Назначение магнитный пускатель

Оглавление:

Назначение магнитный пускатель

Warning: strtotime(): It is not safe to rely on the system’s timezone settings. You are *required* to use the date.timezone setting or the date_default_timezone_set() function. In case you used any of those methods and you are still getting this warning, you most likely misspelled the timezone identifier. We selected the timezone ‘UTC’ for now, but please set date.timezone to select your timezone. in /var/www/vhosts/volt220.ru/htdocs/libraries/joomla/utilities/date.php on line 56

Warning: date(): It is not safe to rely on the system’s timezone settings. You are *required* to use the date.timezone setting or the date_default_timezone_set() function. In case you used any of those methods and you are still getting this warning, you most likely misspelled the timezone identifier. We selected the timezone ‘UTC’ for now, but please set date.timezone to select your timezone. in /var/www/vhosts/volt220.ru/htdocs/libraries/joomla/utilities/date.php on line 198

Назначение магнитных пускателей

Статья общего характера о назначении и применении магнитных пускателей.

Пускатели и контакторы — электромагнитные устройства коммутации, которые используются, чаще всего для частого дистанционного включения и отключения нагрузки в стационарных электроустановках.

Вообще, какого-то четкого определения различий пускателей и контакторов нет. Считается, что контактор — это, непосредственно, сам блок силовых контактов; магнитный пускатель-же, представляет собой законченное (комбинированное) устройство, которое комплектуется контактором — как исполнительным механизмом пускателя, тепловым реле, возможно, дополнительной контактной группой.

Назначение магнитных пускателей. Наиболее часто, нагрузкой являются электродвигатели, однако, одним управлением электроприводом назначение магнитных пускателей, конечно не ограничивается. Вполне возможно, используя силовые контакты пускателя оперировать практически любой электрической нагрузкой.

В качестве примера можно привести, скажем, управление светом — когда номинальный ток коммутирующего устройства (выключателя, датчика движения и т. д.) меньше потребляемого тока светильника (светильников). Управление нагрузкой в этом случае может быть легко реализовано последовательным включением в ее цепь магнитного пускателя — замыкание или размыкание цепи будет производиться подвижными силовыми контактами пускателя.

Таким образом, применяя магнитные пускатели, можно управлять любой нагрузкой, чему во многом способствует способность пускателя производить частые коммутации. Ограничение в использовании пускателей в подобных случаях лишь одно — его номинальный ток, точнее, какую нагрузку способны «выдержать» силовые контакты устройства. Говоря об управлении электроприводом, надо сказать, что при помощи магнитных пускателей можно не только производить такие простые операции как запуск и остановка электродвигателя, но и изменять направление его вращения.

Реализуется это изменением порядка подключения питающих фаз электродвигателя (фазировки) двумя пускателями (см. Реверсивная схема подключения электродвигателя ).

Защита. Пускатель, укомплектованный тепловым реле для управления двигателем способен обеспечить его защиту от перегрузок недопустимой продолжительности. Таким образом, обычный магнитный пускатель вполне можно рассматривать не только как аппарат коммутации электрических цепей, но и как устройство защиты.

Защита от пропадания фаз. Продолжая говорить о защите, можно добавить, что трехфазный электродвигатель — симметричная нагрузка и пропадание одной из питающих фаз грозит неминуемым выходом его из строя.

Гарантированной защитой электродвигателя от такого неполнофазного режима работы будет применение схемы защиты электродвигателя с использованием двух магнитных пускателей.

Снижение пусковых токов. Известно, что при запуске трехфазного электродвигателя, пусковой ток, в некоторых случаях может превышать его номинальный ток в несколько раз (!). Очевидно, что такой режим работы электродвигателя может иметь разные последствия (прежде всего — опасность перегрева обмоток) и привести к преждевременному выходу его из строя.

Существенно снизить пусковые токи трехфазного электродвигателя можно, изменяя схемы соединенияния его обмоток: при запуске обмотки соединены «звездой», с последующим их переключением на «треугольник». см. схема звезда-треугольник .

Магнитный пускатель

Пускатель электромагнитный применяется для коммутации мощных потребителей электроэнергии в основном на производстве. В этой статье пойдет речь о том, для чего нужен магнитный пускатель, каков принцип работы магнитного пускателя и устройство магнитного пускателя. Устройство и принцип пускателя, как для цепей 380В так и для 220В, одинаковы давно и хорошо отработаны конструкторами.

Назначение пускателей

Как уже было сказано, это коммутационный аппарат, проще говоря, выключатель, таково его назначение. Контакты пускателей рассчитаны на большой ток, протекающий через нагревательные приборы и мощные электродвигатели. Эти силовые контакты приводятся в действие электромагнитным способом, поэтому управлять пускателями можно дистанционно при помощи сравнительно маломощных цепей. Поэтому маленькой кнопкой или концевым выключателем можно производить подключение мощных электродвигателей и другой нагрузки. Реверсивный пускатель обеспечивает включение асинхронных моторов в любую сторону – по часовой стрелке или против, по выбору оператора или системы управления.

Принцип работы

Принцип действия магнитного пускателя фактически совпадает с реле. Для работы пускателя от кнопок без фиксации используется самоблокировка от контактов, параллельных кнопке. Для отключения используется нормально замкнутая кнопка, включенная последовательно в цепь управления. При размыкании контактов пускатель отключается и готов к повторному включению сразу после замыкания контактов стоповой кнопки.

«Кнопочный» вариант управления пускателями является подавляющим для ручных операций. В цепях автоматики пускатели обычно удерживаются во включенном состоянии непрерывным сигналом, подаваемым с дискретного выхода контроллера на промежуточное реле.

Существуют различные виды пускателей, среди которых есть и реверсивные магнитные пускатели («головная боль» новичков-электромонтеров, пытающихся понять как работает непривычная цепь и не привыкших мыслить электрическими схемами). Фактически это два пускателя, работающие строго поочередно: если включается один, то другой должен быть обязательно отключен, иначе будет короткое замыкание между фазами.

Его принцип таков: если в одном включенном положении последовательность фаз A, B, C, то в другом положении должно быть, например, A, C, B, то есть, две фазы должны поменяться местами. Это позволяет изменять направление вращающегося поля в асинхронных моторах и запускать их в различном направлении либо по часовой стрелке, либо против.

Устройство магнитного пускателя

Все виды магнитных пускателей объединяют такие элементы конструкции, как электромагнит переменного тока, система подвижных и неподвижных силовых и вспомогательных контактов. Несущей частью является корпус из термостойких и негорючих пластиков. Эти пластмассы должны быть механически прочными и не деформироваться при повышенной температуре. Любой пускатель, как правило, трехфазный.

  1. Контактные пружины, обеспечивающие плавность пуска
  2. Подвижные контакты (мостики)
  3. Неподвижные контакты (пластины)
  4. Пластмассовая траверса
  5. Якорь
  6. Катушка пускателя
  7. Ш-образная часть магнитопровода
  8. Дополнительные контакты

Классификация магнитных пускателей делается по нескольким признакам, среди которых обычно главной является величина пускателя. Под величиной подразумеваются не габариты или вес пускателя, а то, какой ток он может коммутировать и насколько он устойчив к дуге в цепях с индуктивностями (при отключении электродвигателя). Основой является нереверсивный магнитный пускатель, так как реверсивные собираются из последних. Работа магнитных пускателей протекает в разных условиях, поэтому их также классифицируют по степени защищенности: открытое, защищенное, пылебрызгонепроницаемое.

Работа магнитного пускателя очень часто требует наличия теплового реле. Все типы магнитных пускателей имеют конструктивно совместимые тепловые реле. Часто их выпускает один и тот же производитель. Особенно важными применениями тепловых реле является защита электродвигателей от перегрева. Тепловое реле состоит из двухфазных биметаллических проводников (проводников с разными коэффициентами теплового расширения) – по одному на каждую фазу.

С электрической точки зрения, они являются резисторами с очень малым сопротивлением, и, таким образом, служат датчиками тока. Когда через фазы (или одну из них) протекает слишком большой ток, биметаллическая пластина изгибается и размыкает магнитные контакты, то есть контакты в цепи катушки пускателя. Подключение тепловых реле выполняется между пускателем и нагрузкой.

Все больше распространяются модульные пускатели. Это пускатели, монтируемые на DIN-рейку. Это металлическая профильная полоса, закрепляемая в шкафах на щите. Простота и легкость монтажа – исключительные. Рядом с пускателем (контактором) можно прикрепить тепловые реле, автоматы, УЗО (устройство защитного отключения), микропроцессорные контроллеры и многое другое. Модульные устройства очень легко собираются в схемы, благодаря каналам для проводов, проложенным между DIN-рейками. Монтаж выполняется зачищенными проводами необходимого сечения, обжатыми наконечниками. Наконечники вставляют в отверстия клемм приборов согласно принципиальной схеме и зажимают винтами.

На верхнюю сторону пускателей наносится маркировка, необходимая при монтаже и ремонте. Там есть обозначение типа, схема контактов и в некоторых случаях производители оставляют место для наклейки или подписи потребительских данных.

Большие успехи в силовой электронике, достигнутые за последние десятилетия, привели к тому, что большинство основных производителей теперь предлагают потребителям бесконтактные пускатели, содержащие мощные полупроводниковые ключи. У них есть определенные преимущества. Они работают бесшумно, не искрят, имеют высокую частоту переключений.

Смотрите так же:  Заземление технологического оборудования гост

Некоторые модели благодаря ШИМ-контроллерам позволяют плавно пускать электродвигатели, а для автоматизации предусмотрены даже сетевые интерфейсы. К недостаткам можно отнести высокую цену, высокую квалификацию ремонтного персонала и небезопасную гальваническую связь с сетью, что может угрожать электрикам-ремонтникам.

Заключение

Несмотря на внедрение электронных ключей: уже устаревающие тиристоры и симисторы, мощные полевые транзисторы, и перспективные IGBT-транзисторы, магнитные пускатели сохраняют свое значение. Именно они надежно разрывают цепи, без каких-либо опасных для персонала или оборудования остаточных токов и утечек. Фактически это тот самый бессмертный “рубильник” который с гарантией обесточивает электроустановку. качественные пускатели никогда не заклинивают и приобретать нужно именно такие.

Магнитный пускатель назначение и принцип работы

Магнитные пускатели очень широко используются во всех сферах промышленности и предназначены они для запуска трехфазных двигателей большой мощности. В этой статье я расскажу вам о том, как устроены эти коммутационные аппараты и по какому принципу они функционируют.

Разновидности магнитных пускателей

Итак, магнитный пускатель служит для подключения, отключения мощных трехфазных асинхронных двигателей с короткозамкнутым ротором. Также отлично функционирует в схемах дистанционного управления светом, в схемах коммутации компрессоров, насосов, кран-балок, тепловых печей и т. д. Как вы видите, спектр использования очень широк. И работают пускатели на различные напряжения, но в основном на 220-380 Вольт с промышленной частотой в 50 Герц.

Если магнитный пускатель укомплектован с тепловым реле, то он способен защитить электродвигатель от вероятных длительных перегрузок. А в некоторых модификациях даже присутствует защита от перенапряжений.

В зависимости от того, какая использована схема соединения, пускатели могут быть реверсивными и нереверсивными.

В зависимости от того, где предполагается монтаж пускатели могут быть выполнены следующим образом:

1. Открытого исполнения. Такие аппараты монтируются в закрытых помещениях, боксах, панелях без доступа пыли и влаги.

2. Защищенного исполнения. Устанавливается в таких помещениях, где мало пыли и нет высокой влажности.

3. Пылебрызгонепроницаемого исполнения. Монтируются в помещениях или на открытом воздухе, но под навесами.

По техническим характеристикам магнитные пускатели делятся:

— По наличию или отсутствию дополнительных блок контактов. Они уже могут быть встроены или идти отдельной планкой. С помощью них можно реализовывать блокировку при реверсивном использовании пускателя. Также блок контакты обычно используются в цепях пуска или сигнализации (например, через такой дополнительный контакт можно подключить лампочку, которая будет сигнализировать о работе подключенного механизма).

— На какой ток и напряжение выполнена катушка.

— Есть или нет теплового реле.

Устройство магнитного пускателя

Конструктивно магнитный пускатель можно условно разделить на две части. В верхней находятся следующие компоненты: подвижная группа контактов и дугогасящая камера и подвижная часть электромагнита (соединенная механическим образом с контактной группой).

В нижней же половине размещены следующие детали: электромагнитная катушка, вторая часть магнитопровода и возвратная пружина.

Давайте теперь пройдемся по деталям конструкции более подробно.

Возвратная пружина. Данная деталь изделия служит для того, чтобы вернуть в первоначальное расположение верхнюю часть пускателя после того, как будет прекращена подача напряжения и случится размагничивание магнитопровода.

Электромагнит выполнен из двух Ш — образных частей, собранных из электромагнитной стали.

Катушка с обмоткой из медного провода, которая может быть рассчитана на напряжение на 24, 36, 110, 220 и 380 вольт.

Группа контактов, которая в изначальном положении разомкнута, а в рабочем положении замкнута.

Итак, с внутренними компонентами изделия мы познакомились, давайте теперь узнаем каков принцип работы.

Как работает магнитный пускатель

Итак, магнитный пускатель работает так: как только на катушку поступает напряжение создается магнитное поле, которое за счет своей силы (оно также преодолевает сопротивление возвратной пружины) соединяет две половинки Ш — образного магнитопровода, а так как верхняя подвижная часть имеет механическую связь с группой контактов, то они также притягиваются и происходит замыкание группы контактов.

На двигатель начинает поступать напряжение и он начинает работать.

Как только напряжение на катушке пропало, магнитопровод размагничивается и возвратная пружина возвращает верхнюю половину магнитного пускателя в исходное положение.

Правила монтажа электромагнитных пускателей

В первую очередь, для обеспечения правильного монтажа следует учесть, что монтаж должен осуществляться на ровную хорошо закрепленную в вертикальном положении планку. Это нужно чтобы избежать вибрации при срабатывании пускателя.

Монтаж пускателя с тепловым элементом следует производить в помещениях с минимальным температурным перекосом. Если не соблюсти это требование, то при повышенной окружающей температуре могут быть ложные срабатывания. Так же не следует располагать пускатели с тепловым реле возле источников тепла.

Если под контактный зажим подводится один проводник, то обязательно следует выполнять соединение типа «барашек» для того, чтобы клемма при зажиме не шла на перекос.

В случае если под один зажим подводится два проводника, следует использовать соединение прямого типа.

При этом медные проводники следует предварительно залудить.

Перед первым пуском следует в обязательном порядке еще раз по схеме проверить правильность выполненного монтажа.

Неисправности и уход за пускателем

В принципе магнитный пускатель довольно неприхотлив в обслуживании, но он требует периодического сервисного обслуживания.

Если замечено, что в процессе работы пускатель стал сильно перегреваться, то, вероятнее всего, вышла из строя катушка (межвитковое замыкание), но перегреваться пускатель может также от повышенного напряжения в сети, значительной перегрузки и при ослабленных контактных соединениях.

Сильное гудение аппарата может быть вызвано целым комплексом причин, например: неплотное прилегание магнитопровода по причине загрязнения контактных поверхностей или же пониженное напряжение в питающей сети.

Плановый осмотр и уход за изделием позволит избежать большинство этих проблем.

Заключение

Это все, что я хотел рассказать о таком интересном и нужном коммутационном аппарате как магнитный пускатель. Если статья оказалась вам полезна, то оцените ее лайком и спасибо за ваше внимание!

Чем отличается контактор от магнитного пускателя

Контактор — это магнитное устройство, основанное на двухпозиционном способе работы, предназначенное для постоянных промежуточных (дистанционных) включений силовых гальванических цепей, при наличии стандартного режима работы.

В основном применяются одно- или двухполюсные устройства постоянного тока или трехполюсные — переменного тока. Частое число включений и выключений контакторов влечет за собой высокие требования к данному типу устройств (электрическая и механическая стойкость материала).

  • Контактную систему.
  • Электромагнитную систему.
  • Дугогасительную камеру.
  • Систему вспомогательных контактов, переключающих уровни сигнализации.

Принцип работы

В отличие от коммутационных контактных агрегатов, контакторы могут проводить токи лишь номинально, поскольку они не предназначаются для отключения цепи (как пример: короткого замыкания).

При помощи дополнительной цепи тока осуществляется управление устройством, проходящего по индуктивной катушке с напряжением от 24 до 220-380 вольт. С целью увеличения безопасности при эксплуатации изделия, общая величина тока должна быть несколько ниже уровня рабочего тока в проходящих цепях. Контактор не обладает механическим ресурсом для сдерживания контактов в активном положении, поэтому при отсутствии направляющего потока напряжения на индуктивной катушке, он размыкает цепь. Для сдерживания цепи в активном положении применяется система «автоподхвата» с применением двух открытых контактов (пример: использование программируемого логического контроллера).

Магнитный пускатель

Магнитный пускатель представляет собой электромеханическое устройство управления и распределения, назначение которого заключается в запуске электродвигателя, и обеспечения его непрерывного функционирования. Данное устройство работает как трансформированный (модифицированный) контактор, он может быть дополнен комплектующими элементами. Пускатели бывают наделены системой аварийного отключения при обрыве цепи, или одной из фаз питания электродвигателя.

Пускатель выполняет функцию изменения (переключения) направления реверсивной схемы, путем перемены фаз, для чего, с этой целью в устройство помещается еще один контактор.

С целью уменьшения выхода тока двигателя, применяют переключатель трехфазной системы снабжения электричеством.
Работа магнитного пускателя может быть как открытой, так и защищенной (со встроенной защитой электродвигателя).
Магнитные пускателя бывают реверсивными и модульными. Реверсивные производят обращение трехфазных электродвигателей с помощью чередования напряжения и представляют собой два соприкасателя (контактора), соединенные в одном устройстве электрической или механической блокировкой.Они исключают вероятность короткого замыкания (межфазного).

Схема магнитного пускателя

Общие черты контактора и магнитного пускателя

Вышеупомянутые изделия являются дополняющими друг друга устройствами, с единым принципом работы в электрической цепи, то есть, используются для коммутации. Одинаково используются для запуска электродвигателей переменного тока, ввода-вывода уровней сопротивления. Магнитный пускатель и контактор имеют несколько контактов для управления — замкнутую и разомкнутую цепь.

Отличия контактора от магнитного пускателя

Пускатели используются для коммутации цепей слабого напряжения. Изделия также различаются по своим габаритам: контактор больше пускателя.

Следующие отличие заключается в конструкции: контакторы имеют мощные силовые контакты, и наделены дугогасителями. Пускатели не имеют дугогасительных камер, а силовые контакты гораздо слабее. Отличаются устройства и по своему назначению: магнитные пускатели используются в целом для подачи электрического питания на приборы (светильники, электроприемники), а контакторы предназначаются для коммутации совершенно любой силовой цепи.

Устройство магнитного пускателя

Основными элементами магнитного пускателя являются электромагнитная система 5 и 6, главные контакты 2 и 3, блок-контакты и дугогасительная камера 8. Электромагнитная система представляет собой разъемный магнитопровод, на среднем керне которого размещена катушка. Для уменьшения нагрева, вызываемого вихревыми токами, магнитопровод набран из отдельных, изолированных друг от друга пластин электротехнической стали. Неподвижную часть магнитопровода 5 называют сердечником, подвижную часть 6 — якорем. Якорь механически соединен с контактами 2. При включении электрический ток проходит по катушке, создает магнитное поле, которое притягивает якорь к сердечнику 5 и тем самым замыкает контакты 2 и 3 пускателя; при отключении якорь под действием возвратных пружин 7 (а в некоторых типах магнитных пускателей под действием собственного веса) отходит от сердечника и контакты размыкаются.

Смотрите так же:  Схема на тиристоре от короткого замыкания


Магнитный пускатель ПМЕ: 1 — основание; 2 — подвижный контактный мост; 3 — неподвижный контакт;
4 — присоединительный зажим; 5 — сердечник; 6 — якорь; 7 — возвратная пружина;
8 — дугогасительная камера

Катушка магнитного пускателя питается однофазным переменным током. Вследствие этого магнитный поток в течение периода дважды изменяет свое направление, достигая максимального значения и снижаясь до нуля. Это вызывает вибрацию и гудение магнитной системы. Для ослабления этих явлений на торцевой части сердечника магнитного пускателя закладывается медный короткозамкнутый виток, который охватывает обычно около 1/3 площади его сечения.

Назначение магнитный пускатель

Статья общего характера о назначении и применении магнитных пускателей.

Пускатели и контакторы — электромагнитные устройства коммутации, которые используются, чаще всего для частого дистанционного включения и отключения нагрузки в стационарных электроустановках.

Вообще, какого-то четкого определения различий пускателей и контакторов нет. Считается, что контактор — это, непосредственно, сам блок силовых контактов; магнитный пускатель-же, представляет собой законченное (комбинированное) устройство, которое комплектуется контактором — как исполнительным механизмом пускателя, тепловым реле, возможно, дополнительной контактной группой.

Назначение магнитных пускателей. Наиболее часто, нагрузкой являются электродвигатели, однако, одним управлением электроприводом назначение магнитных пускателей, конечно не ограничивается. Вполне возможно, используя силовые контакты пускателя оперировать практически любой электрической нагрузкой.

В качестве примера можно привести, скажем, управление светом — когда номинальный ток коммутирующего устройства (выключателя, датчика движения и т. д.) меньше потребляемого тока светильника (светильников). Управление нагрузкой в этом случае может быть легко реализовано последовательным включением в ее цепь магнитного пускателя — замыкание или размыкание цепи будет производиться подвижными силовыми контактами пускателя.

Таким образом, применяя магнитные пускатели, можно управлять любой нагрузкой, чему во многом способствует способность пускателя производить частые коммутации. Ограничение в использовании пускателей в подобных случаях лишь одно — его номинальный ток, точнее, какую нагрузку способны «выдержать» силовые контакты устройства. Говоря об управлении электроприводом, надо сказать, что при помощи магнитных пускателей можно не только производить такие простые операции как запуск и остановка электродвигателя, но и изменять направление его вращения.

Реализуется это изменением порядка подключения питающих фаз электродвигателя (фазировки) двумя пускателями.

Защита. Пускатель, укомплектованный тепловым реле для управления двигателем способен обеспечить его защиту от перегрузок недопустимой продолжительности. Таким образом, обычный магнитный пускатель вполне можно рассматривать не только как аппарат коммутации электрических цепей, но и как устройство защиты.

Защита от пропадания фаз. Продолжая говорить о защите, можно добавить, что трехфазный электродвигатель — симметричная нагрузка и пропадание одной из питающих фаз грозит неминуемым выходом его из строя.

Гарантированной защитой электродвигателя от такого неполнофазного режима работы будет применение схемы защиты электродвигателя с использованием двух магнитных пускателей.

Снижение пусковых токов. Известно, что при запуске трехфазного электродвигателя, пусковой ток, в некоторых случаях может превышать его номинальный ток в несколько раз (!). Очевидно, что такой режим работы электродвигателя может иметь разные последствия (прежде всего — опасность перегрева обмоток) и привести к преждевременному выходу его из строя.

Существенно снизить пусковые токи трехфазного электродвигателя можно, изменяя схемы соединенияния его обмоток: при запуске обмотки соединены «звездой», с последующим их переключением на «треугольник».

Главными составляющими любого магнитного пускателя является его электромагнитная система и система контактов, состоящая из групп подвижных и неподвижных контактов (главные контакты) и блок-контактов. Открутив винты и сняв крышку кожуха магнитного пускателя, можно увидеть его подвижные и неподвижные контакты. Подвижные контакты закреплены на одной изоляционной траверсе, с ней-же связаны дополнительные контакты (блок-контакты), что обеспечивает одновременное замыкание или размыкание всех полюсов.

Пускатели, предназначенные для коммутирования электрических цепей с большими токами, как правило, оснащены дугогасителями, располагаемыми в специальных дугогасительных камерах над главными контактами.

Корпус магнитного пускателя состоит из двух половин, соединенных винтами. Выкрутив эти винты, можно увидеть магнитопровод, состоящий из неподвижной его части — сердечника, закрепленного в основании нижней половины пускателя и подвижной — якоря, соединенный механически с контактной системой.

Как видно из фото, на среднем стержне неподвижного сердечника расположена электромагнитная катушка, с помощью которой и осуществляется управление магнитным пускателем. При прохождении в ней электрического тока, возникает электромагнитное поле, притягивающее якорь к неподвижному сердечнику и осуществляющее замыкание главных и замыкание (размыкание) вспомогательных контактов.

При размыкании цепи катушки управления, отсутствие электромагнитной силы и действие возвратной пружины вызовет возврат якоря в исходное положение, что приведет к размыканию контактов магнитного пускателя. Рабочее напряжения катушки управления магнитного пускателя, обычно указывается на корпусе. Так стандартный ряд значений Uкат: 12, 24, 110, 220 и 380 В.

Блок-контакты. Очень важная часть устройства магнитного пускателя. В отличие от главных силовых контактов, блок-контакты предназначены для коммутации цепи управления. Их замыкание и размыкание происходит одновременно с замыканием и размыканием главных контактов, т .к. они расположены на одной изоляционной траверсе.

При срабатывании магнитного пускателя эти дополнительные контакты замыкают либо размыкают цепь катушки управления . В зависимости от состояния контактов в нормальном положении (когда пускатель отключен, т. е., его катушка находится не под напряжением) различают блок-контакты NC и NO.

Первые (NC — Normal Close) — нормально закрытые, в нормальном положении пускателя замкнуты, вторые (NO — Normal Close) — наоборот, разомкнуты в нормальном положении и замыкаются при срабатывании магнитного пускателя. На фото справа показаны блок-контакты NC и NO, находящиеся в одном корпусе.

Тепловое реле. Наличие этого устройства в магнитном пускателе, позволяет реализовать защиту электродвигателей от перегрузок по току недопустимой длительности. Они состоят из биметаллических пластин, отдельных для каждого полюса («фазы»), системы рычагов, спусковой механизм и NC-контакта.

Принцип действия теплового реле, вкратце можно описать следующим образом: ток. превышающий номинальный, проходя через биметаллические пластины вызывает их нагревание, отчего пластины деформируются и выгибаясь, воздействуют на систему рычагов реле, приводя в свою очередь, в действие систему рычагов, которая и размыкает NC-контакт.

Размыкаемый нормально закрытый контакт включается в цепь электромагнитной катушки последовательно и при его размыкании размыкается цепь управления. Происходит возврат якоря с силовыми контактами в исходное положение, таким образом, двигатель обесточивается, что и убережет от преждевременного выхода его из строя.

Для чего нужен контактор?

Любую электрическую цепь рано или поздно приходится размыкать. Причины для этого могут быть разными, а вот способов не так уж и много. Классический рубильник отлично справляется с поставленной задачей, но когда делать это приходится часто, об удобстве такого способа можно забыть. Контактор гораздо лучше подходит для выполнения подобной задачи. Во-первых, он способен смыкать и размыкать электрическую цепь по несколько тысяч раз в час. Во-вторых, делать это он позволяет на расстоянии, т.е. дистанционно. Ну, и самое главное, контактор способен полностью автоматизировать весь этот процесс.

Назначение

Как уже было сказано, основным назначением контактора является частое или просто регулярное включение и отключение электрических цепей. Возможность делать это дистанционно позволяет использовать контактор в таких сферах как коммунальное хозяйство (уличное освещение, работа лифтов, системы вентиляции, отопления и подачи воды), промышленность и строительство (практически любые виды электрооборудования), транспорт (работа троллейбусов и трамваев, электропоезда), и даже бытовая сфера (в домах и коттеджах для автоматизации работы коммуникаций). Некоторые виды контакторов имеют свое строго регламентированное назначение. Взять, к примеру, электромагнитный пускатель.

Некоторые зачастую просто путают контактор и магнитный пускатель, хотя принципиальная разница между ними есть. Магнитный пускатель является разновидностью контакторов, служащей одной конкретной цели — он запускает двигатели переменного тока. А вот контактор в отличие от пускателя может использоваться не только для силовых сетей, но и осветительного оборудования и т.п. В этом плане электромагнитный пускатель имеет более простое внутреннее устройство, в нем может не быть дугогасительных камер. Зато он имеет компактные габариты, лучше защищен от погодных условий и может служить для пуска двигателей даже под открытым небом.

Еще одна полезная разновидность контакторов — это тепловое защитное реле. Его назначением является защита электродвигателей от возможного перегрева. Таковым может быть обрыв одной из фаз или какие-либо другие причины. Тепловое защитное реле пропускает электрический ток только в охлажденном состоянии, а в случае нагрева биметаллической пластины цепь разрывается. При этом нужно помнить, что тепловое защитное реле срабатывает с задержкой во времени, поэтому не может служить защитой от токов короткого замыкания.

Принцип работы

Работа любого контактора заключается в следующем: группа подвижных контактов смыкается и размыкается с неподвижными контактами, тем самым, пропуская или не пропуская электрический ток. То есть по принципу работы это классический переключатель, хотя у него есть и ряд своих особенностей. Во-первых, в целях безопасности нормальное положение контактов — разомкнутое. Никаких механических средств для удержания контактов во включенном положении просто не существует. Подается управляющее напряжение — контакты смыкаются, напряжения нет — подвижные контакты автоматически размыкают цепь. Во-вторых, к такому виду переключателей, как контактор, предъявляются высокие требования в плане механической стойкости и электрической безопасности. Отсюда и наличие дополнительных элементов в конструкции, о которых речь пойдет ниже.

Смотрите так же:  Вредны ли провода

Конструкция

Разумеется, основой является контактная система, представляющая собой две группы — подвижных и неподвижных контактов. Сюда же можно приписать вспомогательные контакты, отвечающие за систему управления и сигнализации. Вторым важным элементом контактора является электромагнитная система, состоящая из катушки с сердечником. В общем-то, это и есть элемент дистанционного управления, поскольку именно сюда подаются управляющие токи. Не менее важным элементом конструкции являются дугогасительные камеры, которыми оснащены силовые контакты. Именно дугогасительная система при размыкании контактов гасит возникающую электрическую дугу. Все это делает контактор не просто двухпозиционным аппаратом, а надежным, безотказным и долговечным электромеханическим устройством.

Для чего нужен магнитный пускатель: 7 функций, сфера применения

Магнитный электрический пускатель контролирует и распределяет токовую энергию На сегодня, в устройстве различного электрооборудования используются коммутирующие пусковые электромагнитные аппараты. Они являются промежуточным звеном между силовыми частями и системами управления электрооборудования, контролируя включение и отключение электрических цепей. О том, как устроены магнитные пускатели, какие виды устройств существуют, и в чем заключается их назначение – читайте ниже.

Магнитный пускатель: устройство и принцип действия, комплектация

Магнитный электрический пускатель – это низковольтное устройство контроля и распределения токовой энергии. Конструкция устройства достаточно простая: аппарат состоит из двух частей – верхней и нижней, объединенных в пластмассовый корпус.

В верхней части пускателя располагается:

  • Блок подвижных контактов;
  • Дугогасительная решетка;
  • Подвижная часть электромагнита.

Контактный силовой блок, при этом, тесно связан с подвижной частью электромагнита. Дугогасительная решетка в устройстве выполняет роль аппарата, служащего для предостережения и ликвидации возгораний электродуги. По полозьям в верхней части устройства скользит траверса с якорем магнитной системы и мостиками силовых и дополнительных контактов с пружинами.

Нижняя часть электромагнитного устройства имеет в своей конструкции:

  • Втягивающую катушку;
  • Возвратную пружину;
  • Часть электромагнита.

Втягивающая катушка имеет цилиндрическую форму и обмотку из медного проводника. Количество витков катушки зависит от расчетного питающего напряжения. Магнит в устройстве состоит из Ш-образных, стальных, электромагнитных пластин. Якорь и сердечник составляют магнитопровод.

Принцип работы устройства достаточно прост: он основывается на воздействии магнитного поля на различные подвижные части пускателя.

Так, ток подается на катушку, расположенную на сердечнике. После прекращения подачи тока магнитное поле исчезает, возвратная пружина отправляет верхнюю часть устройства на исходное место. При этом, контакты, бывшие разомкнутыми замыкаются, а замкнутые – размыкаются.

Силовая контактная система: устройство магнитного пускателя

Современные магнитные пускатели могут оснащаться дополнительными устройствами защиты и управления. Чаще всего, пускатели укомплектовывают тепловыми реле аварийного отключения, слаботочными контактными пусковыми группами управления. Размножение контактов при модификации магнитного пускателя выполняется через контактный блок. Поэтому, контактную систему пускателя называют приставкой.

Магнитный пускатель состоит из двух частей, объединенных в пластмассовый корпус

Контактная силовая система трехфазного магнитного пускателя состоит из трех силовых (главных) контактов и одного вспомогательного.

Силовые контакты используют для коммутации мощной нагрузки. Поэтому их делают из медных перемычек с нанесением технического серебра. Дополнительный контакт в блоке выступает блокировочным: при использовании стандартной схемы подключения, он фиксирует пускатель в рабочем состоянии.

В зависимости от типа влияния на электрическую цепь силовые контакты делятся на:

Контакты срабатывают при попадании тока на втягивающую катушку пускателя. Во время этого сердечник тянет за собой контакты, что делает нормально-замкнутые контакты разомкнутыми, а нормально-разомкнутые замкнутыми.

Дополнительные контакты для пускателей с задержкой времени

Для увеличения количества силовых контактов электромагнитного аппарата используют дополнительные приставки. При этом, контакты в таких приставках подбираются с учетом максимального тока основных. Так, для пускателей первой и второй величин ток дополнительных контактов должен быть равен току основных или быть меньше максимального значения. Отдельно выделяют дополнительные контакты (приставки) с задержкой срабатывания. Главной задачей таких приставок является выдержка определенного времени при включении и отключении аппарата.

Пневматические приставки применяют в схемах управления электрическими приводами:

  • При напряжении постоянного тока мощностью в 440 В и частотой в 50 Гц;
  • При напряжении переменного тока мощностью в 660 В и частотой в 60 Гц.

Если пневматическая ПВЛ приставка уже установлена, для того, чтобы увеличить количество вспомогательных контактов электрической цепи управления используют контактную боковую приставку серии ПКБ. Монтаж приставки выполняют посредством специальных защелок на ее корпусе.

Какие бывают магнитные пускатели

Магнитные электрические пускатели различают по их способности работать с нагрузками разных мощностей. Отечественные пускатели делятся на 7 групп и могут коммутировать мощность в диапазоне от 7,5 до 45 кВт.

Магнитные пускатели бывают открытого и закрытого типа

Кроме того, по конструкции и принципу действия пускатели делятся на:

  • Реверсивные (например, ПМЛ 1502, 3100);
  • Нереверсивные (например, пускатель ПМЕ 211, ПАЕ 311 или “лягушка”).

Реверсивные пускатели имеют в своей конструкции два магнита, благодаря чему способны раскручивать двигать в любую сторону в зависимости от команды оператора. При этом, независимо от того как устроен пускатель он может иметь или не иметь защиту от перегрузок.

По месту установки магнитные пускатели бывают закрытого и открытого типа.

Отдельно выделяют пыленепроницаемые электромагнитные контакторы. Первые типы пускателей устанавливают в стандартных местах, которые не отличаются большим скоплением пыли, механическими воздействиями посторонних предметов (например, электрических шкафов). Пыленепроницаемые же пускатели не подвержены влиянию солнечных лучей и осадков, и могут устанавливаться под навесами на улице. Для идентификации типа пускателя придумана стандартизированная расшифровка, которая позволяет определить значение каждой буквы и цифры в обозначении на электрическом аппарате.

Основные функции и назначение магнитного пускателя

Для чего нужен магнитный пускатель? Главное назначение пускового электромагнитного устройства – включение и выключение двигателя. Исследование дугогашения в контакторах переменного тока свидетельствует о том, что, чаще всего, пускатели используют для управления асинхронными трехфазными электродвигателями. Это объясняется простотой конструкции пускателей. Кроме того, при включении в схему, пускатели не только включают и выключают электродвигатель, но и осуществляют контроль его работы.

Так, магнитный пускатель выполняет следующие функции:

  • Обеспечивает пуск мотора и разгон двигателя;
  • Контролирует непрерывность работы в соответствии с заданным временным промежутком;
  • Защищает мотор от перегрузок;
  • Меняет направление вращения мотора;
  • Отвечает за торможение противотоком;
  • Обеспечивает отключение двигателя.

Вместе с тем, пускатель обеспечивает нулевую защиту электропривода. Так, при незапланированном отключении питания, замок зажигания (контроллер) двигателя может оказаться в ненулевом положении. Нулевая защита предотвращает самопроизвольное включение мотора при восстановлении питания: двигатель включается в работу только после команды оператора.

Для чего нужен магнитный пускатель: сфера применения

Помимо управления трехфазным асинхронным двигателем, магнитный пускатель может быть использован для контроля работы мощных потребителей электроэнергии (например, насоса, кондиционера). В быту магнитные пускатели, чаще всего, используют для включения нагревательной системы (например, ТЭНов).

Сфера применения магнитных пускателей разнообразна

Кроме того, пускатели используются в схемах:

  • Дистанционного управления осветительными приборами;
  • Контроля тепловых печей;
  • Управления компрессорами.

Так, сфера применения пускателей крайне широка. Это объясняется простотой их конструкции и легкостью включения устройств в схему. Кроме того, найти пускатель по доступной стоимости не составляет труда: особую популярность, сегодня, имеет скупка электрических б/у аппаратов.

Устройство магнитного пускателя (видео)

Практически ни одно современное электрооборудование не обходится без устройства включения и отключения электрической цепи – магнитного пускателя. Современный магнитный электропускатель представляет собой модифицированный двухпозиционный электромагнитный электрический контактор. Зная, как работает магнитный пускатель, и какие виды устройства выделяют, вы сможете включать контактор в любую схему. А предложенные выше рекомендации по монтажу дополнительных контактов помогут вам усовершенствовать устройство!

Похожие статьи:

  • Гост электрические схемы спецификация Гост электрические схемы спецификация ГОСУДАРСТВЕННЫЕ СТАНДАРТЫ СОЮЗА ССР ЕДИНАЯ СИСТЕМА КОНСТРУКТОРСКОЙ ДОКУМЕНТАЦИИ ПРАВИЛА ВЫПОЛНЕНИЯ СХЕМ ГОСУДАРСТВЕННЫЙ КОМИТЕТ СССР ПО СТАНДАРТАМ ГОСУДАРСТВЕННЫЕ СТАНДАРТЫ СОЮЗА ССР Единая система […]
  • Провода к свечам зажигания логан Схема подключения свечных проводов Рено Логан, Сандеро, Ларгус Подключение высоковольтных проводов к модулю и свечам зажигания Логан, Сандеро, Ларгус. Автомобили с системой зажигания DIS (Double Ignition System). Искра возникает […]
  • Как подключить интернет через розетку Интернет через розетку Добрый день, Друзья! Приветствую вас на нашем обучающем Интернет-портале “С Компьютером на “ТЫ” . В предыдущей статье мы говорили о технологиях локальных сетей, разобрали наиболее популярные. Но иногда так бывает, […]
  • 220 вольт заневский 9 Санкт-Петербург, Заневский пр-кт д.9 Магазин «220 Вольт» – это всегда отличная возможность приобрести не только необходимые инструменты, но и расходные материалы к ним. К тому же цены на продукцию известных производителей, […]
  • Диэлектрические потери в изоляции провода Метод определения тангенса угла диэлектрических потерь кабелей, проводов - ГОСТ 12179-76 КАБЕЛИ И ПРОВОДА Метод определения тангенса угла диэлектрических потерь Cables and wires. Method for determination of the dielectric power factor МКС […]
  • Гост на обмоточные провода ГОСТ 15634.4-70 Провода обмоточные. Метод испытания изоляции напряжением МЕТОДЫ ИСПЫТАНИЯ ИЗОЛЯЦИИ НАПРЯЖЕНИЕМ ИПК ИЗДАТЕЛЬСТВО СТАНДАРТОВ 1. РАЗРАБОТАН И ВНЕСЕН Министерством электротехнической промышленности СССР И. Б. Пешков , […]