Методика проведения измерения сопротивления изоляции

Оглавление:

Измерение сопротивления изоляции

Компания «Элкомэлектро» выполнит измерение сопротивления изоляции и на основании полученной информации составит протоколы проверки. При выполнении замеров используется лучшее современное оборудование. Свои заявки Вы можете оставить через наш сайт, либо связавшись со специалистом электролаборатории по телефону. Проверка сопротивления изоляции будет выполнена оперативно и качественно. С клиентом строго согласуется время, когда лучше всего приступить к выполнению заказа. Ещё до начала проверки сопротивления изоляции Вы можете задать свои вопросы нашим консультантам.

Общие положения

Эта методика используется при определении параметров сопротивления изоляции кабелей, электропроводок и различного электронного оборудования — таких низковольтных установок, как ВРУ, квартирные щитки и др. С помощью замеров определяются и соответствующие показатели тех материалов, из которых сделаны полы, стены, что позволяет оценить эффективность изоляции объекта в целом. По существующим нормам и правилам сопротивление изоляции кабелей и иных частей электроцепи должна быть не меньше 0,5 МОм. Как только все измерительные работы будут выполнены, полученные данные необходимо внести в протокол проверки сопротивления изоляции проводов, кабелей, обмоток электрических машин.

Все мероприятия по измерению сопротивления изоляции осуществляются строго в соответствии с п. 612.3 ГОСТ Р 50571.16-99. Любые измерения выполняются и будут объективными только в том случае, если электроприборы отсоединены, предохранители вынуты, а лампы выкручены.

В том случае, когда в электроцепи имеются электронные приборы, выполняется измерение сопротивления изоляции между фазными проводниками и нулевыми, которые соединены вместе и заземлены. Такая предосторожность вовсе не случайна, ведь если осуществлять испытания, не соединяя токоведущие проводники, то это в итоге может привести к повреждению электроприборов. Кроме того, при вычислении параметров изоляции оборудования необходимо ориентироваться на требования, изложенные в п. 1.20. приложения 1 ПЭЭП.

В п. 413.3 Госстандарта ГОСТ Р 50571. 3-94 указывается, что токонепроводящие помещения необходимы для того, чтобы при повреждении основной изоляции нельзя было одновременно прикоснуться к тем участкам, что оказались под совершенно разными потенциалами.

Предъявляемые стандартом требования можно считать выполненными, если стены и пол помещения изолированы, а также соблюдаются следующие условия:

  • Открытые проводящие части между собой и сторонними проводящими частями должны быть удалены на расстояние, равное не менее двух метров. За зоной досягаемости эта дистанция должна как минимум равняться 1,25 метра.
  • Между открытыми и сторонними проводящими частями должен быть создан хороший барьер.
  • Сторонние проводящие части тщательно изолируются.

Сопротивление пола и стен в любой точке помещения не может быть ниже:

  • 50 кОм, если Un электрооборудования составляет не более 500 В.
  • 100 кОм, если Un электрооборудования составляет не более 500 В.

В помещениях с изоляцией требуется осуществить не менее трех измерений. Одно из них проводится в метре от сторонних токопроводящих частей, два других выполняются на большом удалении.

Методы измерения сопротивления изоляции мегаомметром

Один из самых распространенных и используемых видов мегаомметров – М 4100/1-5 на U = 100-250-500-1000-2500 В. Питание данных установок идет от генератора, который приводится в действие вручную. Оборудование также оснащено выпрямителем и логометрическим измерителем. Что касается скорости вращения рукоятки, то в процессе измерения сопротивления изоляции кабеля оптимально делать это с частотой до 120-ти оборотов в минуту.

Вал якоря оснащен эффективным центробежным регулятором, благодаря которому обеспечивается постоянное напряжение, когда увеличивающаяся скорость вращения оказывается выше номинальной.

В соответствии с принятыми стандартами с целью измерения сопротивления изоляции в электроцепи установок используют модифицированные приборы – мегаомметры М 4100/4 и М 4100/3. Они хорошо зарекомендовали себя на практике. Шкала измерений лежит в пределах 0-1000 кОм и 0-200 и 0-100 МОм. Когда измерения проходят в “кОм”, то перемычку на оборудовании требуется подсоединить к зажимам “Л” и “I”. Если измерение сопротивления изоляции кабеля осуществляется на пределе “МОм”, то сопротивление идет к зажимам “Л” и “I”.

Для того чтобы подготовить прибор и убедиться в том, что он функционирует исправно, требуется вынуть его из футляра и поставить горизонтально на устойчивую поверхность. Вращая ручку генератора, поставьте стрелку на “00” шкалы “МОм”.

Когда отклонение стрелки заметно отличается от требуемых отметок, то есть превышает расстояние, то, скорее всего, мегаомметр не исправен и его необходимо отключить. Кроме того, крайне важно, чтобы поверхность крышки была не грязной, так как пыль приводит к неточностям в измерениях при проведении проверки сопротивления изоляции. Кроме того, набившаяся грязь снижает срок службы прибора.

Прежде чем первый раз измерить сопротивление изоляции кабеля, обязательно необходимо изучить прилагаемую к мегаомметру инструкцию. Это позволит выполнить работу максимально оперативно и качественно.

Методика и способы измерения сопротивления изоляции

Все измерения проводятся для выявления несоответствия изоляционного сопротивления нормам, которые установлены для данных материалов.

Порядок методики проведения измерения

В соответствии с нормой стандарта, сопротивление изоляции электропроводок, различного электрооборудования, квартирных и этажных щитков не может быть выше 0,5 мОм. Нормативные документы предусматривают определенный порядок проведения замеров по данной методике:

  • измерения между проводниками тока, взятыми по очереди;
  • измерения между проводниками тока и землей.

Методика измерения сопротивления изоляции предусматривает работы, в которых соблюдаются требования техники безопасности. Во-первых, нужно отсоединить все электроприборы. Кроме того, не забудьте выкрутить лампочки, и снять предохранители.

Наличие в цепи электронных приборов предусматривает измерение сопротивления между фазами обесточенных нейтральных проводников, которые соединены с землей и между собой. Эта мера предосторожности соблюдается для того, чтобы не повредить электронику.

Приборы, используемые в методике проведения измерений

Есть многие способы измерения сопротивления изоляции. В большинстве случаев изоляционное сопротивление измеряют мегаомметром. Он состоит из генератора (главного источника напряжения с постоянным или переменным током) и непосредственно механизма для измерения (логометр), к прибору присоединяются резисторы.

Мегаомметры допускаются к работе разных марок и модификаций, причем класс точности допускается не больше четырех.

Перед началом измерений специалисты проводят подготовительные работы:

  1. необходимо убедиться, что в кабеле нет напряжения;
  2. снять с токоведущих проводов остатки заряда;
  3. очистить провода от пыли и грязи.

В соответствии с нужной величиной сопротивления изоляции, на приборе выбирается необходимый предел измерений и проводится контрольная проверка. И лишь после этого производится проверка измерений на объекте.

Обратившись в электротехническую лабораторию, вы доверитесь профессионалам. Мы используем самые современные и традиционные методы измерения сопротивления изоляции. Компания «СтандартСервис» — это одна из самых надежных на рынке оказания услуг в этой сфере. Мы произведем работы качественно и надежно, и техника безопасности при использовании электрооборудования вас уже не будет беспокоить.

Методика измерения сопротивления изоляции

СОГЛАСОВАНО
Управление Ростехнадзора РФ
по Ярославской области

1. Общие положения

1.1. Настоящий документ устанавливает методику выполнения измерения сопротивления изоляции электрооборудования, проводов и кабелей в действующих и реконструируемых электроустановках для всех потребителей электроэнергии независимо от их ведомственной принадлежности.

1.2. Настоящий документ разработан для применения персоналом электроизмерительной лаборатории ООО «БЭТЛ» при проведении приемо-сдаточных и периодических испытаний в электроустановках, напряжением до и выше 1000 В.

1.3. В электроустановках напряжением выше 1000 В измерения производятся по наряду, а в установках напряжением до 1000 В по распоряжению. В тех случаях, когда измерения мегаомметром входят в содержание работ, оговаривать эти измерения в наряде или распоряжении не требуется.

1.4. К выполнению измерений и испытаний допускают лиц, прошедших специальное обучение и аттестацию, имеющих запись о допуске к испытаниям и измерениям в электроустановках до 1000 В

1.5. Измерение сопротивления изоляции должен проводить только квалифицированный персонал единолично или в составе бригады. Производитель работ должен иметь группу по электробезопасности не ниже III. В состав бригады может включаться ремонтный персонал с группой по электробезопасности не ниже II.

2. Нормативные ссылки

При разработке методики использованы следующие нормативные документы:

2.1. Мегаомметры ЭСО202/1-Г, ЭСО202/2-Г. Паспорт Ба 2.722.056ПС.

2.2. Правила технической эксплуатации электроустановок потребителей (ПТЭЭП).

2.3. Правила устройства электроустановок (ПУЭ).

2.4. Межотраслевые правила по охране труда (правила безопасности) при эксплуатации электроустановок. ПОТ Р М — 016-2001. РД 153-34.0-03.150-00.

2.6. ГОСТ Р 50571.1-93 «Электроустановки зданий».

2.7. ГОСТ Р 50571.16-99 «Электроустановки зданий. Испытания».

2.8. ГОСТ Р 8.563-96 «Методики выполнения измерений»

3. Характеристика измеряемой величины, нормативные значения измеряемой величины.

3.1. Объектом измерения являются электрооборудование и электропроводки напряжением до и выше 1000 В

3.2. Измеряемой величиной является сопротивление изоляции.

3.3. Измеренное сопротивление изоляции электрооборудования напряжением до 1000 В должно быть не ниже, минимально допустимого значения, приведенного в таблице.

Минимально допустимые значения сопротивления изоляции элементов электрических сетей напряжением до 1000 В

Напряжение мегаомемтра, В

Сопротивление изоляции, МОм

свыше 50 до 100

свыше 100 до 380

4. Условия измерений

4.1 Измерение проводят в помещениях при температуре 25±10°С и относительной влажности воздуха не более 80%, если в стандартах или технических условиях на кабели, провода, шну¬ры и оборудование не предусмотрены другие условия.

4.2 Значение электрического сопротивления изоляции соедини¬тельных проводов измерительной схемы должно превышать не ме¬нее чем в 20 раз минимально допускаемое значение электрическо¬го сопротивления изоляции испытуемого изделия.

4.3. Характеристики изоляции электрооборудования рекомендуется измерять по однотипным схемам и при одинаковой температуре. Сравнение характеристик изоляции должно производиться при одной и той же температуре изоляции или близких ее значениях (разница температур не более 5°С). Если это невозможно, то должен производиться температурный пересчет.

5. Требования безопасности

ВНИМАНИЕ! Не приступайте к измерениям, не убедившись в отсутствии напряжения на измеряемом объекте.

5.1. Перед началом испытаний необходимо убедиться в отсутст¬вии людей, работающих на той части электроустановки, к которой присо¬единен испытательный прибор, запретить находящимся вблизи него лицам прикасаться к токоведущим частям и, если нужно, выставить охрану.

Смотрите так же:  Узо срабатывает на духовку

5.2. Измерение сопротивления изоляции мегаомметром должно осуществляться на отключенных токоведущих частях, с которых снят заряд путем предварительного их заземления. Заземление с токоведущих частей следует снимать только после подключения мегаомметра.

5.3. При измерении мегаомметром сопротивления изоляции токоведущих частей соединительные провода следует присоединять к ним с помощью изолирующих держателей (штанг).

5.4. При работе с мегаомметром прикасаться к токоведущим частям, к которым он присоединен, не разрешается. После окончания работы следует снять с токоведущих частей остаточный заряд путем их кратковременного заземления.

6. Подготовка к выполнению измерений

Для выполнения измерений используются мегаомметры ЭСО202/1-Г или ЭСО202/2-Г в зависимости от требований к испытательному напряжению.

6.1. Перед началом измерений необходимо изучить электроустановку здания и убедиться в отсутствии напряжения на испытываемом объекте, принять меры препятствующие допуску на испытуемый объект лиц, не участвующих в испытаниях, при необходимости выставить наблюдающего. Произвести отключение электроприборов, снять предохранители, отключить аппараты (автоматические выключатели, переключатели), отсоединить электронные схемы и электронные приборы, электрические части электроустановки с пониженной изоляцией или пониженным испытательным напряжением.

6.2. Установить на мегаомметре переключатель измерительных напряжений в нужное положение (в соответствии с требованиями к испытательному напряжению), а переключатель диапазонов в положение I.

Схема проверки изоляции мегомметром

Измерение изоляции кабеля:

6.3. Проверить исправность мегаомметра. При вращении ручки генератора должен светиться индикатор «ВН».

7. Выполнение измерений

7.1. Убедившись в отсутствии напряжения на объекте, подключить объект к гнездам «rx». При необходимости экранирования, для уменьшения влияния токов утечки, экран объекта подсоединить к гнезду «Э». Для уменьшения времени установления показаний перед измерением сопротивления по шкале II в течении 3-5 сек. вращать ручку генератора при закороченных зажимах «rx».

7.2. Для проведения измерений вращать рукоятку генератора со скоростью 120-144 оборотов в минуту.

7.3. Отсчет значений электрического сопротивления изоляции при измерении проводят по истечении 1 мин с момента приложе¬ния измерительного напряжения к образцу, но не более чем через 5 мин, если в стандартах или технических условиях на конкретные кабельные изделия или на другое измеряемое оборудование не предусмотрены другие требования. Перед повторным измерением все металлические элементы ка¬бельного изделия должны быть заземлены не менее чем за 2 мин.

7.4. При измерении параметров изоляции электрооборудования должны учитываться случайные и систематические погрешности, обусловленные погрешностями измерительных приборов и аппаратов, дополнительными емкостями и индуктивными связями между элементами измерительной схемы, воздействием температуры, влиянием внешних электромагнитных и электростатических полей на измерительное устройство, погрешностями метода и т.п

7.5. Электрическое сопротивление изоляции многожильных ка¬белей, проводов и шнуров должно быть измерено:

— для изделий без металлической оболочки, экрана и брони — между каждой токопроводящей жилой и остальными жилами, со¬единенными между собой или между каждой токопроводящей; жилой и остальными жилами, соединенными между собой и заземлением.

— для изделий с металлической оболочкой, экраном и броней — между каждой токопроводящей жилой и остальными жилами, со¬единенными между собой и с металлической оболочкой или экра¬ном, или броней.

8. Оформление результатов испытаний (измерений).

8.1. Результаты проверки отражаются в протоколе соответствующей формы.

8.2. Перечень замеченных недостатков должен предъявляться заказчику для принятия мер по их устранению.

8.3. Протокол испытаний и измерений оформляется в виде электронного документа и хранится в соответствующей базе данных. Второй экземпляр протокола распечатывается и хранится в архиве электроизмерительной лаборатории.

8.4. Копии протоколов испытаний и измерений подлежат хранению в архиве электролаборатории не менее 3 лет.

Методика измерения сопротивления изоляции кабелей и проводов

Основной целью разработки методики измерения сопротивления изоляции было и остается обеспечение и гарантирование проведения качественных и безопасных работ во время испытаний по измерению сопротивления изоляции в условиях электролаборатории. Составление данной методики основывается на:

  • государственном стандарте «Методики выполнения измерений»;
  • межотраслевых правилах по мерам безопасности и охране труда при эксплуатации электроустановок;
  • документации производителей по используемым приборам.

Настоящая методика позволяет описать процедуры по организации, выполнению, а также оформлению проводимых электролабораторией работ в плане измерения сопротивления изоляции.

Измеряемой величиной по данной методике является сопротивление изоляции постоянному току, что считается главным показателем состояния изоляции. Следовательно, ее измерение – это неотъемлемая часть любых испытаний, в которых задействовано электрооборудование и электроцепи. Измерение сопротивления изоляции происходит с помощью мегомметров, среди которых наиболее распространенными являются мегомметры типа ЭСО202/2Г, М-4100, MIC-2500, MIC-1000.

Мегомметры и их применение

Мегомметр представляет собой специальный прибор, который состоит из источника напряжения (это может быть постоянный или переменный генератор с выпрямителем тока), и собственно измерительного механизма. В зависимости от номинального рабочего напряжения выделяют мегомметры до 1000В и мегомметры до 2500В. Как правило, в комплекте с мегомметром идут гибкие медные провода от 2м до 3м, сопротивление изоляции которых составляет не меньше 100МОм. Важно, чтобы идущие в комплекте провода, которые будут присоединяться к мегомметру, имели оконцеватели, другие – противоположные – должны иметь зажим типа «крокодил» и изолированную ручку.

Порядок проведения испытания

Порядок проведения измерений сопротивления изоляции с помощью мегомметров требует некоторых приготовлений, которые помогают достичь большей эффективности проводимых испытаний, а также максимально обезопасить непосредственно сам процесс проведения измерений сопротивления.

Перед началом испытаний по измерению сопротивления изоляции постоянному току мегомметр подвергают контрольной проверке, основной целью проведения которой является диагностика показаний используемого прибора для двух случаев:

  • при разомкнутых проводах, когда стрелка прибора должна падать на отметку бесконечности (¥);
  • при замкнутых проводах, когда стрелка мегомметра падает на отметку ноля (0).

Второе, что необходимо сделать перед началом испытания, это проверить на кабеле отсутствие напряжения. Для этого используется испытанный указатель напряжения, исправность которого проверяется на электроустановке согласно межотраслевым правилам по охране труда. Также начало проведения испытаний по измерению сопротивления изоляции требует заземления токоведущих жил испытываемого кабеля, которое можно снимать только после того, как были подключены мегомметры.

Когда все приготовления и диагностики проведены, можно приступать к реализации методики измерения сопротивления изоляции, после которой не менее важным этапом будет правильное оформление и последующая обработка полученных результатов.

Выполнение замеров

Провода мегомметров, которые используются в испытаниях на замер сопротивления изоляции, в обязательном порядке должны иметь зажимы указанного выше типа с изолированными ручками. Кроме того, человек, проводящий данные испытания должен использовать специальные диэлектрические перчатки. Также следует запомнить, что работа с мегомметром исключает любое прикасание к токоведущим частям, которые присоединены непосредственно к прибору.

Процесс измерения сопротивления изоляции, как правило, подразумевает замер каждой фазы кабеля касательно остальных заземленных фаз. В случае получения неудовлетворительных результатов по данному сокращенному варианту следует перейти к измерению сопротивления изоляции между каждой фазой и каждыми двумя фазами относительно земли. При использовании кабелей на измерение напряжения выше 1000В следует учесть тот факт, что в этом случае возможны искажения результатов измерения из-за токов утечки по поверхности испытуемой изоляции. В таком случае на изоляцию концевой воронки, которая выступает объектом измерения, накладывается электрод, присоединенный к зажиму. Если во время испытаний используется кабель на напряжение до 1000В, при этом он имеет нулевые жилы, то в этом случае необходимо обеспечить ряд условий:

  • изоляция нулевых рабочих и защитных проводников должна равняться изоляции фазных проводников;
  • необходимо отсоединить нулевые проводники от заземленных частей, причем как со стороны приемника, так и со стороны используемого источника питания.

Снятие и обработка показаний мегомметра

Снятие показаний проведенных испытаний на измерение сопротивления изоляции производиться тогда, когда стрелка прибора находится в устойчивом положении. Чтобы правильно снять показания и добиться устойчивого положения стрелки ручку прибора необходимо вращать со скоростью 120 оборотов в минуту. По истечению пятнадцати и шестидесяти секунд после начала вращения ручки определяются показания стрелки, которая тем самым дает результаты по измерению сопротивления изоляции. Однако такой замер происходит в том случае, когда необходимо определить коэффициент абсорбции кабеля. Если же данные по этому показателю не нужны, отсчет показаний снимается после полного успокоения стрелки, однако не раньше, чем пройдут шестьдесят секунд от начала вращения ручки прибора.

Процессы наложения и снятия заземления требуют использования диэлектрических перчаток. После окончания испытаний по измерению сопротивления изоляции и перед отсоединением концов прибора накопленный за время испытания заряд снимают путем наложения заземления.

Последним этапом измерения сопротивления изоляции по данной методике является обработка полученных результатов измерений, а также последующее их правильное оформление. Для этого используются специальные протоколы, в которые вносятся не только результаты измерений, но и данные по всем использованным в процессе испытаний приборам.

Методика измерения сопротивления изоляции проводов, кабелей, силового электрооборудования и аппаратов

Измерения проводятся с целью проверки соответствия сопротивления изоляции установленным нормам

Данная методика предназначена для производства измерений сопротивлений изоляции электропроводок, электрооборудования (комплектных низковольтных устройств: ВРУ, щитков этажных и квартирных, и др.), а также изолирующих полов и стен при сертификационных испытаниях электроустановок зданий с целью оценки качества изоляции элементов электроустановок и сравнения с нормами табл. 43 приложения 1 ПЭЭП и табл. 61 А стандарта МЭК 364-6-61. В соответствии с этими нормативными документами норма сопротивления изоляции цепей электроустановки должны быть не менее 0, 5 мОм

Измерения сопротивления изоляции должны производиться согласно п. 612. 3 стандарта МЭК 364-6-61:

а) между токоведущими проводниками, взятыми по очереди «два к двум»,

б) между каждым токоведущим проводником и «землей».

Измерения должны проводиться при отсоединенных электроприборах, при снятых предохранителях, вывернутых лампах и т. д.

Если цепь имеет электронные приборы, то должно быть сделано только измерение сопротивления изоляции между фазными и нейтральными проводниками, соединенными вместе, и «землей».

Примечание: эта мера предосторожности необходима, т. к. выполнение испытаний без соединения токоведущих проводников может вызвать повреждение электронных приборов.

При измерении параметров изоляции электрооборудования следует учитывать требования п. 1. 20 приложения 1 ПЭЭП.

В соответствии с п.413.3 ГОСТ Р 50571.3-94 изолирующие (непроводящие) помещения, зоны, площадки имеют целью предотвратить одновременное прикосновение к частям, оказавшимся под разными потенциалами в случае повреждения изоляции токоведущих частей.

Требования считаются выполненными, если пол и стены помещения являются изолирующими и выполняется одно или несколько условий приведенных ниже:

а) открытые проводящие части и сторонние проводящие части, а также открытые проводящие части друг от друга удалены не менее 2м, а за пределами зоны досягаемости — 1,25 м;

Смотрите так же:  Как правильно облуживать провода

б) установлены эффективные приборы между открытыми проводящими частями и сторонними проводящими частями;

в) сторонние проводящие части изолированы. Сопротивление изолирующего пола и стен, измеренное в каждой точке должно быть не ниже:

— 50 кОм при номинальном напряжении электроустановок не выше 500. В;

— 100 кОм при номинальном напряжении электроустановок выше 500 В.

В каждом помещении и для каждой поверхности в соответствии с п. 612.5 стандарта МЭК 364-6-61 должны быть сделаны три измерения. Одно измерение должно быть выполнено примерно в 1 м от сторонних проводящих частей, находящихся в помещении. Другие измерения должны быть сделаны на большем удалении.

Сопротивление изоляции практически во всех случаях измеряется мегаомметром — прибором, состоящим из источника напряжения — генератора постоянного (или переменного с выпрямителем) тока, измерительного механизма (магнитоэлектрического логометра) и добавочных резисторов.

В настоящее время наиболее распространены мегаомметры типа М4100 (пяти модификаций М4100/1-М4100/5).

Ф4101, Ф4102 — на номинальное рабочее напряжение 100, 500, 1000. В. и Ф. 4101, Ф4102 на напряжение 2500В. Мегаомметры серии Ф. 4100 — электронного типа с питанием от электросети (или 12В).

Мегаомметры выпуска последних лет; ЭС-0202/1Г (на 100, 250, 500 В) и ЭС0202/2Г (500, 1000 и 2500) сняты с производства, но допускаются к эксплуатации мегаомметры типа M l101 М, МС-05, МС-06.

Класс точности приборов должен быть не более 4.

Мегаомметры к схеме присоединяют гибкими одножильными проводами с сопротивлением изоляции не менее 100 Мом длиной 2-3 м, концы которых маркируются. Концы присоединяемые к мегаомметру должны иметь оконцеватели, а противоположные — зажимы типа «крокодил» с изолированными ручками или специальными щупами. При измерениях специальные провода не должны касаться друг друга, почвы, заземленных конструкций, оболочек кабелей.

При измерении сопротивления изоляции относительно земли зажимы «з» (земля) соединяются с заземленным корпусом аппарата, заземленной металлической оболочкой кабеля или с защитным заземлением, а зажим «л» (линия) -к проводнику тока (см. рис. 1.1. а, б, в). Схема замещения при измерении сопротивления изоляции фазы относительно земли и других заземленных фаз представлена на рис. 1.2.

1.1. Измерение сопротивления изоляции силовых кабелей и электропроводок

Перед началом измерения необходимо:

— убедиться, что на испытуемом кабеле нет напряжения;

— на 2-3 минуты заземлить токоведущие жилы для снятия с них возможных остаточных зарядов;

— тщательно очистить изоляцию от пыли и грязи.

Выбрать соответствующий предел измерений (в соответствии с ожидаемой величиной сопротивления изоляции) и подвергнуть мегаомметры контрольной проверке, которая заключается в проверке показаний на шкале при разомкнутых и замкнутых проводах. В первом случае стрелка должна находиться у отметки шкалы «Бесконечность» , во втором — у нуля.

Как правило, измеряется сопротивление изоляции каждой фазы кабеля относительно заземленных фаз (см. рис. 1.1 а, 1.2). Если измерения по этой схеме (сокращенный вариант — 3 замера) дадут неудовлетворительный результат, то необходимо измерить сопротивление изоляции каждой фазы относительно земли (остальные фазы не заземляются) — см. рис.1. З-х и между каждыми двумя фазами (см. рис. 1.36). Всего выполняется 6 замеров для 3-х жильных кабелей и соответственно 4 и 8 для 4-х жильных.

Значениями сопротивлений изоляции, измеренные по схемам рис. 1.3, ближе к действительным и должны удовлетворять требованиям норм

Вместе с записью результатов в отчетных документах необходимо указывать схему, с помощью которых они получены.

Измерения (снятие показаний), следует производить при устойчивом положении стрелки прибора. Для этого нужно вращать ручку прибора со скоростью 120 об/мин.

Сопротивление изоляции определяется показанием стрелки прибора через 15 и 60 с. после начала вращения.

Если определение коэффициента абсорбции К абс не требуется, отсчет показаний производится после успокоения стрелки, но не ранее 60 с. от начала вращения.

При неправильно выбранном пределе измерения, необходимо снять заряд с испытуемой фазы, наложив заземление, переключить предел и повторить измерение на новом пределе. При наложении и снятии заземления пользоваться диэлектрическими перчатками.

При измерениях сопротивления изоляции кабелей на напряжение до 100. В. с нулевыми жилами необходимо помнить следующее:

а) согласно п.п. 1.7.81, 2.1.35 ПУЭ «Нулевые рабочие и нулевые защитные проводники должны иметь изоляцию, равноценную изоляции фазных проводников»;

б) как со стороны источников питания, так и со стороны приемника нулевые проводники должны быть отсоединены от заземленных частей;

в) схема испытания изоляции аналогична указанным выше, различия лишь в количестве замеров (4 или 8 вместо 3 или 6) и в отсутствии необходимости использовать зажим «Экран» на мегаомметрах.

Измерение сопротивление изоляции силовых и осветительных электропроводок производится при снятом напряжении, выключенных выключателях, снятых предохранителях, отключенных электроприемниках, приборах, аппаратах, вывернутых электролампах.

1.2. Измерение сопротивления изоляции силового электрооборудования

Значение сопротивления изоляции электрических машин и аппаратов в большой зависит от температуры. Замеры следует производить при температуре изоляции не ниже +- 5°С кроме случаев оговоренных специальными инструкциями. При более низких температурах результаты измерения из-за нестабильности состояния влаги не отражают истинной характеристике изоляции.

Сопротивление изоляции класса «А» при понижении температуры на каждые 10°С увеличивается в полтора раза и наоборот. Сопротивление изоляции класса «В» при повышении температуры 10°С снижается примерно в два раза.

На основе этого «нормами испытания электрооборудования» определены коэффициенты (Кт — для электрических машин, Кз — для силовых трансформаторов) приведения результатов измерений к одной температуре, например, к данным завода-изготовителя.

Методика измерения сопротивления изоляции

Измерение сопротивления электрической изоляции – наиболее частое измерение при проведении электротехнических работ. Основная цель данного вида измерений – определение пригодности к эксплуатации электрических проводников, электрических машин, электрических аппаратов и электрооборудования в целом.

Сопротивление изоляции зависит от различных факторов. Это и температура окружающей среды, и влажность воздуха, и материал изоляции и т.д. Единица измерения сопротивления – Ом. При замерах сопротивления изоляции величиной обычно является килоОм (1кОм) и мегаОм (1МОм).

Сопротивление изоляции чаще всего измеряют у электрических кабелей, электрической проводки, электродвигателей, автоматических выключателей, силовых трансформаторов, распределительных устройств. Основным прибором для замеров является мегаомметр (мегомметр). Мегаомметры бывают двух основных видов – стрелочные с ручным приводом и электронные с цифровым дисплеем.

В процессе измерений мегаомметр генерирует испытательное напряжение. Стандартные напряжения мегаомметров – 100В, 250В, 500В, 1000В, 2500В. Чаще всего используют мегаомметры на напряжение 1000В и 2500В, реже на 500В.

Проверка исправности мегаомметра

Перед выполнением замеров, необходимо проверить исправность используемого прибора. Для этого выполняется два контрольных замера. Первое измерение проводится при закороченных между собой проводах мегаомметра. В этом случае измеряемая величина должна быть равна нулю. Второе контрольное измерение выполняется при разомкнутых проводах. Измеряемая величина сопротивления должна стремиться к бесконечно большому значению.

Техника безопасности при проведении измерений

При замерах сопротивления изоляции необходимо соблюдать технику безопасности. Во-первых, пользоваться неисправным мегаомметром категорически запрещается. Во-вторых, перед измерением необходимо проверить индикатором или указателем отсутствие напряжения на электрическом кабеле, двигателе или электрооборудовании. При отсутствии напряжения снимается остаточный заряд путём кратковременного заземления тех частей кабеля, двигателя или электрооборудования, которые в рабочем режиме находились под напряжением. Действия по снятию электрического заряда следует также проводить и после каждого замера.

Измерение сопротивления изоляции силовых электрических кабелей и электропроводки

Изоляция электрических кабелей и электрических проводов проверяется сначала на заводе изготовителе, затем перед непосредственной прокладкой, ну и после окончания электромонтажных работ. Количество замеров зависит от количества жил кабеля или провода.

Силовые электрические кабели и провода бывают трёхжильными, четырёхжильными и пятижильными. Три жилы – это или фаза, ноль и провод заземления, или три фазы «A», «B», «C». Четыре жилы – это три фазы плюс ноль (провод заземления или комбинированная жила PEN). Пять жил – это три фазы, нулевой проводник и провод заземления.

Замеры сопротивления изоляции трёхжильного кабеля или провода выполняют следующим образом. Каждая из трёх жил проверяется по отношению к двум другим заземлённым жилам. В итоге получается три замера. Кроме того, можно проверять сопротивление сначала между каждыми двумя жилами, а затем между каждой жилой и «землёй». В этом случае получается шесть замеров.

В случае с четырёхжильным или пятижильным электрическим кабелем (проводом) методика замеров аналогична измерениям трёхжильного проводника, только количество замеров будет несколько больше.

Для того, чтобы измеряемое значение соответствовало действительности, замер выполняется в течение одной минуты. Величина сопротивления изоляции электрического проводника должна быть в пределах государственных норм. Обычно для низковольтных кабелей 220В или 380В она составляет 0,5МОм или 1МОм.

Измерение сопротивления изоляции электрических двигателей

Для электродвигателей проверяется изоляция обмоток статора. В настоящее время наибольшее распространение получили трёхфазные электродвигатели с короткозамкнутым ротором на рабочее напряжение 380В.

У таких двигателей имеется три обмотки статора, которые соединяются между собой либо по схеме треугольника, либо по схеме звезды. Соединение выполняется или внутри корпуса двигателя, или в соединительной коробке двигателя, которая называется «борно». Т.к. в первом случае отсоединить обмотки друг от друга не представляется возможным, то измерение сводится к замеру изоляции всех трёх соединённых обмоток по отношению к корпусу двигателя. Во втором варианте обмотки можно отсоединить друг от друга, после чего выполняется проверка изоляции между обмотками, а также проверка изоляции каждой обмотки по отношению к металлическому корпусу двигателя. Каждый замер выполняется в течение одной минуты. Конечное значение величины должно также соответствовать государственным нормам.

На производстве очень часто применяются достаточно мощные высоковольтные электродвигатели. Замер сопротивления изоляции обмоток таких двигателей часто сводится к определению коэффициента абсорбции, т.е. к определению увлажнённости обмоток. Для этого фиксируется значение после 15 секунд измерения и после 60 секунд. Значение коэффициента абсорбции — это отношение сопротивления R60 к сопротивлению R15. Величина не должна быть менее 1,3.

Измерение сопротивления изоляции силовых трансформаторов

В настоящее время единственным устройством, преобразующим электрическое напряжение из одной величины в другую, является трансформатор. Практически ни одно производство не обходится без силовых питающих трансформаторов. Перед пуском в эксплуатацию каждый такой трансформатор должен пройти высоковольтные испытания. Перед тем, как будут произведены высоковольтные испытания, необходимо выполнить замеры сопротивления изоляции обмоток.

Смотрите так же:  Узо на вод

Т.к. у трансформатора есть первичная и вторичная обмотка (обмотки), то проверяется изоляция каждой обмотки по отношению к другой, которая на момент замера должна быть заземлена. Также выполняется замер между первичной и вторичной обмоткой.

Достаточно часто необходимо определить увлажнённость обмоток трансформатора. В таком случае также как и с высоковольтным двигателем, определяется коэффициент абсорбции.

Онлайн журнал электрика

Статьи по электроремонту и электромонтажу

Навигация по записям

Методика измерения сопротивления изоляции

Целью истинной методики является обеспечение высококачественного и неопасного проведения работ при производстве электролабораторией (дальше ЭЛ) испытаний (измерений).

Реальная методика составлена на основании:

— ГОСТ Р 8.563-96 «Методики выполнения измерений».

— Межотраслевых правил по охране труда (правил безопасности) при эксплуатации электроустановок. ПОТ Р М-016-2001.

— Документации заводов-изготовителей устройств, применяемых в проведении работ

Предназначение

Предназначение истинной методики – описание процедур по организации, выполнению и оформлению проводимых ЭЛ работ по измерению сопротивления изоляции.

Наименование и черта измеряемой величины

Измеряемая величина – сопротивление изоляции. Сопротивление изоляции неизменному току является главным показателем состояния изоляции и его измерение является неотъемлемой частью испытаний всех видов электрооборудования и электроцепей.

Прибор для измерения сопротивления изоляции-Мегометр – 500в

Состав применяемых при измерении устройств

Сопротивление изоляции измеряется мегомметром. В текущее время более всераспространены мегомметры типа М-4100, ЭСО202/2Г, MIC-1000, MIC-2500.

Описание мегомметров

Мегомметр – прибор состоящий из источника напряжения (неизменного либо переменного генератора с выпрямителем тока) и измерительного механизма.

Мегомметры разделяются по номинальному рабочему напряжению до 1000 В и до 2500 В.

Мегомметры оснащаются гибкими медными проводами длиной до 2 – 3 м с сопротивлением изоляции более 100 МОм. Концы проводов присоединяемые к мегомметру обязаны иметь оконцеватели, а обратные – зажимы типа «крокодил» с изолированными ручками.

Порядок проведения измерений

Порядок проведения измерений мегомметрами типа М-4100 и ЭСО202/2Г.

До проведения измерений нужно:

1) До проведения измерения мегомметр должен быть подвергнут контрольной проверке, которая заключается в проверке показаний прибора при разомкнутых проводах (стрелка прибора должна находиться у отметки бесконечность – ?) и замкнутых проводах (стрелка прибора должна находиться на отметке – 0).

2) Убедиться, что на испытуемом кабеле нет напряжения (инспектировать отсутствие напряжения нужно испытанным указателем напряжения, исправность которого должна быть испытана на заранее находящихся под напряжением частях электроустановки – п. 3.3.1 «Межотраслевых правил по охране труда» ПОТ Р М-016-2001).

2) Заземлить токоведущие жилы испытываемого кабеля (заземление с токоведущих частей можно снимать только после подключения мегомметра).

Мегаомметры ЭС0210 -2500в

Подключаемые провода мегомметров обязаны иметь зажимы с изолированными ручками, в электроустановках выше 1000 В, не считая того, следует воспользоваться диэлектрическими перчатками.

При работе с мегомметром дотрагиваться к токоведущим частям, к которым он присоединен, не разрешается.

Обычно, определяют сопротивление изоляции каждой фазы кабеля относительно других заземленных фаз. Если измерения по этому сокращенному варианту дадут неудовлетворительный итог, то нужно измерить сопротивление изоляции меж каждыми 2-мя фазами и каждой фазой относительно земли.

При измерениях на кабелях выше 1000 В (когда результаты измерений могут быть искажены точками утечек по поверхности изоляции) на изоляцию объекта измерения (концевую воронку и т.д.) накладывают электрод (экранные кольца), присоединенный к зажиму «Э» (экран).

При измерениях сопротивления изоляции кабелей на напряжение до 1000 В с нулевыми жилами нужно держать в голове последующее:

— нулевые рабочие и защитные проводники обязаны иметь изоляцию, равную изоляции фазных проводников;

— как со стороны источника питания, так и со стороны приемника нулевые проводники должны быть отсоединены от заземленных частей.

Измерение (снятие показаний) следует создавать при устойчивом положении стрелки прибора. Для этого необходимо крутить ручку прибора со скоростью 120 об./мин.

Сопротивление изоляции определяется показанием стрелки прибора через 15 сек. и 60 сек после начала вращения. Если определения коэффициента абсорбции кабеля не требуется, отсчет показаний делается после успокоения стрелки, но не ранее 60 сек от начала вращения.

При некорректно избранном пределе измерений, нужно:

— снять заряд с испытуемой фазы, наложив заземление;

— переключить предел и повторить измерение на новеньком пределе.

При наложении и снятии заземления нужно воспользоваться диэлектрическими перчатками

По окончании измерений, до того как отсоединять концы прибора, нужно снять скопленный заряд методом наложения заземления.

Мегомметр FLUKE 1550B предназначен для тестирования свойства изоляции силовых кабелей

Измерение сопротивления изоляции сетей освещения проводится мегомметром на напряжение 1000 В и содержит в себе:

а) Измерение сопротивления изоляции магистральных линий – от сборок 0,4кВ (ГРЩ, ВРУ) до автоматических выключателей распределительных щитов (ЩЭ) либо групповых (зависимо от схемы);

б) Измерение сопротивления изоляции от распределительных (этажных) щитов до групповых щитков местного управления (квартирных).

в) Измерение сопротивления изоляции сети освещения от автоматических выключателей (предохранителей) местных, групповых щитков управлени(ЩК) до осветительных приборов (включая изоляцию самого осветительного прибора). При всем этом в сетях освещения в светильниках с лампами накаливания измерение сопротивления изоляции делается
при снятом напряжении, включенных выключателях, снятых предохранителях (либо отключенных выключателях), отсоединенных нулевых рабочих и защитныхпроводах,отключенныхэлектроприемниках и вывернутых электролампах. В сетях освещения с газоразрядными лампами создавать измерение можно как с установленными лампами, так и без их, но со снятыми стартерами.

г) Величина сопротивления изоляции на каждом участке сети освещения,начиная от автомата (предохранителя) щита и включая проводку осветительного прибора должна быть более 0,5 МОм.

Обработка и оформление результатов измерений

Данные по использованным в процессе измерительных работ устройствам, также результаты измерений заносятся в протоколы.

Требования к неопасному проведению работ

В согласовании с главой 12 «Межотраслевых правил по охране труда (правил безопасности) при эксплуатации электроустановок. ПОТ Р М-016-2001» работники ЭЛ (как работники организациий, направляемые для выполнения работ в действующих, строящихся, на техническом уровне перевооружаемых, реконструируемых электроустановках и не состоящие в штате организаций – хозяев электроустановки) относятся к командированнному персоналу.

Командируемые работники обязаны иметь удостоверения установленной формы о проверке познаний норм и правил работы в электроустановках с отметкой о группе, присвоенной комиссией командирующей организации. Командирующая организация несет ответственность за соответствие присвоенных командированным работникам групп, также за соблюдением персоналом нормативных документов по неопасному выполнению работ.

Мегомметр Greenlee 5kB (GT-5990) – 5000в

Организация работ командировочного персонала предугадывает прохождение последующих процедур выполняемых до начала работ:

— уведомление организации-владельца электроустановки письмом о цели командировки, также составе и квалификации командировочного персонала ЭЛ;

— определение и предоставление организацией-владельцем командированным работникам права работы в действующих электроустановках (в качестве выдающих наряд, ответственных управляющих и производителей работ, членов бригады);

— проведение с командированным персоналом по его прибытии вводного и первичного инструктажей по электробезопасности;

— ознакомление командированного персонала с электронной схемой и особенностями электроустановки, в какой ему предстоит работать (при этом работник которому предоставляется право исполнять обязанности производителя работ должен пройти инструктаж по схеме электроснабжения электроустановки);

— проведение работниками организации-владельца подготовки рабочего места и допуск командированного персонала к работам.

Организация, в электроустановках которой выполняются работы командированным персоналом, несет ответственность за выполнение предусмотренных мер безопасности и допуск к работам.

Работы производятся на основании наряда-допуска, распоряжения либо в порядке текущей эксплуатации в согласовании с требованиями главы 5 «Межотраслевых правил по охране труда (правил безопасности) при эксплуатации электроустановок. ПОТ Р М-016-2001». Не считая того при проведении испытаний и измерений следует :

1. Управляться указаниями паспортов (инструкций по эксплуатации) применяемых устройств и инструкций по технике безопасности (действующими на предприятии, где производятся измерения), также дополнительными требованиями по безопасности, определенными в нарядах-допусках, распоряжениях, инструктажах.

2. Инспектировать отсутствие напряжения (инспектировать отсутствие напряжения нужно испытанным указателем напряжения, исправность которого должна быть испытана на заранее находящихся под напряжением частях электроустановки – п. 3.3.1 «Межотраслевых правил по охране труда» ПОТ Р М-016-2001). Отсутствие напряжения следует инспектировать как меж всеми фазами, так и меж фазой и землей. При этом, в электроустановках с системой TN-C следует сделать более 6 замеров, а в электроустановках с системой TN-S -десяти замеров.

3. Создавать подключение и отключение всех измерительных устройств при снятом напряжении.

4. Обеспечивать применение защитных средств и инструмента с изолирующими ручками, испытанных согласно «Инструкции по применению и испытанию средств защиты, применяемых в электроустановках», утвержденной приказом Минэнерго Рф от 30.06.2003 г. за № 261.

Производящая работы бригада должна состоять более чем из 2-ух человек, в том числе производитель работ с группой по электробезопасности не ниже IV и член бригады с группой по электробезопасности не ниже Ш. При проведении измерений воспрещается приближаться к токоведущим частям на расстояния наименее обозначенных в таблице 1.

Таблица 1 Допустимые расстояния до токоведущих частей, находящихся под напряжением

Похожие статьи:

  • Искусственное заземление электроустановок Заземление. Искусственные заземлители. Что представляет собой искусственный заземлитель? В большинстве случаев в роли искусственного заземлителя выступает проводник, изготовленный из стали и помещенный в грунт в горизонтальной или […]
  • Мощность бесколлекторного электродвигателя BLDC-моторы (бесколлекторные бесщёточные электродвигатели постоянного тока) BLDC (Brushless Direct Current) - Бесщёточные электродвигатели постоянного тока, либо по другому, бесколлекторные электродвигатели постоянного тока. Применяются […]
  • Схема запуска трехфазного двигателя с 220 без конденсаторов Бесконденсаторный пуск трехфазных электродвигателей от однофазной сети Как известно, для запуска трехфазного электродвигателя (ЭД) с короткозамкнутым ротором от однофазной сети наиболее часто в качестве фазосдвигающего элемента […]
  • Смета на заземление шкафов Смета на заземление шкафов Юлия. г. Чт Авг 07, 2008 11:18 Ваша реклама Valentina Чт Авг 07, 2008 13:36 Teac Ср Окт 15, 2008 20:39 где вы их применяете? Эти копачки идут на может изоляторов типа ТФ-20. 3. Вы контрольные кабеля и […]
  • Преобразователь из 220 в 120 вольт Преобразователь из 220 в 120 вольт +380442339466 +380632339466 +380958920021 +380979796526 Вас может заинтересовать! Преобразователи 220-110 Вольт от производителя Понижающие автотрансформаторы предназначены для питания переменным […]
  • Преобразователь с 36 вольт на 220 вольт Преобразователи напряжения DC/DC Большой диапазон мощностей. ВНИМАНИЕ. Товар из этого раздела поставляется под заказ. В связи с изменением курса доллара, цены в данном разделе могут быть не верны. Уточняйте цену при заказе. Срок […]