поводом к ошибочным [c.118]

Величину 2= роС называют удельным акустическим (волновым) сопротивлением среды. Она имеет важнейшее значение для описания распространения, излучения и отражения упругих волн. Выражение (2.7) иногда называют акус -тическим законом Ома. В самом деле, если поставить в соответствие электрическому напряжению акустическое давление, электрическому току — колебательную скорость, электрическому сопротивлению — удельное акустическое сопротивление, то можно сопоставить электрический закон Ома 11= 1К и акустический закон Ома p = vZ.B соответствии с этой аналогией единица измерения 2 получила название акустического Ома (1 акОм = 1 кг/(м с)). [c.35]

Сопротивление (/ , г) — свойство тел препятствовать движению зарядов под действием электрического поля. Практическая единица сопротивления — ом—есть сопротивление проводника, по которому протекает ток в а при приложении к его концам напряжения в 1 в. Сопротивлением в 1 ом обладает при О С столб ртути постоянного сечения длиной 106,3 см, имеющий массу 14,4521 г. Для измерения больших сопротивлений употребляются килоом, равный 1 ком = 10 ом, и мегом, равный 1 мгом = 10 ом. [c.513]

К приборам, основанным на резонансных методах, относятся куметры — измерители добротности. Для определения С и 10 6х диэлектрика в них используется принцип вариации реактивной проводимости. С генератором Г высокой частоты индуктивно связан контур, который состоит из катушки связи, сменной катушки индуктивности (Ь, Я ) и конденсатора переменной емкости С параллельно конденсатору включен электронный вольтметр, шкала которого проградуирована в единицах добротности параллельно, кроме того, к зажимам может присоединяться испытуемый конденсатор (рис. 4-8, а). Конденсатор переменной емкости практически не имеет потерь, поэтому сопротивление контура без образца равняется сопротивлению Катушка связи нагружена на безреактивное сопротивление / д, величина которого весьма мала по сравнению с сопротивлением контура Я поэтому можно считать, что весь ток, измеряемый миллиамперметром, практически идет через сопротивление Я . Подводимое напряжение, которое равно напряжению на сопротивлении при измерениях не должно меняться. С этой целью поддерживается один и тот же ток в цепи катушки связи величина тока контролируется термомиллиамперметром (рис. 4-7), а в некоторых схемах — с помощью вспомогательного вольтметра. Иногда напряжение вводится в контур индуктивным путем [c.92]

Высокомегомные резисторы имеют величину сопротивления от единиц — десятков мегаом до тысячи гигаом. Отличительной особенностью этих резисторов является низкий уровень номинальной мощности рассеивания (порядка десятков милливатт). Точность резисторов 5—30%, ТКС ж 10″ 1/град, рабочие напряжения — сотни вольт, изменение сопротивления к концу срока службы 10—30%. Высокомегомные резисторы применяют в измерительной РЭА (для измерения весьма слабых токов низкой частоты, в дозиметрах излучений и т. п.). [c.142]

На Рис. 14.26 показана принципиальная схема Р-метра, основной частью которого является последовательный колебательный контур. К колебательному контуру через очень маленькое сопротивление порядка 0.02 Ом подключен генератор, который и обеспечивает протекание тока через контур. Такой генератор работает как источник напряжения с очень маленьким внутренним сопротивлением. Это напряжение обычно измеряется при помощи термопарного измерителя, у которого есть специальная шкала, выдающая значение коэффициента, на который необходимо умножить измеренное на переменном конденсаторе напряжение У . Это напряжение У может быть измерено при помощи электронного вольтметра, обладающего шкалой, непосредственно откалиброванной в единицах добротности. На рисунке штриховой линией показано подключение катушки индуктивности неизвестной величины для измерения добротности такого 1С-контура, а, следовательно, и величины индуктивности этой катушки. Правда, при таком подключении необходимо учитывать емкость самой катушки. [c.237]

Смотреть страницы где упоминается термин Единицы измерения напряжения, тока и сопротивления : [c.258] [c.277] [c.82] [c.5] [c.361] [c.304] [c.55] [c.113] Смотреть главы в:

Единицы измерения физических величин. Часть 2

Добрый день, друзья!

В первой части статьи мы рассмотрели такие единицы физических величин, как литр, метр и вольт. Продолжим это увлекательное дело и рассмотрим, что такое

В амперах измеряется сила потребляемого устройством тока.

Электрический ток — это направленное движение электрических частиц.

Его можно сравнить с движением крови в живом организме.

Еще одна наглядная аналогия: ток — это стадо, а пастух — это напряжение. Чем сильнее пастух щелкает бичом, тем быстрее движется стадо. Чем больше напряжение, тем сильнее электрический ток.

Эту зависимость называют еще законом Ома: I =U/R

Здесь U — напряжение, I — электрический ток, R — сопротивление цепи. Из закона следует, что чем больше сопротивление электрической цепи (при одном и том же напряжении), тем меньше ток. Компьютер может потреблять от своего блока питания токи более десятка ампер по каждому из основных напряжений. Это большие величины!

До половины мощности потребляет процессор. Современные процессоры могут потреблять более 100 Вт — как лампа накаливания, установленная в светильник на нашем рабочем столе. Если учесть, что ядро процессора питается напряжением немногим более 1 В, то через понижающий импульсный стабилизатор протекают токи в десятки ампер!

Такая мощность разогревает процессор, поэтому на него устанавливают охладитель (cooler), состоящий из металлического радиатора и вентилятора. Вентилятор обдувает ребра радиатора, унося от них тепло. Если бы не было вентилятора, потребовался бы радиатор гораздо больших размеров.

Смотрите так же:  10 квт-это 3 фазы или нет

Интересно отметить, что хотя через силовые ключи импульсного преобразователя, расположенного на материнской плате, курсируют токи в десятки ампер, на них не ставят радиаторы (как на процессор).

Дело в том, что в качестве ключей используют полевые транзисторы, которые в открытом состоянии имеют очень небольшое сопротивление канала — 0,005 Ом и менее. Поэтому на них — в соответствии с законом Ома — падает очень небольшое напряжение. Соответственно, рассеиваемая мощность невелика.

Привод шпинделя не очень быстрого винчестера, который питается напряжением 12 В, потребляет ток в доли ампера. Чем больше обороты шпинделя, тем больше величина потребляемого тока. Современные скоростные электромеханические винчестеры могут иметь скорость 15 000 об/мин.

Сделав шаг в сторону от гигантомании, вспомним, что светодиодные индикаторы на передней панели системного блока (или принтера) потребляют несколько миллиампер (мА). Завершая разговор о единице измерения тока, отметим, что настройки компьютера хранятся в микросхеме CMOS Setup, которая потребляет от литиевой батарейки ток менее 1 микроампера (мкА). Поэтому энергии такой небольшой «таблетки» хватает на несколько лет.

Небольшая величина тока определяется технологией производства CMOS (Complementary Metal-Oxide-Semiconductor). К слову, процессоры также сделаны по этой технологии. Для того, чтобы элемент КМОП переключился, нужна небольшая энергия на перезаряд его внутренних емкостей. В процессоре этих элементов миллионы и переключаются они с частотой в миллиарды герц. Отсюда и большая потребляемая мощность.

Единица измерения мощности названа в честь английского физика Уатта. Она также имеет непосредственное отношение к компьютерной технике и периферийным устройствам, ведь все они потребляют электричество. Мощность — это произведение напряжения на потребляемый ток: P = U * I. Видно, что чем больший ток потребляет устройство, тем большую мощность отдает источник питания.

В компьютере больше всего потребляет обычно процессор. Наиболее мощные процессоры могут потреблять до 130 Вт! Десяток — другой ватт может «кушать» сама материнская плата, ориентировочно десяток ватт нужен винчестеру со скоростью 7 200 об/мин. Требуют для себя питания и приводы DVD, и платы расширения (особенно видеокарта). Если в компьютере установлена мощная игровая видеокарта, она может потреблять даже больше чем процессор!

Вентиляторы без электрического тока вращаться не будут. Небольшая энергия расходуется на засветку индикаторов, расположенных на передней панели.

Некоторые любители визуальных эффектов размещают на корпусе и вентиляторах множество разноцветных светодиодов. И компьютер напоминает порой новогоднюю елку.

В общем, все, что вращается, переключается и светится, требует для себя «еды». «Ресторатором» выступает блок питания, поставляющий различные «блюда» (напряжения). Компьютерный блок питания обеспечивает основные напряжения +3,3 В, +5 В, +12 В. Общая потребляемая мощность — это сумма мощностей, потребляемых по каждому напряжению.

Отметим, что в БП существует и дежурный источник напряжения +5 VSB, который питает часть компонентов материнской платы (если вилка кабеля вставлена в сеть). Он запускает основной инвертор блока питания и должен обеспечивать ток 2 А или даже больше. Вот вам и еще десяток ватт к заказам «ресторатора».

Если мощность, потребляемая всеми цепями компьютера будет больше той мощности, которую может обеспечить блок питания, то нормальной работы, естественно, не будет. В лучшем случае в БП сработает защита, которая уменьшит все выходные напряжения до нуля. А в худшем случае блок питания просто сгорит!

Для надежной работы блок питания должен обладать запасом, т. е. отдаваемая им энергия должна превышать сумму мощностей, потребляемых каждым устройством. На этикетках дешевых блоков питания неизвестных производителей нередко пишут завышенное значение мощности. Такой БП либо «не потянет» нагрузку, либо будет работать с перегрузкой и перегревом. В результате надежность работы снизится.

Заканчивая разговор о ваттах, скажем несколько слов

Об активной и пассивной мощности

Активная мощность — это та, которая производит полезную работу: переключает элементы процессора, вращает шпиндель винчестера, двигатель привода DVD, вентиляторы, зажигает индикаторы. Таким образом, потребляемая компьютером мощность активна.

С переменным током и напряжение сети 220 В дело обстоит сложнее. Компьютерный блок питания имеет реактивные элементы (конденсаторы, дроссели), поэтому между током и напряжением существует сдвиг фаз.

В курсе электротехники доказывается, что из-за этого сдвига появляется реактивная составляющая мощности, которая полезной работы не производит. Она только качается между генератором и нагрузкой, бесполезно нагревая провода. Полная мощность включает в себя активную и реактивную мощности, поэтому она всегда больше активной. Измеряется она не в ваттах, а в вольт-амперах (В*А).

Чтобы уменьшить реактивную мощность (и снизить нагрузку на электрическую проводку), в компьютерный блок питания встраивают устройство PFC (Power Factor Correction, коррекция коэффициента мощности). Они могут быть активными и пассивными.

Пассивный PFC — это дроссель, включенный последовательно с высоковольтным выпрямителем. Активный — специальное устройство с силовыми ключами. PFC увеличивает вес и стоимость блока питания. Наилучшую компенсацию обеспечивают активные PFC.

В настоящее время мощность БП, устанавливаемых в бытовых и офисных компьютерах колеблется примерно от 300 до 600 Вт. В серверах могут использоваться БП с мощностью 1 — 1,5 кВт. Вспомним школьный курс физики, где нам рассказывали, что одна лошадиная сила — это примерно 736 Вт.

Если учесть, что серверная — это небольшое помещение (и там стоит пяток серверов), то получится, что в маленькой комнатке стучит копытами табун лошадей. После долгого и утомительного трудового дня там и ржание можно услышать :-))

Заканчивая наш краткий разговор о физических величинах, приведем список приставок.

Много приставок придумано… Что-то привычно для слуха, что-то нет. Но жизнь меняется, и непривычное становится привычным. Вряд ли десять лет назад мы думали, что объемы винчестеров, установленных в наши домашние компьютеры, будут исчисляться терабайтами. «Светлое будущее» уже наступило 🙂

Эталонный быт

Как выглядят и как «живут» идеальные единицы измерения

Человечество окончательно отказывается от материальных эталонов, теперь все главные единицы СИ будут привязаны к фундаментальным физическим константам. От точных измерений времени, расстояний и масс сегодня зависит множество вещей — от спутниковой навигации до правильной работы магазинных весов. А точность этих измерений зависит от эталонов — сложных устройств, которые сегодня обслуживают тысячи ученых и инженеров. Нужны ли будут они в новой «нематериальной» метрологии, разбиралась редакция N + 1.

В международной системе единиц измерения СИ (от французского Le Systeme International d’Unites, SI) приняты семь основных величин, через которые определяются все остальные, производные единицы. Для точного измерения этих величин ученые создают эталоны, ведь измерение и есть сравнение чего-либо с эталоном. Первый эталон системы СИ — эталон килограмма — был официально принят в июне 1799 года во Французской республике. С тех пор основные единицы не единожды переопределялись, например единица длины, метр, первоначально была привязана к длине парижского меридиана, потом — к длине волны излучения атома криптона-86 и, наконец, — к скорости света в вакууме. Почти все другие единицы тоже постепенно оказались привязаны к фундаментальным физическим константам (ФФК).

Сейчас во Франции проходит 26-я Генеральная конференции по мерам и весам, и на ней будет принято решение еще раз переопределить килограмм, моль, кельвин и ампер. Американский Национальный институт стандартов (NIST) называет это будущее решение «поворотным пунктом в истории человечества». Система СИ будет обновлена, и из нее исчезнет последний материальный эталон — эталон килограмма. Все единицы будут привязаны к константам, не подверженным износу.

В Россию, согласно реестру Росстандарта, хранятся 165 различных эталонов основных и производных единиц. Что же будет с ними дальше, после новой реформы?

«Система СИ будет окончательно „отвязана“ от материального мира. Килограмм, вслед за остальными единицами, будет переопределен через фундаментальную физическую константу. Но это не значит, что и метрология станет „нематериальной“. Останутся эталоны, останется необходимость их сличений, нужно будет, как и раньше, обеспечивать единство и точность измерений, технически совершенствовать оборудование, передавать единицы измерения основным потребителям — промышленности, медицине, науке. Более того, у нас прибавится работы — понадобится разрабатывать новые измерительные технологии для квантовых единиц», — сказал N + 1 руководитель ВНИИ метрологии имени Дмитрия Менделеева Антон Пронин.

В этой статье мы расскажем о том, как «живут» российские эталоны, как ученые следят за их «здоровьем» и какое будущее их ожидает.

Национальный килограмм

Российский национальный эталон килограмма (его номер в ресстре — ГЭТ 3-2008, у каждого эталона есть такой номер) — это цилиндр из сплава платины и иридия с массовыми долями 90 и 10 процентов соответственно, диаметром и высотой около 39 миллиметров. Хранится образец в лаборатории массы и силы петербургского ВНИИ метрологии. На самом деле эталонов сразу два — это копии № 12 и № 26. 12-й играет роль национального прототипа килограмма, а 26-й — роль эталона-свидетеля, способный в случае порчи или утраты 12-го его заменить.

Смотрите так же:  Методы измерения сопротивления петли фаза-ноль

Цифры 12 и 26 — это порядковые номера копий Международного прототипа килограмма (МПК), хранящегося в Международном бюро мер и весов (МБМВ) во французском городе Севр. Согласно парижскому соглашению 1875 года, за прототип — «истинный килограмм» — был принят оригинальный платино-иридиевый цилиндр, а 42 его точных копии были пронумерованы и разделены: две остались «дежурными» копиями прототипа, а остальные 40 поделили между собой страны-участницы метрической конвенции. Сплав платины и иридия химически инертен, имеет высокую твердость и износоустойчивость, относительно малый коэффициент теплового расширения, большую плотность и наделен парамагнитными свойствами.

Вес российского эталона килограмма менялся примерно на 0,3 микрограмма в год, то есть на 30 микрограмм за более чем 100 лет. Похудел эталон за счет испарения атомов с поверхности цилиндра. Остальные копии показали похожие темпы «потери массы» — от 20 до 50 микрограмм. Это достаточно большие значения для современных требований к точности. Килограмм является одной из семи основных единиц СИ, и накопленные отклонения могут стать причиной так называемого технического системного кризиса. Именно поэтому научное сообщество решило переопределить килограмм через точно измеренную и фиксированную постоянную Планка.

Свои копии килограмма Россия получила в 1893 году, и с тех пор эталон не покидал стены института метрологии, он оставался здесь даже во время блокады Ленинграда. Обе копии являются государственным достоянием и хранятся в историческом здании, спроектированном при участии самого Дмитрия Менделеева для хранения эталонов. Помещение имеет изолированный от остального здания собственный фундамент массой 750 тонн, а температура воздуха поддерживается постоянно на уровне от 18 до 22 градусов Цельсия, причем скорость изменения температуры не может меняться быстрее 0,1 градуса в час.

Но даже очень мощный фундамент не вполне спасает: все работы по передаче единицы для вторичных эталонов и метрологические сличения производятся в ночное время. Рядом с институтом — станция метро и днем возможны погрешности из-за вибраций. Кроме двух копий прототипа килограмма, в состав государственного эталона входят компараторы массы (специальные приборы для сравнения массы двух образцов), аппаратура для измерений плотности воздуха. После перехода СИ на определение всех величин через фундаментальные физические константы передача единицы должна осуществляться в условиях вакуума, поэтому недавно в лаборатории появился вакуумный компаратор.

Наша российская платино-иридиевая копия № 12 сличалась с главным эталоном недавно, в 2014 году, и перекалибровка потребуется только в 2024–2029 годах. К этому сроку в России планируется осуществить работы для независимой реализации килограмма через постоянную Планка с необходимой точностью порядка 2 × 10 -8 килограмма.

После переопределения килограмма процедура сличений останется неизменной: техническим протоколом назначается лаборатория-пилот, организующая определенную программу мероприятия с указанием сроков и участников, она же посылает поочередно всем участникам сличений артефакт и рассчитывает отклонение каждой лаборатории от опорного значения.

Единственное новшество будет заключаться в следующем. Ранее единица (килограмм) передавалась от национального эталона вторичным эталонам при помощи компаратора массы (прибора для измерений разности массы между двумя эталонами) в условиях атмосферного воздуха. Теперь же передача единицы от национального прототипа килограмма вторичным эталонам будет осуществляться с помощью вакуумного компаратора в условиях вакуума, то есть в тех же условиях, в которых калиброван прототип.

От вторичных эталонов единица передается рабочим эталонам при помощи обычных компараторов в условиях атмосферного воздуха. Далее сохраняется вся действующая иерархическая система передачи единицы, вплоть до рабочих средств измерений масс: весов торговых, аналитических, весов для взвешивания вагонов и других.

Фонтаны времени

Единица измерения времени — секунда — с 1967 года определяется как интервал времени, соответствующий 9 192 631 770 периодов излучения между двумя сверхтонкими уровнями основного состояния атома цезия-133. Это позволяет государствам создавать свои первичные эталоны единиц времени независимо от других государств.

Российский государственный первичный эталон единицы времени (его номер в реестре ГЭТ 1-2018) хранится во Всероссийском научно-исследовательском институте физико-технических и радиотехнических измерений (ВНИИФТРИ). Это устройство на основе фонтана атомов цезия. «Фонтан» устроен так: облако сверххолодных атомов цезия помещают в оптическую ловушку, а затем под действием лазера они «подпрыгивают» вверх. Затем лазеры выключают, облако медленно опускается, а другой лазер считывает значения.

Единицы измерения, используемые электрическим счетчиком

Эксплуатация и управление энергосистемой

Наиболее популярной единицей измерения, используемой счетчиком электроэнергии, является киловатт-час. Один киловатт-час равен количеству энергии, потребляемой одним киловаттом нагрузки в течение одного часа или 3 600 000 джоулей. Некоторые из энергоснабжающих компаний используют мега-джоуль SI (International System) в качестве единиц измерения в электрическом счетчике.

Единицы измерения в электрическом счетчике, которые используются для измерения спроса на электроэнергию, являются ваттами, однако, усредненными в течение периода, в большинстве случаев четверть или полчаса.

Вольт-амперы — это используются счетчиками для измерения объема всей мощности, перемещаемой через распределительную сеть, в том числе реактивной и фактической. Оно равно произведению среднеквадратичных вольт и ампер. Вольт-ампер реактивный, (varh) в килочарах — это единицы измерения, используемые электрическим счетчиком для измерения реактивной мощности. Индуктивная нагрузка или запаздывание, такое как двигатель, имеют отрицательную реактивную мощность. В то время как, с другой стороны, емкостная нагрузка или основная нагрузка имеют положительную реактивную мощность. Существует множество способов измерения искажения электрического тока нагрузками. Коэффициент мощности — это отношение резистивного к вольт-амперу. Емкостная нагрузка имеет ведущий коэффициент мощности, а индуктивная нагрузка имеет коэффициент запаздывания.

Другие единицы измерения

Существуют и другие блоки, которые отличаются от единиц измерения, используемых электрическим счетчиком. Другими словами, в дополнение к обычно используемым единицам измерений в электрическом счетчике существует много других единиц, которые можно использовать. Счетчики, которые измеряли количество заряда в кулонах, использовались в первые дни электрификации. Они зависели от постоянного напряжения питания для точного измерения потребления энергии, что не было вероятным обстоятельством для большинства поставок. Некоторые из электрических счетчиков измеряли только продолжительность времени, в течение которого протекал ток, и никакого измерения тока и величины напряжения. Эти единицы измерения в электрическом счетчике подходят только для приложений с постоянной нагрузкой. Однако ни один из этих типов, скорее всего, не будет использоваться сегодня.

Сила электрического тока. Определение. Формула для вычисления силы тока. Единицы измерения. Прибор для измерения силы тока.

Экономь время и не смотри рекламу со Знаниями Плюс

Экономь время и не смотри рекламу со Знаниями Плюс

Проверено экспертом

сила тока равна отношению электрического заряда q, прошедшего через поперечное сечение проводника, ко времени его прохождения t

Подключи Знания Плюс для доступа ко всем ответам. Быстро, без рекламы и перерывов!

Не упусти важного — подключи Знания Плюс, чтобы увидеть ответ прямо сейчас

Посмотри видео для доступа к ответу

О нет!
Просмотры ответов закончились

Подключи Знания Плюс для доступа ко всем ответам. Быстро, без рекламы и перерывов!

Не упусти важного — подключи Знания Плюс, чтобы увидеть ответ прямо сейчас

Посмотри видео для доступа к ответу

О нет!
Просмотры ответов закончились

  • Комментарии
  • Отметить нарушение

Сила электрического тока показывает, какой заряд проходит через проводник за 1 с.

Сила тока обозначается латинской буквой l.

Формула: ; где q — колическтво заряда, t — время.

Единица измерения в СИ — 1 А (ампер).

Амперметр — прибор для измерения силы тока.

Похожие статьи:

  • Активное и реактивное сопротивление провода ас-95 Форум проектировщиков электрических и слаботочных сетей Автор Тема: активное и индуктивное сопротивление проводов АС сечение 120 и 95 мм2 (Прочитано 4839 раз) 0 Пользователей и 1 Гость просматривают эту тему. Быстрый ответ […]
  • Вв провода на нексию 8кл Высоковольтные провода Нексия (8-кл) Tesla T736B Высоковольтные провода Дэу Нексия 1.5 8-кл (под трамблер). T736B. Бренд: Tesla . Состояние товара: Новый Задать вопрос по товару можно по телефонам:(096) 970-30-30(044) […]
  • К чему идут провода из котушки Сообщества › АЗЛК Club › Блог › Помогите! Правельно подключить провода к катушке зажигания После капиталки кузова собрал машину (Москвич 2141, ДВС ВАЗ-2106) с проводкой разобрался сам, но 1 проблема не знаю какие провода в какие клемы. […]
  • Электрическая варочная панель 220 вольт Подключение варочной панели Фолклиг от Икеа на 380В Уважаемые форумчане, Здравствуйте! Не кидайте камней, поиском пользовался знакомых опрашивал. Задача в следующем: дом новостройка - ввод в квартиру 380, соответственно на кухню к […]
  • Нет маркировки на узо легранд Размеры окошек для маркировки на модульке Legrand DX3 Добрый день! Есть ли у кого поблизости 1- и 2-модульные автоматы или УЗО серии Legrand DX3? Хочу распечатать маркировку, чтобы вставить в их прозрачные окошки, но самих модулей сейчас […]
  • Однофазный двигатель переменного тока с конденсатором Конденсаторный двигатель В ГОСТ 27471-87 [1] дано следующее определение:Конденсаторный двигатель - двигатель с расщепленной фазой, у которого в цепь вспомогательной обмотки постоянно включен конденсатор. Конденсаторный двигатель, хотя и […]