Нейтраль и земля в трехфазной сети

Как работает сеть трехфазного тока с изолированной нейтралью

Электрические сети могут работать с заземленной или изолированной нейтралью трансформаторов и генераторов . Сети 6, 10 и 35 кВ работают с изолированной нейтралью трансформаторов. Сети 660, 380 и 220 В могут работать как с изолированной, так и с заземленной нейтралью. Наиболее распространены четырехпроводные сети 380/220, которые в соответствии с требованиями правил устройства электроустановок (ПУЭ) должны иметь заземленную нейтраль.

Рассмотрим сети с изолированной нейтралью . На рисунке 1,а изображена схема такой сети трехфазного тока. Обмотка изображена соединенной в звезду, однако все сказанное ниже относится также и к случаю соединения вторичной обмотки в треугольник.

Рис. 1. Схема сети трехфазного тока с изолированной нейтралью (а). Замыкание на землю в сети с изолированной нейтралью (б).

Как бы хороша ни была в целом изоляция токоведущих частей сети от земли, все же проводники сети имеют всегда связь с землей. Связь эта двоякого рода.

1. Изоляция токоведущих частей имеет определенное сопротивление (или проводимость) по отношению к земле, обычно выражаемое в мегомах. Это означает, что через изоляцию проводников и землю проходит ток не которой величины. При хорошей изоляции этот ток весьма мал.

Допустим, например, что между проводником одной фазы сети и землей напряжение равно 220 В, а измеренное мегомметром сопротивление изоляции этого провода равно 0,5 МОм. Это значит, что ток на землю 220 этой фазы равен 220 / (0,5 х 1000000) = 0,00044 А или 0,44 мА. Этот ток называется током утечки.

Условно для наглядности на схеме сопротивления изоляции трех фаз r1 , r2 , r3 изображаются в виде сопротивлений, присоединенных каждое к одной точке провода. На самом деле токи утечки в исправной сети распределяются равномерно по всей длине проводов, в каждом участке сети они замыкаются через землю и их сумма (геометрическая, т. е. с учетом сдвига фаз) равна нулю.

2. Связь второго рода образуется емкостью про водников сети по отношению к земле. Как это понимать?

Каждый проводник сети и землю можно представить себе как две обкладки протяженного конденсатора. В воздушных линиях проводник и земля — это как бы обкладки конденсатора, а воздух между ними — диэлектрик. В кабельных линиях обкладками конденсатора являются жила кабеля и металлическая оболочка, соединенная с землей, а диэлектриком — изоляция.

При переменном напряжении изменение зарядов конденсаторов вызывает возникновение и прохождение через конденсаторы переменных токов. Эти так называемые емкостные токи в исправной сети равномерно распределены по длине проводов и в каждом отдельном участке также замыкаются через землю. На рис. 1,а сопротивления емкостей трех фаз на землю х1, х2, х3 условно показаны присоединенными каждое к одной точке сети. Чем больше длина сети, тем большую величину имеют токи утечки и емкостные токи.

Посмотрим, что же произойдет в изображенной на рисунке 1,а сети, если в одной из фаз (например, А) произойдет замыкание на землю , т. е. провод этой фазы будет соединен с землей через относительно малое сопротивление. Такой случай изображен на рисунке 1,б. Поскольку сопротивление между проводом фазы А и землей мало, сопротивления утечки и емкости на землю этой фазы шунтируются сопротивлением замыкания на землю. Теперь под воздействием линейного напряжения сети UB через место замыкания и землю будут проходить токи утечки и емкостные токи двух исправных фаз. Пути прохождения тока показаны стрелками на рисунке.

Замыкание, показанное на рисунке 1,б, называется однофазным замыканием на землю, а возникающий при этом аварийный ток — током однофазного замыкания.

Представим себе теперь, что однофазное замыкание вследствие повреждения изоляции произошло не непосредственно на землю, а на корпус какого-нибудь электроприемника — электродвигателя, электрического аппарата, либо на металлическую конструкцию, по которой проложены электрические провода (рис. 2). Такое замыкание называется замыканием на корпус. Если при этом корпус электроприемника или конструкция не имеют связи с землей, тогда они приобретают потенциал фазы сети или близкий к нему.

Рис. 2. Замыкание на корпус в сети с изолированной нейтралью

Прикосновение к корпусу равносильно прикосновению к фазе. Через тело человека, его обувь, пол, землю, сопротивления утечки и емкостные сопротивления исправных фаз образуется замкнутая цепь (для простоты на рис. 2 емкостные сопротивления не показаны).

Ток в этой цепи замыкания зависит от ее сопротивления и может нанести человеку тяжелое поражение или оказаться для него смертельным.

Рис. 3. Прикосновение человека к проводнику в сети с изолированной нейтралью при наличии в сети замыкания на землю

Из сказанного следует, что для прохождения тока через землю необходимо наличие замкнутой цепи (иногда представляют себе, что ток «уходит в землю» — это неверно). В сетях с изолированной нейтралью напряжением до 1000 В токи утечки и емкостные токи обычно невелики. Они зависят от состояния изоляции и длины сети. Даже в разветвленной сети они находятся в пределах нескольких ампер и ниже. Поэтому эти токи, как правило, недостаточны для расплавления плавких вставок или отключения автоматических выключателей.

При напряжениях выше 1000 В основное значение имеют емкостные токи, они могут достигать нескольких десятков ампер (если не предусмотрена их компенсация). Однако в этих сетях отключение поврежденных участков при однофазных замыканиях обычно не применяется, чтобы не создавать перерывов в электроснабжении.

Таким образом, в сети с изолированной нейтралью при наличии однофазного замыкания (о чем сигнализируют приборы контроля изоляции) продолжают работать электроприемники. Это возможно, так как при однофазных замыканиях линейное (междуфазное) напряжение не изменяется и все электроприемники получают энергию бесперебойно. Но при всяком однофазном замыкании в сети с изолированной нейтралью напряжения неповрежденных фаз по отношению к земле возрастают до линейных, а это способствует возникновению второго замыкания на землю в другой фазе. Образовавшееся двойное замыкание на землю создает серьезную опасность для людей. Следовательно, любая сеть с наличием в ней однофазного замыкания должна рассматриваться как находящаяся в аварийном состоянии , так как общие условия безопасности при таком состоянии сети резко ухудшаются.

Так, наличие «земли» увеличивает опасность поражения электрическим током при прикосновении к частям, находящимся под напряжением. Это видно, например, из рисунка 3, где показано прохождение тока поражения при случайном прикосновении к токоведущему проводу фазы А и неустраненной «земле» в фазе С. Человек при этом оказывается под воздействием линейного напряжения сети. Поэтому однофазные замыкания на землю или на корпус должны устраняться в кратчайший срок.

Земля в электротехнике

Землей называют точку цепи, электрический потенциал которой считается равным нулю. Такую точку можно выбирать условно. Землей ее называют традиционно, поскольку один из проводников электрических генераторов соединяли с землей при помощи зарытого в землю проводника. Электрикам-профессионалам и тем, кто имеет дело с электричеством необходимо знать, что такое фаза и что такое ноль.

Ток в цепи

Электрический ток может протекать только в замкнутом контуре. Электрическая цепь состоит из источника Э. Д. С. – электродвижущей силы и замыкающего этот источник сопротивления нагрузки, которое может быть очень разветвленным. Если говорить о бытовой электросети, то здесь источником ЭДС является вторичная обмотка трансформатора ближайшей подстанции, или еще проще, таким источником является ввод в здание.

Один из проводов источника заземлен, этот провод (или шина) называется нейтралью, N, в современной электротехнике. Потенциал этой шины относительно земли равняется нулю, поэтому этот провод называют землей.

Другие три провода называют фазами. Эти провода находится под переменным потенциалом, который меняется от 311 до -311 Вольт относительно земли в сети 220 В 50 Гц (50 раз в секунду). 220 Вольт – это, так называемое, действующее напряжение. Для тока и напряжения синусоидальной формы это среднеквадратичное значение. Это напряжение называют фазным.

Напряжение между двумя фазами называют линейным и оно выше: 380-400 В. Таким образом, размах напряжения в трехфазной сети может достигать величины 760-800 В. Поэтому электроинструмент должен уверенно выдерживать испытательное напряжение не менее 1 кВ = 1000 Вольт.

При замыкании фазы на ноль через какое-либо сопротивление в цепи течет ток. Еще больший ток через то же сопротивление потечет, если оно будет подключено между двумя фазами. В трехфазной цепи у конечных потребителей обычно действующее напряжение между фазами 380 В, а фаза и ноль образуют пару, напряжение на которой всегда равно напряжению между фазами, деленному на квадратный корень из числа 3. Это один из результатов теоретической электротехники. Отсюда и получается известная всем величина 220.

История заземления

В самых старых системах бытового электроснабжения переменного тока, которых теперь уже не найдешь, у конечного потребителя заземления не было (система TT, заземлялась только нейтраль на подстанции, если вторичная обмотка трансформатора соединялось звездой).

Это была однофазная сеть, распределяющаяся ток от понижающей обмотки трансформатора подстанции. Здесь вопрос о том, что такое фаза или нулевой провод даже не возникал – оба провода по отношению к земле были равноправными. Человек мог стоять на земле и держаться за любой из проводов по отдельности. При этом он ничего не чувствовал.

Наиболее старые трансформаторы, питающие однофазную сеть, имели схему, показанную на следующем рисунке. Первичные обмотки соединялись треугольником, нейтрали не было, и заземлялся только корпус трансформатора на месте установки. Теперь таких уже давно нет или они применяются где-то для полевых условий в сельском хозяйстве.

Поражение током происходило, если человек дотрагивался до двух проводов одновременно или, если один из проводов был кем-либо заземлен, а человек дотрагивался до другого. Старые электроплитки делались с открытой спиралью, люди готовили в металлической посуде и касались токоведущих частей. Старые телевизоры, например, изготавливались с автотрансформатором ради простоты конструкции и человек, дотрагиваясь до металлического шасси такого аппарата, фактически находился под напряжением сети.

Проблема возникла, когда жилой сектор стал снабжаться промышленным способом подключения (как на первом рисунке). Это произошло потому, что мощность, потребляемая частным сектором, значительно выросла, а в городах он фактически был перемешан с промышленностью (дома-хрущевки).

Тогда человек, стоящий на влажном полу, или держащийся за батарею, получал сильное поражение током с вероятностью 50%, в зависимости от того, как он включил вилку электроприбора в розетку. Если фаза тока попадала на шасси такого старого телевизора или радиоприемника, то прикосновение к нему было опасно для жизни.

Промышленность в области ширпотреба быстро перешла на производство нагревательных приборов с закрытым и изолированным нагревательным элементом (ТЭНы), а бытовые радио и телевизионные приборы стали производить исключительно с трансформаторами, где первичная обмотка была полностью изолирована от остальной части прибора, что сделало их безопасными для людей.

Но почему появилось заземление в промышленности? Нам надо рассмотреть и этот вопрос. В принципе, ни для работы потребителей, ни для транспортировки электроэнергии ничего заземлять не требуется.

Трехфазная система переменного тока была принята только потому, что это упрощало конструкцию электродвигателей, так необходимых станкам и машинам в промышленности. По трехфазной схеме в треугольник можно соединять и нагревательные приборы, пример тому – тэны, рассчитанные на 380 В.

Трехфазные системы могут соединяться звездой (первый рисунок). Такое соединение стало очень распространенным, так как оно позволяет без больших проблем питать трехфазные потребители напряжением 380 В, и в то же время, без лишних расходов устроить однофазные сети 220 В. Это хороший способ сэкономить на трансформаторах.

Так появился проводник, который назвали нейтралью (N). Его также называют – нулевой провод. При равном токе по всем фазам ток в нулевом проводе равен нулю. Энергетики стараются распределить нагрузку равномерно. Но это не всегда получается. Вот простой пример. Пусть на заводе был запитан офисный корпус. Для этого была выделена одна фаза.

Затем к этой же фазе подключили жилой дом недалеко. Остальные две фазы оказываются неуравновешены и в нейтрали появляется значительный ток. Это приводит ко всякого рода неопределенностям при измерениях. К тому же, как бы ровно не распределили нагрузку, на корпусах электрооборудования появляются опасные напряжения, если нейтраль оборвана.

В 1913 году немецкий концерн AEG предложил систему с заземленной нейтралью, позже названную TN-C. Здесь электрики стали использовать понятия фаза и ноль. Позже, в 1930-х годах появилась система TN-S, в которой заземление и нейтраль были разделены. Это дополнительно увеличивало безопасность, так как теперь, если нулевой провод оборван с очень высокой вероятностью оставался целым другой проводник. Но такая система оказывалась неоправданно дорогой.

Поэтому, со временем было предложено еще одно решение: нулевой провод от подстанции (PEN – защитная земля и нейтраль) расщеплялся на две части перед вводом в здание. Одна часть шла как нейтраль N, а другая получила название защитной земли PE. Если происходил обрыв нейтрали то фаза переменного тока, в случае попадания на корпус электрооборудования, пропускала свой ток в землю. Такая система получила название TN-C-S (заземленная нейтраль комбинированная, с разделением на месте).

Система TN-C-S имеет всего один недостаток – местное заземление должно быть повышенной надежности так как при обрыве нейтрали фазное напряжение, попавшее на корпус, будет заземлено только по цепи PE. Поэтому, при сооружении этой цепи принимают все меры по ее механической прочности и снижению электрического сопротивления.

Для этого используют металлические части зданий, трубопроводы и т.д. Однако все эти части соединяются всего в одной точке при помощи шин. Существует точка (шина) где ноль и земля соединяются, она называется шина уравнивания потенциалов. С ней соединяется и шина контура заземления.

В настоящее время TN-C-S является основной в городах и на предприятиях. В сельской местности еще много систем TT. Это связано с тем, что в сельской местности еще много деревянных домов и TT, при всех прочих недостатках имеет положительную сторону: она безопаснее в отношении грозы.

Что такое «фаза», «ноль» и «земля», и зачем они нужны.

Что такое «фаза», «ноль» и «земля», и зачем они нужны.

Что такое «фаза», «ноль» и «земля», и зачем они нужны.

Начнём с основ.
Допустим, на электростанции, вращается магнит (для примера — обычный, а в реальности — электромагнит), называемый «ротором», а вокруг него, на «статоре», закреплены три катушки (размазаны по статору).

Вращает этот магнит, скажем, поток воды на ГидроЭлектроСтанции.

Поскольку в таком случае магнитный поток, проходящий через катушки, меняется, то в катушках создаётся напряжение.
Каждая из трёх катушек — отдельная цепь, и в каждой из этих трёх цепей возникает одинаковое напряжение, сдвинутое на треть окружности друг относительно друга.
Получается «трёхфазный генератор».

Можно было бы с одной такой катушки два провода просто взять и вести к дому, а там от них чайник запитывать.
Но можно сделать экономнее: зачем тащить два провода, если можно один конец катушки просто тут же заземлить, а от второго конца вести провод в дом.
Этот провод назовём «фазой».
В доме этот провод подсоединить к одному штырьку вилки чайника, а другой штырёк вилки — заземлить.
Получим то же самое электричество.

Теперь, раз уж у нас три катушки, сделаем так: (например) левые концы катушек соединим вместе тут же, и заземлим.
А оставшиеся три провода и потянем к потребителю.
Получится, мы тянем к потребителю три «фазы».
Вот мы и получили «трёхфазный ток».
Точнее, генератор «трёхфазного тока».
Это «трёхфазное» напряжение идёт по проводам Линии ЭлектроПередач (ЛЭП) к нам во двор, в дворовую подстанцию (домик такой стоит, рядом с детской площадкой).

«Трёхфазный ток» был изобретён Николой Теслой.
Передача электричества в виде трёхфазного тока, некоторые говорят, экономичнее (я не знаю, чем), и там ещё, говорят, у него есть разные преимущества над обычным током для промышленного применения.
Например, все вращающиеся штуки на заводах — станки там, двигатели, насосы, и прочее — сделаны именно для трёхфазного тока, поскольку гораздо легче построить вращающуюся хрень на трёхфазном токе: достаточно просто точно так же подсоединить эти три фазы к трём катушкам на окружности, и в центр вставить металлический стержень с рамкой — и будет он сам крутиться, как только пойдёт ток.
Такой агрегат называется «трёхфазным двигателем».
Поскольку изначально электричеством заморачивались именно на заводах (не было тогда ещё в домах компьютеров, холодильников и люстр), то исторически всё идёт от промышленности в первую очередь.
Поэтому, видимо, ток из электростанции в ЛЭП пускают всегда трёхфазным, с напряжением 35 килоВольтов между фазами (а ток — около трёхсот Амперов).

Такое высокое напряжение нужно, потому что нужна большая мощность тока: весь город энергию ест, как-никак.
Большую мощность тока можно получить либо повышая силу тока, либо повышая напряжение.
При этом чем больше сила тока, тем больше энергии тратится впустую при преодолении сопротивления проводов (потерянная энергия равняется силе тока в квадрате, умноженной на сопротивление проводов).
Поэтому экономически целесообразно повышать мощность передаваемого тока наращивая напряжение.
Потребитель потребляет из розетки именно мощность (силу тока, умноженную на напряжение), а не что-то отдельное, поэтому его не волнует, каким образом эта мощность к нему в дом попадёт.

Кстати, интересный момент: над силой тока в линии электропередачи мы вообще говоря не властны: сила тока — это мера того, как сильно ток течёт по проводам.
Можно сравнить это с силой тока холодной воды по трубам: если все краны включат в ванных, то сила тока воды будет очень большой, а если, наоборот, все краны свои закроют, то вода по трубам вообще не будет течь, и мы никак не можем управлять этой силой тока.
А вот напряжению тока вообще без разницы, потребляет ли кто-нибудь ток, или нет — оно полностью в нашей власти, и только мы можем им управлять.

Поэтому в ЛЭП за основу берётся именно напряжение тока, и именно с ним работают: перед передачей тока по проводам, излишнюю силу тока, выработанного электрогенератором, перегоняют в напряжение, а при приёме тока в «подстанции» во дворе вашего дома — наоборот, излишнее напряжение перегоняют обратно в силу тока, поскольку весь путь успешно пройден током с минимальными потерями.

Прямо всю силу тока перекачать в напряжение не получится, потому что при гигантских напряжениях в проводах возникают свои сложности (может пробить через изоляцию, например, или зажарить человека, проходящего под проводом, или ещё чего-нибудь).
Кстати, забавное видео про короткое замыкание на линии ЛЭП:

Теперь рассмотрим подробнее «трёхфазный ток».
Это три провода, по которым течёт одинаковый ток, но сдвинутый на 120 градусов (треть окружности) друг относительно друга.
Какое напряжение у этого тока?
Напряжение всегда измеряется между чем-то и чем-то.
Напряжением трёхфазного тока называется напряжение между двумя его фазами («линейное» напряжение).
Там, где мы соединили все три фазы вместе в одной точке (это называется соединением по схеме «звезда»), мы получили «нейтраль» (G на рисунке).
В ней, как нетрудно догадаться (или посчитать по формулам тригонометрии) напряжение равно нулю.

Пока просто попробуем подключить генератор к нагрузке, стоящей рядом.
Если все три выходящие из генератора линии соединить, через сопротивления, во вторую «нейтраль» (точка G), то мы получим так называемый «нулевой провод» (от G до M).

Зачем нам нужен нулевой провод?
Можно было бы дома просто подсоединять одну из фаз на один шпенёк вилки, а другой шпенёк вилки соединять с землёй, и чайник бы кипел.
Вообще, как я понял, так и делают в старых советских домах: там есть только фаза и земля в квартирах.
В новых же домах в квартиры входят уже три провода: фаза, земля и этот «ноль».
Это европейский стандарт.
И правильно соединять именно фазу с нулём, а землю вообще оставить в покое, отдав ей только роль защиты от удара током («заземление»).
Потому что если все на землю ещё и ток будут пускать, то само заземление станет опасным — абсурд получится.
Ещё некоторые мысли по поводу того, зачем нужны все три провода, есть в конце этой статьи, можете сразу пролистать и прочитать.

Теперь попробуем посчитать напряжение между фазой и «нейтралью».
Вот ещё ссылка с расчётами.
Пусть напряжение между каждой фазой и «нейтралью» равно U.
Тогда напряжение между двумя фазами равно:
U sin(a) — U sin(a + 120) = 2 U sin((-120)/2) cos((2a + 120)/2) = — √ 3 U cos(a + 60).
То есть, напряжение между двумя фазами в √ 3 раз больше напряжения между фазой и «нейтралью».
Поскольку наш трёхфазный ток на подстанции имеет напряжение 380 Вольт между фазами, то напряжение между фазой и нулём получается равным 220 Вольтам.
Для этого и нужен «ноль» — для того, чтобы всегда, при любых условиях, при любых нагрузках в сети, иметь напряжение в 220 Вольт — ни больше, ни меньше.
Если бы не было нулевого провода, то при разной нагрузке на каждую из фаз возник бы «перекос» (об этом ближе к концу статьи), и у кого-то что-то могло бы сгореть.

Ещё один момент: выше мы рассмотрели введение нейтрали у генератора.
А откуда взять нейтраль на дворовой подстанции?
В дворовой подстанции трёхфазное напряжение снижается (трёхфазным) трансформатором до 380 Вольт на каждой фазе.
Это будет похоже на генератор: тоже три катушки, как на рисунке.
Поэтому их тоже можно друг с другом соединить, и получить «нейтраль» на подстанции. А из нейтрали — «нулевой провод».
Таким образом, из подстанции выходят «фаза», «ноль» и «земля», идут в каждый подъезд (своя фаза в каждый подъезд, наверное), на каждую лестничную площадку, в электрораспределительные щитки.

Итак, мы получили все три провода, выходящие из подстанции: «фаза», «ноль» («нейтраль») и «земля».
«фаза» — это любая из фаз трёхфазного тока (уже пониженного до 380 Вольт).
«ноль» — это провод от (заземлённой — воткнутой в землю — на подстанции) «нейтрали».
«земля» — это провод от заземления (скажем, припаян к длинной трубе с очень малым сопротивлением, вбитой глубоко в землю).

По подъездам получается такая разводка (если предположить, что подъезд = квартира):

На подстанции фазы с левой стороны все соединены и заземлены, образуя ноль, а в конечных точках — в конце подъезда, после того, как они пройдут по всем квартирам — вообще не соединены никуда.
Потому что если бы в конце каждая фаза была бы замкнута на «ноль», то ток гулял бы себе по этому пути наименьшего (нулевого) сопротивления, и в квартиры (под нагрузку) вообще бы не заходил.
А так, он вынужден будет идти через квартиры.
И делиться будет по правилу параллельного тока: напряжение в каждую квартиру будет идти одно и то же, а сила тока — тем больше, чем больше нагрузка.
То есть, в каждую квартиру сила тока будет идти «каждому по потребностям» (и проходить через счётчик, который это всё будет считать).
Но для того, чтобы ток был постоянным по мере включения и отключения новых потребителей, нужно, чтобы сила тока в общем проводе каждый раз сама подстраивалась под подлюченную нагрузку.

Что может быть, если все включат обогреватели зимним вечером?
Ток в ЛЭП может превзойти допустимые пределы, и могут либо провода загореться, либо электростанция сгорит (что и было несколько раз в москве, но летом).

Есть ещё один вопрос: зачем тянуть в дом все три провода, если можно было бы тянуть только два — фазу и ноль или фазу и землю?

Фазу и землю тянуть не получится (в общем случае).
Это выше мы посчитали, что напряжение между фазой и нулём всегда равно 220 Вольтам.
А вот чему равно напряжение между фазой и землёй — это не факт.
Если бы нагрузка на всех трёх фазах всегда была равной (см. схему «звезды»), то напряжение между фазой и землёй было бы всегда 220 Вольт (просто вот такое совпадение).
Если же на какой-то из фаз нагрузка будет значительно больше нагрузки на других фазах (скажем, кто-нибудь включит супер-сварочную-установку), то возникнет «перекос фаз», и на малонагруженных фазах напряжение относительно земли может подскочить вплоть до 380 Вольт.
Естественно, техника (без «предохранителей») в таком случае горит, и незащищённые провода тоже, что может привести к пожару.
Точно такой же перекос фаз получится, если провод «нуля» оборвётся или отгорит на подстанции.
Поэтому в домашней сети нужен ноль.

Смотрите так же:  Фотореле своими руками 220 вольт

Тогда зачем нам в доме нужен провод «земли»?
Для того, чтобы «заземлять» корпусы электроприборов (компьютеров, чайников, стиральных и посудомоечных машин), для того, чтобы от них не било током.
Приборы тоже иногда ломаются.
Что будет, если провод фазы, где-нибудь внутри прибора, отвалится и упадёт на корпус прибора?
Если корпус прибора вы заранее заземлили, то возникнет «ток утечки» (упадёт ток в основном проводе фаза-ноль, потому что почти всё электричество устремится по пути меньшего сопротивления — по почти прямому замыканию фазы на ноль).
Этот ток утечки будет замечен «Устройством Защитного Отключения» (УЗО), и оно разомкнёт цепь.
УЗО наблюдает за входящим в квартиру током (фаза) и изходящим из квартиры током (ноль), и размыкает цепь, если эти токи не равны.
Если эти токи разные — значит, где-то «протекает»: где-то фаза имеет какой-то контакт с землёй.
Если эта разница резко подскакивает — значит, где-то в квартире фаза замкнула на землю.
Если бы в щитке не стояло УЗО, и вышеупомянутый провод фазы внутри корпуса, скажем, компьютера, отвалился бы, и замкнулся бы на корпус компьютера, и лежал бы так себе, а, потом, через пару дней, человек стоял бы рядом, и разговаривал по телефону, оперевшись одной рукой на корпус компьютера, а другой рукой — скажем, на батарею отопления, то догадайтесь, что бы стало с этим человеком.
Так что «земля» тоже нужна.

Поэтому нужны все три провода: «фаза», «ноль» и «земля».

В квартире к каждой розетке подходит своя тройка проводов «фаза», «ноль», «земля».
Например, из щитка на лестничной площадке выходят три этих провода (вместе с ними ещё телефон, витая пара для интернета и мб какое-нибудь кабельное ТВ), и идут в квартиру.
В квартире на стене висит внутренний щиток.
Там на каждую «точку доступа» к электричеству стоит свой «автомат».
От каждого автомата своя, отдельная, тройка проводов уже идёт к «точке доступа»: тройка к печке, тройка к посудомойке, тройка на зальные розетки и свет в люстре, и т.п..
Каждый «автомат» изготовлен на заводе под определённую максимальную силу тока.
Поэтому он «вырубается», если вы даёте слишком большую нагрузку на «точке доступа» (например, включили слишком много всего мощного в розетки в зале).
Также, автомат «вырубится» в случае «короткого замыкания» (замыкания фазы на ноль), чем спасёт вашу квартиру от пожара.
Вас самих он не спасёт (слишком медленный). Вас спасёт толькоУЗО.

Под конец, просто так, напишу немного про «трансформатор» (читать не обязательно).

Я пробовал несколько раз понять, как он работает, но так и не понял.

Сила тока в цепи всегда подстраивается под подключённую нагрузку.
Для понимания этого факта можно рассмотреть, как работает трансформатор на подстанции.

Трансформатор — это сердечник, на котором две катушки: по одной ток входит, а по другой — выходит.

Если мы не выводим оттуда ток, то вводящая катушка — сама по себе, и она создаёт магнитный поток, который в свою очередь создаёт «сопротивляющееся напряжение» (это называется «ЭДС самоиндукции»), равное напряжению во вводящей цепи, и сводящее его в ноль.
Это «природное» свойство катушки («индуктивности») — она всегда сопротивляется какому бы то ни было изменению напряжения.
И по подключенному участку вводящей цепи ток практически не идёт (этот участок отводится от ЛЭП параллельно, чтобы, если в нём ток пропадёт, то у всех остальных ток остался), и практически нет потерь на таком «холостом ходу» трансформатора.

Потеряется только малость энергии, в том числе энергия, потраченная на «гистерезис» сердечника и на разогрев сердечника вихревыми токами (поэтому особо мощные трансформаторы погружают в масло для постоянного охлаждения).

Магнитный поток, распространяясь по сердечнику внутрь выводящей катушки, создаёт в ней тоже напряжение, которое могло бы вызвать протекание тока, но поскольку в данном случае к выводящей цепи мы ничего не подключили, то тока там не будет.

Если же мы начинаем выводить ток — замыкаем выводящую цепь — то по выводящей катушке начинает идти ток, и она тоже начинает создавать своё магнитное поле в сердечнике, противоположное магнитному полю, создаваемому вводной катушкой. Из-за этого ЭДС самоиндукции вводной катушки уменьшается, и более не компенсирует напряжение во вводной цепи, и по вводной цепи начинает течь ток. Ток нарастает до тех пор, пока магнитный поток «не станет прежним». Как это — я хз, в википедии так написано, а сам я так и не понял, как этот трансформатор работает.

Поэтому получается, что ток на выходе из трансформатора сам себя регулирует: если нет нагрузки, то там не течёт ток; если есть нагрузка — то ток течёт соответствующий нагрузке.
И если мы смотрим телевизор, а потом соседи включают пылесос, то у нас обоих ничего не «вырубается», так как сила тока тут же подстраивается под нас — потребителей электроэнергии.

Фаза, ноль и земля – что это такое?

Электрическая энергия, которой мы пользуемся, вырабатывается генераторами переменного тока на электростанциях. Их вращает энергия сжигаемого топлива (угля, газа) на ТЭС, падающей воды на ГЭС или ядерного распада на АЭС. До нас электричество добирается через сотни километров линий электропередач, претерпевая по дороге преобразования с одной величины напряжения в другую. От трансформаторной подстанции оно приходит в распределительные щитки подъездов и далее – в квартиру. Или по линии распределяется между частными домами поселка или деревни.

Разберемся, откуда берутся понятия «фаза», «ноль» и «земля». Выходной элемент подстанции — понижающий трансформатор, с его обмоток низкого напряжения идет питание потребителю. Обмотки соединяются в звезду внутри трансформатора, общая точка которой (нейтраль) заземляется на трансформаторной подстанции. Отдельным проводником она идет к потребителю. Идут к нему и проводники трех выводов других концов обмоток. Эти три проводника называются «фазами» (L1, L2, L3), а общий проводник – нулем (PEN).

Система с глухозаземленной нейтралью

Поскольку нулевой проводник заземлен, то такая система называется «системой с глухозаземленной нейтралью». Проводник PEN называется совмещенным нулевым проводником. До выхода в свет 7-го издания ПУЭ ноль в таком виде доходил до потребителя, что создавало неудобства при заземлении корпусов электрооборудования. Для этого их соединяли с нулем, и это называлось занулением. Но через ноль шел и рабочий ток, и его потенциал не всегда равнялся нулю, что создавало риск поражения электрическим током.

Теперь из вновь вводимых трансформаторных подстанций выходят два нулевых проводника: нулевой рабочий (N) и нулевой защитный (РЕ). Функции их разделены: по рабочему протекает ток нагрузки, а защитный соединяет подлежащие заземлению токопроводящие части с контуром заземления подстанции. На отходящих от нее линиях электропередачи нулевой защитный проводник дополнительно соединяют с контуром повторного заземления опор, содержащих элементы защиты от перенапряжений. При вводе в дом его соединяют с контуром заземления.

Напряжения и токи нагрузки в системе с глухозаземленной нейтралью

Напряжение между фазами трехфазной системы называют линейным, а между фазой и рабочим нулем – фазным. Номинальные фазные напряжения равны 220 В, а линейные – 380 В. Провода или кабели, содержащие в себе все три фазы, рабочий и защитный ноль, проходят по этажным щиткам многоквартирного дома. В сельской местности они расходятся по поселку при помощи самонесущего изолированного провода (СИП). Если линия содержит четыре алюминиевых провода на изоляторах, значит, используются три фазы и PEN. Разделение на N и РЕ в таком случае выполняется для каждого дома индивидуально во вводном щитке.

К каждому потребителю в квартиру приходит одна фаза, рабочий и защитный ноль. Потребители дома распределяются по фазам равномерно, чтобы нагрузка была одинаковой. Но на практике этого не получается: невозможно предугадать, какую мощность будет потреблять каждый абонент. Так как токи нагрузки в разных фазах трансформатора не одинаковы, то происходит явление, называемое «смещением нейтрали». Между «землей» и нулевым проводником у потребителя появляется разность потенциалов. Она увеличивается, если сечения проводника недостаточно или его контакт с выводом нейтрали трансформатора ухудшается. При прекращении связи с нейтралью происходит авария: в максимально нагруженных фазах напряжение стремится к нулю. В ненагруженных фазах напряжение становится близким к 380 В, и все оборудование выходит из строя.

В случае, когда в такую ситуацию попадает проводник PEN, под напряжением оказываются все зануленные корпуса щитов и электроприборов. Прикосновение к ним опасно для жизни. Разделение функции защитного и рабочего проводника позволяет избежать поражения электрическим током в такой ситуации.

Как распознать фазные и защитные проводники

Фазные проводники несут в себе потенциал относительно земли, равный 220 В (фазному напряжению). Прикосновение к ним опасно для жизни. Но на этом основан способ их распознавания. Для этого применяется прибор, называемый однополюсным указателем напряжения или индикатором. Внутри него расположены последовательно соединенные лампочка и резистор. При прикосновении к «фазе» индикатором ток протекает через него и тело человека в землю. Лампочка светится. Сопротивление резистора и порог зажигания лампочки подобраны так, чтобы ток был за гранью чувствительности человеческого организма и им не ощущался.

Конструкция однополюсного указателя напряжения

Обрыв нуля или отгорание нуля в трехфазной сети. К чему это приводит?

Здравствуйте, уважаемые читатели и гости сайта «Заметки электрика».

Я Вам всегда рекомендовал, и даже принудительно заставлял, для защиты электрооборудования и электрических приборов своих квартир и домов от повышения или понижения напряжения в сети устанавливать однофазное или трехфазное реле напряжения, в зависимости от Вашей сети.

В качестве реле однофазного напряжения можно применять устройства разных производителей, например, РН-113 от «Новатек-Электро», УЗМ-51 от «Меандр», RV-32A от EKF, CM-EFS.2 от АВВ, АЗМ-40А от «Ресанта», ZUBR D40t от «ДС Электроникс» и другие им подобные.

В качестве трехфазных реле напряжений могу порекомендовать: цифровое реле напряжения V-protector 380V от «Digitop», РНПП-311 от «Новатек-Электро», РКН-3-15-15 и УЗМ-3-63 от «Меандр», CM-MPS.11 от АВВ.

Все перечисленные выше устройства контролируют входное напряжение сети, и если напряжение по каким-то причинам вышло за пределы заданных уставок, то они должны отключить потребителей, тем самым защищая и спасая их от выхода из строя.

Напомню, что согласно ГОСТа 29322-92, табл.1, номинальное напряжение однофазной сети должно быть 230 (В), а трехфазной — 400 (В). А по ГОСТу 13109-97, п.5.2, предельно-допустимое отклонение напряжения не должно превышать ±10%, т.е. для однофазной сети это напряжение от 207 (В) до 253 (В), а для трехфазной — от 360 до 440 (В).

Причин для отклонения напряжения может быть множество, и в одной из своих статей я их уже перечислял. Но сегодня я хотел бы остановиться на одной очень распространенной причине, как обрыв нуля.

В Интернете имеется не мало статей по этой теме, но вся представленная информация в основном теоретическая и поверхностная. Я же в данной статье расскажу Вам очень подробно про возникновении такой ситуации, произведу расчеты токов и напряжений в нормальном режиме и при обрыве нуля, исходя из реальных нагрузок на примере нескольких квартир, а в самом конце сымитирую ситуацию с обрывом нуля в трехфазной сети на реальном примере.

Расчет несимметричного режима трехфазной сети с нулевым проводом

Для интереса, теорию будем рассматривать не в чистом виде, а на наглядном примере. Предположим, что на площадке у нас расположено три квартиры.

Вот пример такого этажного щита на три квартиры, о котором у меня написана отдельная и подробная статья.

Каждая квартира питается с подъездного щита, но с разных фаз — обычное дело. Квартира №1 запитана с фазы А, квартира №2 — с фазы В, а квартира №3 — с фазы С.

Возьмем за условность, что в какой-то определенный момент времени в квартире №1 был включен в розетку электрический чайник мощностью 2000 (Вт), в квартире №2 — горели лампы накаливания общей мощностью 400 (Вт), а в квартире №3 — горела одна единственная лампа накаливания мощностью 75 (Вт).

Я специально в качестве примера привел чисто активную нагрузку, чтобы не усложнять расчеты и векторные диаграммы углами сдвига и т.п. Естественно, что в реальности чисто активной нагрузки по квартирам не бывает, но тем не менее смысл остается прежним.

А теперь вспомним немного ТОЭ.

Нагрузку каждой квартиры представим в виде сопротивлений, которые обозначим «Z». Z — это и есть полное сопротивление цепи, с учетом активной и реактивной составляющей, но как я уже сказал выше, реактивной составляющей у нас нет (нагрузка чисто активная), поэтому в нашем случае Z=R. Получается следующее:

Как видите, нагрузка по квартирам разная, т.е. это типичный несимметричный режим работы четырехпроводной трехфазной сети с нейтральным проводом при соединении нагрузки по схеме «звезда». В этой схеме есть свои особенности, но об этом чуть позже.

Итак, номинальное линейное (межфазное) напряжение сети составляет 400 (В), а фазное напряжение (между фазой и нулем) — 230 (В).

На источнике питания линейные напряжения обозначаются, как UAB, UBC и UCA, а фазные UA, UB и UC. На нагрузке такие же обозначения, только с маленькими буквами (индексами).

Но на практике такие идеальные значения редко встречаются по нескольким причинам. Изначально на трансформатор может приходить высокое питающее напряжение с неидеальными линейными напряжениями, которое преобразуется на низкую сторону тоже с некоторой разницей. К тому же сам трансформатор может иметь какие-то наиболее загруженные фазы, на которых напряжение будет чуть снижено, по сравнению с другими.

Я возьму реальный пример из практики, поэтому линейные и фазные напряжения у меня имеют следующие значения:

Будем считать, что нейтральный (нулевой) проводник от трансформаторной подстанции (ТП) до этажного щита у нас идеальный (ZN=0), т.е. я пренебрегаю его сопротивлением, которое складывается из сопротивлений переходных контактов и самих проводов. Сопротивления контактных соединений и проводников фаз я тоже учитывать не буду.

Таким образом получается, что напряжение между нулем источника питания (в моем случае это трансформатор) и нулем нагрузки (потребители) равно нулю, т.е. эти точки имеют одинаковый потенциал.

Напряжение между этими точками называется напряжением смещения нейтрали и его обозначают, как UnN.

В рассматриваемом случае напряжение смещения нейтрали равно нулю (UnN = 0), а значит фазные напряжения у источника питания (трансформатор) и на нагрузке (потребители) совершенно одинаковые:

Векторная диаграмма напряжений будет иметь следующий вид. Для наглядности хотел построить ее в масштабе, но не нашел достойного онлайн сервиса, а рисовать ее на миллиметровой бумаге, как в университете, у меня нет времени.

Естественно, что фазные напряжения сдвинуты относительно друг друга на 120 электрических градуса.

Теперь нам нужно узнать токи нагрузки по фазам, которые рассчитаем по закону Ома для участка цепи, зная фазные напряжения и сопротивления нагрузок. Расчет фазных токов буду производить в показательной форме комплексного числа.

Теперь отложим полученные значения токов на нашей векторной диаграмме. Т.к. нагрузка у нас чисто активная, то векторы токов будут сонаправлены с векторами фазных напряжений.

Вот это нормальный режим работы, когда нет обрыва нейтрального проводника, т.е. это несимметричный режим работы четырехпроводной трехфазной сети с нулевым проводом.

Ради интереса можно рассчитать ток в нулевом проводе, который равен геометрической сумме всех фазных токов. Для удобства сложения комплексных чисел переведу их из показательной формы в алгебраическую, а результат запишу опять в показательной.

Получилось, что значение тока в нуле составляет 8,86 (А).

Расчет несимметричного режима трехфазной сети без нулевого провода

Но сейчас перейдем к самому интересному!

Предположим, что в этажном щите из-за плохого контакта у нас отгорел магистральный ноль N (PEN), или же электрик, выполняя работу, ошибочно его разорвал, например, в этом месте (место разрыва я указал не схеме красным крестиком). Я лишь указал две причины обрыва нуля, на самом деле их может быть множество.

Вот фотография подобного по исполнению этажного щита. Кстати, этот щит находится в аварийном состоянии и о нем у меня есть отдельная статья, где я подробно рассказываю, как и что в нем нужно устранить и исправить.

Так что же произойдет при обрыве магистрального нуля N (PEN)?!

При обрыве нулевого провода все три сопротивления окажутся включенные звездой, но без нуля. Произойдет смещение нейтрали и перераспределение (перекос) фазных напряжений квартир. По сути, у нас получилась трехфазная трехпроводная сеть без нулевого проводника, но с неодинаковыми нагрузками.

А чтобы понять, как именно распределятся фазные напряжения, сначала необходимо найти напряжение смещения нейтрали (по методу узловых напряжений).

Таким образом получилось, что при обрыве нуля между нейтралью трансформатора и отгоревшей нейтралью в этажном щите появится потенциал около 181 (В).

Если у Вас в жилом доме применена устаревшая система заземления TN-C, в которой все открытые металлические конструкции присоединены к нейтрали (занулены), то эта разность потенциалов (напряжение) окажется на всех зануленных металлических частях, а в нашем примере под напряжением окажется металлический корпус этажного щита и все, что подключено к нулевой колодке N, а это у нас нулевые проводники всех трех наших квартир.

Задев корпус щита или любой нулевой проводник, Вы попадете под действие электрического тока.

Про последствия я рассказывать не буду, об этом уже написано несколько статей на сайте с реальными случаями, знакомьтесь:

Если же в этажном щите Вы сделали разделение PEN проводника и перешли с системы заземления TN-C на TN-C-S, то эта разность потенциалов окажется не только на отгоревшем нуле и на конструкции щита, но и на корпусах всех Ваших электрических приборов и техники, что значительно увеличивает шансы попасть под действие электрического тока. Кстати, это еще одно доказательство тому, что разделение PEN проводника необходимо выполнять не в этажном щите, а в ВРУ.

Но это еще не все.

Определим фазные напряжения на нагрузке с учетом смещения нейтрали.

И что мы видим?! А видим мы перекос фаз в трехфазной сети.

В фазе А напряжение снизится с 239 (В) до 65 (В), в фазе В — напряжение с 225 (В) увеличится до 335 (В), а в фазе С — напряжение с 232 (В) увеличится до 372 (В).

Естественно, что в квартире №1 при таком низком напряжении 65 (В) с электрическим чайником ничего не произойдет, он просто напросто не станет работать. Но вот если вместо чайника был бы подключен холодильник, кондиционер или другие потребители с двигательной нагрузкой, то большая вероятность, что они вышли бы из строя.

А вот в квартирах №2 и №3 последствия будут весьма печальными. При напряжении 335 (В) и 372 (В) лампы в них моментально сгорят. Если вместо ламп будет включена другая нагрузка, будь это телевизор, компьютер и прочая бытовая техника, то они тоже моментально выйдут из строя, если конечно в них нет встроенной защиты от перепадов напряжения. Не исключено, что может возникнуть даже пожар.

Да, кстати, вот так примерно будет выглядеть наша векторная диаграмма после отгорания нуля.

Как видите, точка нейтрали n сдвинулась в точку n’, т.е. к наиболее загруженной фазе А. В наиболее загруженной фазе напряжение снизилось, а в менее загруженных, наоборот, увеличилось и практически до линейного напряжения.

При изменении сопротивлений фазных нагрузок напряжение смещения нейтрали UnN может изменяться в широких пределах, при этом точка нейтрали n’ может находиться в разных местах векторной диаграммы, а фазные напряжения у потребителя могут иметь величины от нуля и вплоть до линейного напряжения.

При всей этой ситуации фазные напряжения на источнике питания (трансформаторе) останутся неизменными, т.е. несимметрия нагрузки никак не влияет на систему напряжений источника питания.

А теперь, опять же ссылаясь на закон Ома, рассчитаем фазные токи.

Проведем проверку наших расчетов по первому закону Кирхгофа — геометрическая сумма токов всех фаз при обрыве нулевого провода должна быть равна нулю. Вот и проверим это тождество.

Тождество верно, с учетом небольших погрешностей, возникших при расчетах.

Но и это еще не все. После того, как от повышенного напряжения выйдут из строя потребители, начнется очередное перераспределение фазных напряжений, но уже с учетом этих сгоревших потребителей, и тогда напряжение может повыситься уже в другой фазе. В общем такая бесконечная реакция будет продолжаться до того момента, пока все не сгорит.

Какой же вывод можно сделать?!

В данном примере я смоделировал обрыв нулевого проводника в этажном щите, с которого питались однофазные нагрузки трех квартир с разных фаз. Если рассмотреть в целом многоквартирный дом, то ситуация будет аналогичной, т.к. нагрузка по фазам сильно колеблется и в любом случае будет несимметричной. Аналогичная ситуация может произойти и в частном доме, имеющий трехфазный ввод.

Таким образом, из расчетов следует, что при обрыве нулевого проводника в трехфазных сетях с глухозаземленной нейтралью при несимметрии нагрузок фазные напряжения могут достигать опасных значений. Напомню, что в рассматриваемом примере в фазе В и фазе С напряжение увеличилось до 335 (В) и 372 (В) соответственно, т.е. возросло почти до линейного.

Здесь же хотел добавить, что при симметричной нагрузке в случае обрыва нуля перекоса фаз не возникнет. Вот поэтому многие трехфазные двигатели запитывают четырехжильными кабелями без нуля (А, В, С и PE).

Защита от обрыва нуля

Какие же меры можно предпринять для предотвращения подобных случаев?

Если это многоквартирный дом, то настойчиво требовать от обслуживающей организации постоянного контроля и регулярных проверок состояния электропроводки от ВРУ до этажных щитов, в том числе с проведением всех необходимых измерений с привлечением электротехнической лаборатории (ЭТЛ). Нас, кстати, регулярно привлекают управляющие компании (УК) для проведения подобных работ, потому что эти измерения необходимо производить с определенной периодичностью, которая указана в ПУЭ и ПТЭЭП. К слову, вот фотографии с последней проверки одного многоквартирного дома. И как там еще что-то работало?!

Об этом ВРУ я скорее всего напишу отдельную статью с указанием конкретных замечаний, так что подписывайтесь на новости сайта, чтобы не пропустить самое интересное.

Вот еще несколько фотографий с объектов. Порой в электрический щит даже заглянуть страшно, не говоря уже о выполнении в нем каких-либо работ.

Если с Вами все таки произошла ситуация с обрывом нуля, то Вас спасут только лишь устройства (реле), про которые я говорил в самом начале статьи. К тому же, «Библия электрика» (ПУЭ, п.7.1.21) рекомендует не пренебрегать данными советами.

Также ПУЭ, п.1.7.145 запрещает установку коммутационных аппаратов (автоматы, предохранители и т.п.) в нейтральном проводе PEN, чтобы как раз таки уберечь потребителей от перекоса фаз при несимметричном режиме.

Внимание! Один из постоянных читателей сайта смоделировал ситуацию обрыва нуля в трехфазной сети, когда нагрузки в каждой фазе одинаковые, а затем добавил в одну из фаз дополнительную нагрузку. Уже основываясь на теорию, изложенную в данной статье, посмотрите, что же произойдет в этих двух разных случаях. Константину от меня лично большое спасибо за предоставленный материал.

В заключении хотел бы акцентировать Ваше внимание на том, что все вышесказанное в данной статье относится к обрыву нулевого проводника в трехфазной сети. Если же при однофазном вводе в квартиру у Вас отгорит вводной ноль, то ничего при этом у Вас не сгорит, а возникает ситуация другого плана, о которой я подробно рассказывал в статье про появление в розетках «двух фаз».

Смотрите так же:  Шина нулевого провода

P.S. А кто-нибудь из Вас становился «жертвой» обрыва нуля?! При каких обстоятельствах это произошло, какие последствия были — поделитесь в комментариях своей историей, чтобы подкрепить информацию данной статьи реальными примерами из жизни.

216 комментариев к записи “Обрыв нуля или отгорание нуля в трехфазной сети. К чему это приводит?”

долгожданная статья вышла

Админ, То есть если после обрыва нуля мы коснемся этажный щит,который был соединен с вводным нулем(и все что было соединено с нулями) ,то мы попанем под напряжение смещения нейтрали 181(В)?

Сергей:
16.04.2016 в 22:22
долгожданная статья вышла
Ну как бы в учебнике ТОЭ это вроде самый первый систем про трехфазные системы

Сергей, конечно корпус РЩ этажа будет под потенциалом. Поэтому TN-C и запрещена сейчас, и осталась только в старом жилфонде. Хотя, многие дома с данной системой и старыми не назовешь, строились они в 2000х годах же.

Админ, а как обстоит ситуация в TN-C-S с обрывом PEN до ВРУ? Есть ли в ВРУ какая-либо автоматика для защиты от подобной ситуации?

Кстати, в 7.1.21 ПУЭ сказано, что нужно обязательно разрывать N. Ни одно из перечисленных реле не разрывает N. Насколько данное требование критично с точки зрения практики? Ставить дополнительно контактор для очень маловероятной ситуации не все захотят.

Доброго времени суток! Спасибо за статью! Буквально на днях, в коттедже сгорели плазменный телевизор, СВЧ-печь и светодиодная люстра. Дом был подключен к 0,4 кВ, и ноль заведён через отдельный автомат…

Замечательная статья!
Спасибо автору!

Единственное я не понял., почему в квартире 1 на фазе А ( с большей нагрузкой) по рассчетам вышло меньшее сопротивление?

спасибо за статью, освежил в памяти. Как раз сегодня осматривал щит у друга(купил новую квартиру). Там даже через счетчик идет только фаза, ноль от общей шинки.Значит если отгорит ноль на квартиру-не страшно, но если потеряем общий ноль-пиши пропало.

В декабре произошёл обрыв нуля в нашей пятиэтажке (как минимум в щите на подъезд, если такой есть, а то и во всём доме). У нас: минус СВЧ и несколько ламп. У соседей тоже СВЧ, холодильники и т.д.

Теперь у меня везде (и дома, и на даче) стоят реле контроля напряжения.

В 90% домах ВРУ именно так и выглядят, некоторые еще хуже. Особенно те, что в подвале стоят, кому в голову пришло их в подвал ставить?
П.С. ГОСТ 13109-97 недействителен, вместо него ГОСТ 32144-2013

Сгорели : холодильник(плата), тепло вентилятор, софиты. Причина: 4-х полюсный дифавтомат декрафт. Который стоял в этажном щите на квартиру после счетчика. Фазы пропускал при включении, а ноль нет. Хозяин начал бодаться с УК, дом новостройка , три полюса до счетчика и диф после.

Игорю — разрывать PEN проводники ЗАПРЕЩЕНО.
Админу — долгожданная статья. Объясняешь грамотно, даже детям понятно. Респект и уважуха за такие толковые труды!
По поводу щитов — хоть и работаю электриком всего-навсего 4 года, но прикасаться сразу к токопроводящим частям (те же дверцы распредустройств, ДАЖЕ ЕСЛИ ОНИ НОВЫЕ) — ни за что! Всегда сначала заведомо исправным указателем напряжения смотрю наличие (отсутствие) напряжения на неокрашенных частях (встроенные замки, срезы технологических отверстий, ну или сам изолированным предметом процарапаю до металла в неприглядном месте). Если его нет под рукой, то резко провожу тыльной стороной ладони по неокрашенным частям. Убедившись, что напряжение отсутствует продолжаю работу.
Однажды даже было так — проверил дверцу шкафа, напряжения нет, пока убирал указатель напряжения в карман дверца стала сама открываться (видимо столкнул её с привычного места, когда прижимал указатель), затем нижний угол провалился в сам шкаф и уперся в изоляцию магистральных фаз. На нижней петле не было стрежня как оказалось, а в верхней петле вместо стержня стоял тонкий проводок, скрутка которого расползлась под действием тяжести дверцы. Поверенными пассатижами аккуратно отслонил, а затем и выправил дверцу, вместо стержней вставил более-менее подходящие по диаметру болты. Место удара на проводниках изолировал (от греха подальше). А если бы дверца передавила бы изоляцию проводников…
По поводу примеров: 1) трехфазная система заземления электроустановки TN-C-S, повторное заземление PEN проводника имелось (т.е. был отдельный контур заземления на вводе в электроустановку). На ВЛ-0,4 кВ произошел обрыв только PEN проводника (ветка упала). В результате всю нагрузку после места обрыва принял на себя контур заземления этой электроустановки, корпуса электроприборов оказались под напряжением, несчастного случая не произошло, потребитель увидел стекание изоляции с заземляющего проводника и вызвал квалифицированную службу;
2) трехфазная система заземления электроустановки TN-C-S, повторное заземление PEN проводника имелось (т.е. был отдельный контур заземления на вводе в электроустановку). В ВРУ-0,4 кВ, по причине плохой протяжки ГЗШ при монтаже, PEN проводник имел плохой контакт с ГЗШ. Данной электроустановкой является сельский магазин продуктов, в котором имеется много холодильного оборудования (много импульсных токов). Постепенно PEN проводник нагревался, искрил, пока совсем не потерял контакт. В итоге вышли из строя один из холодильных ларей и АД14 (диф.автомат), стоящий после прибора учета (т.е. защита внутренней электропроводки).

Я исходя из реалий сегодняшнего дня не имея в щитке свободного места и для реле напряжения просто установил как входной автомат дифавтомат IEK АД12М с защитой от повышенного напряжения сети. Как бы случаев бросков напряжения с выгоранием бытовой техники за 20 лет жизни в этом доме у меня и у соседей не было, но… я теперь сплю ещё лучше.

Еще вспомнил: здание одно, но вводов в это здание два. Оба ввода выполнены по системе заземления TN-C. Причем в распределительном щите установлена шина PE и к ней присоединены PE проводники отходящих линий, т.е. шина «в воздухе». До приборов учета установлены автоматические выключатели. На одном вводе трехполюсный автомат на 25А, отключающий фазы и тут же однополюсный на 20А отключающий PEN проводник. На втором вводе картина та же, только трехполюсный автомат разрывает две фазы и PEN проводник, а однополюсный третью фазу. Монтаж велся (на мой взгляд) года 3-4 назад, т.е. кто-то (проектировщик или монтажник, а может все сразу) требования никакие не знал или не соблюдал! Руководителю указали в письменной форме о замечаниях, в устной предупредили о последствиях, но организация бюджетная и уже второй год нет средств (буквально копеек. ) для исправления этих замечаний.

Владимиру-Пока гром не грянет, мужик не перекрестится.

Интересно было бы посмотреть такой же опыт, но только с однофазным реле напряжения, на сколько оно-реле эффективно сработает и защитит при обрыве нуля. Интересен именно мгновенный скачек напряжения, а не плавное его повышение как в отдельном видео про RV-32А от EKF.
Статья на высоте, как обычно!

«Напомню, что согласно ГОСТа 29322-92, табл.1, номинальное напряжение однофазной сети должно быть 230 (В), а трехфазной — 400 (В). А по ГОСТу 13109-97, п.5.2,»
не 230В, а 220В, даже в примере в ГОСТ на качество ЭЭ использовано имено 220В, да собственно 380В/sqrt(3) = 219,39 = 220В

А старые реле от релейщиков не пойдут ?

восьмиподъездная пятиэтажка, 2 ВРУ, во второй подъезд к ВРУ приходит с ТП кабель, оттуда в пятый подъезд шлейфом уходит кабель на второе ВРУ. ЖИльцы вызывают электрика — в подвале трубы горят. Наш электрик приходит, смотрит — трубы водоснабжения в местах соединения с кронштейнами искрят. Ну он, чтобы не искрили, подкладывает под них деревяшки. Где-то с полгода прошло, слесаря собрались менять в подвале отрезок трубы, я как раз дежурил и меня вызвали их подключить. Прихожу, начинаю заниматься с проводами, а меня ноль бьет, ощутимо так. Понятно, что я стою на голой земле, но чтобы так ноль щипал. Пошел по подвалу, нашел в одном месте искрение между трубой и кронштейном. На кронштейне вдобавок лежат трубы со стоячными проводниками, они конечно занулены. Подумал, что кто-то через трубы ворует, однако бьющий ноль как-то смущал. Благо с собой клещи были, пошел в ВРУ пятого подъезда, померил приходящий ноль, а в нем действительно ноль. Пошел в первое ВРУ, там все нормально. То есть где-то под землей в кабеле ноль потерялся. Я-то думал, что ток бежит с труб на зануленные кронштейны, а оказалось — с кронштейнов на трубы, которые уходят в землю. Вот так где-то с полгода половина пятиэтажки, плюс там еще находится детская поликлиника сидели без полноценного нуля — просто на нечаянном заземлении. И главное — жалоб не было.

Хотел добавить, раньше, когда нагрузки были маленькими и, как правило, активными, нулевую жилу в целях экономи делали вполовину сечения фазных — и она нормально справлялась. Однако сейчас, когда нагрузки возросли и главное — появилось очень много импульсных источников питания, гармоники которых не хотят складываться геометрически (они, видите ли, алгебру любят))), по нулевой жиле могут протекать токи большие, чем в самой загруженной фазе, а проводник остается все тем же — вполовину от сечения фазного, плюс к этому плохие горелые контакты — все горит, дымит и плавится. Так что реле просто необходимо, хотя бы розеточное, хотя бы для самой дорогой техники — холодильник, плазма и проч.
Кстати, в той пятиэтажке, после проброса нового нуля, инженер говорит, ОДН по электричеству ощутимо снизились.

хорошая статья и в обще админ большое спасибо прекрасное разяснение с удовольствием читаю ваши статьи. электромеханик 4гр доп работаю на горно-обогатительной фабрике

В статье автора применен устаревший ГОСТ 29322-92, на смену которому пришел ГОСТ 29322-2014, в котором действительно, в соответствие с табл.1 п.3.1 в нашей стране с 2014 года стандартными значениями принято 230/400 В, взамен 220/380.
Также ГОСТ 13109-97 заменен на ГОСТ 32144-2013, в котором процент отклонения остался неизменным +-10 %

От таких моментов выручают многофункциональные устройства УЗМ. Они предохраняют электроприборы при выходе напряжения за допустимые пределы в однофазных сетях.
Выпускаются следующие модицикации:
— УЗМ-50М (ток нагрузки 63 А, фиксированные пороги, Uниз 170 В, Uверх 265 В, задержка включения 6мин/10с);
— УЗМ-51М (ток нагрузки 63 А, регулируемые пороги, Uниз 160-210 В, Uверх 230-280 В, задержка включения 6мин/10с).
Себе поставил в квартиру такое на вводе.

В ГОСТ 32144-2013 в п.4.2.2 упоминается:»В электрических сетях низкого напряжения стандартное номинальное напряжение электропитания ГОСТ 32144-2013 Электрическая энергия. Совместимость технических средств электромагнитная. Нормы качества электрической энергии в системах электроснабжения общего назначения равно 220 В (между фазным и нейтральным проводниками для однофазных и четырехпроводных трехфазных систем) и 380 В (между фазными проводниками для трех- и четырехпроводных трехфазных систем).»

Читать нужно внимательнее, для чего этот ГОСТ
«Настоящий стандарт устанавливает значения стандартного напряжения, которые
предназначены для применения в качестве:
— предпочтительных значений для номинального напряжения электрических систем питания;
— эталонных значений для электрооборудования и проектируемых
электрических
систем.»

То есть этот стандарт для проектировщиков новых сетей

А номиналы в используемых как были так и остались, и вероятно, в ближайшее время никто не будет их менять

Потому 380/220В. Вероятно в обозримом будущем мы будем иметь часть сетей 380/220В а часть 230/400В во марока то будет )))

В современных квартирах такая проблема меньше, тк всем заходит по 3 фазы и квартиры друг от друга не зависят, ну и + защитное заземление имеется и щиток биться уже не будет
Честно говоря думал тут думал зачем заземляют именно шкафы автоматики и прочее, ведь даже если фаза упадёт на него тебя жахнет только фазой (что не страшно) , зато очень велика вероятность замкнуть фазу на землю через себя, ведь весь шкаф это земля и не очень то просто не прикасаться к нему.
хотя это больше защитная мера для оборудования, чтобы его защищать от КЗ на землю, но при этом почемуто считается что это именно защита людей

Админ,напишите статью как осуществить отключение вводного автоматического выключателя с независимым расцепителем посредством реле максимального напряжения чтоб отключалась и фазный и нулевой проводник.

Спасибо за статью! Хотел уточнить: частный дом, ввод трех фазный. При разделении в ВРУ нейтрали на Ре и N и устройстве заземляющего контура, в случае обрыва нейтрали на вводе перекоса напряжения по фазам не будет?

Валерий, перекоса не будет до тех пор пока нагрузка будет симметричной,если же она не симметрична на оборванном нуле возникнет потенциал но на корпусе ничего не будет.,так как вы РЕN проводник разделили..и токопроводящие части подключены к Заземляющему Устройству… .

Валерий, будет перекос при обрыве нуля в любом месте начиная от «последнего» заземления при условии несимметричной нагрузки, а она почти всегда такая

Владимиру: Судя по Вашим примерам, заземление нулевого провода перед вводным щитком (имеется ввиду загородный дом с подключением по 0,4 кВ от ВЛ) не имеет особого смысла?

Игорь, насколько знаю его запрещено заземлять. РЭС или точнее энергосбыт покарает ))
Ты должен у них 0 брать
А вот корпус щитка можешь там себе заземлять, по идее по столбу должно идти заземление, к нему можно подцепиться

Очень хорошая статья, совсем недавно дискутировали на эту тему, суть спора была в том, как велика вероятность отгорания нуля в старых домах. Как видно из статьи — действительно велика.

Перекоса критического не будет. Ток в нейтрале будет стекать по схеме «оборванный PEN сети—PEN участка до места разделения—шина ГЗШ—заземляющий проводник—заземлитель участка—земля—заземлитель У ТП», т.е. получается как бы система заземления ТТ. Здесь надо понимать и учитывать, что по этому пути может протекать очень большой ток,(как в комментарии Владимира от 18.04.16 00:36 пример 1), поэтому узел деления PEN проводника в доме лучше не делать, во всяком случае, если по другому нельзя заземляющий проводник от заземлителя до ГЗШ прокладывать по дому в стальной трубе с толщиной стенки не менее 2.5мм.

Ввод в дом от ВЛ :
ПУЭ-7
1.7.102. На концах ВЛ или ответвлений от них длиной более 200 м, а также на вводах ВЛ к электроустановкам, в которых в качестве защитной меры при косвенном прикосновении применено автоматическое отключение питания, должны быть выполнены повторные заземления PEN-проводника. При этом в первую очередь следует использовать естественные заземлители, например, подземные части опор, а также заземляющие устройства, предназначенные для грозовых перенапряжений (см. гл. 2.4). Указанные повторные заземления выполняются, если более частые заземления по условиям защиты от грозовых перенапряжений не требуются.

Александр, 20.04.2016 в 06.56 — ключевые слова здесь «ДОЛЖНЫ быть выполнены…», а есть ли они на самом деле? В каком они состоянии? Какое у них сопротивление? Поэтому ПУЭ и рекомендует при системе ТN-C-S выполнять повторное заземление на вводе ввиду незнания состояния заземления на опорах, состоянии ЛЭП, состоянии заземления на самой ТП и прочее. Т.е. заботься о себе сам, а не доверяй каким-то дядям…

«А кто-нибудь из Вас становился «жертвой» обрыва нуля?!»

Как раз на этой неделе звонили с местной газеты. В одном доме произошел массовый выход электроприборов из строя. Просили дать комментарий. Перенаправил их в домоуправление, но сам думаю, что это как раз обрыв нуля. Буду «пасти» статью в газете

Случаи отгорания нулевого проводника бывают довольно часто из-за халатности обслуживающего персонала или низкой квалификации. Однажды мне позвонила знакомая и сообщила, что у нее погорели некоторые бытовые приборы. Я посоветовал обратиться в ЖЭК чтобы электрик проверил в доме состояние нулевых проводников. Электрик сказал ей, что вина в плохих автоматах, заменил автоматы и ушел. А через неделю ситуация повторилась снова.Последствия были еще печальнее. Когда пришел к ней снова электрик — она позвонила мне и я в популярной форме(как принято у нас на Руси крепким словцом) объяснил тупому что надо сделать. Действительно был слабый контакт нуля в щитовой .Слава Богу плазму и холодильник отремонтировали по гарантии.

Честно говоря читал так со скукой, не интересно такие вещи читать когда их знаешь и сталкивался с этим не однократно. К слову в ВРУшках ноли отгарают часто, если мудила который обслуживает дом ленится при снятии показаний общедомовых счетчиков заглянуть в шкаф. Если же осмотр такой делают раз в месяц то такого не случается, бывает что нол теряется в межетажных каналах, а когда дастоешь этот кусок то чаще находиш скрутку сгоревшую алюминий в 16мм2. Ну и есть еще одна беда: но там как повезет в пятиэтажках канал по которому проходят стояки расположен рядом с дверным проемом одной из квартир, и установщики бывает перебивают но там как повезет КЗ или ноль перебьют или фазу. Если ППР (полноценный) не проводится регулярно то в подвале в коробке отгарает ноль но это реже всего. Ну вот как то так из личного опыта.

Дмитрий!.Может Вам сделать типа таблички про системы заземления ТТ т ТN-C-S.Сравнить эти системы,плюсы и минусы каждой.Так будет легче сделать выбор.А то сколько людей,столько и мнений.У меня ТН-С-S,теперь страшно,вдруг ноль оборвется и кабель не выдержит,дом деревяный,вся улица на мне повиснет.Какая система все-же лучше для частного дома,может убрать перемычку?Я думаю многим интересно поставить точку в этом вопросе.

«Дмитрий:
22.04.2016 в 00:15
Дмитрий!.Может Вам сделать типа таблички про системы заземления ТТ т ТN-C-S.Сравнить эти системы,плюсы и минусы каждой.Так будет легче сделать выбор.»

И кто в здравом уме делает выбор по табличкам? Когда все доводы в пользу использования TN-C-S исчерпаны и линия не удовлетворяет качеству, то применяется TT (с обязательной установкой УЗО).
Все плюсы и минусы на данном ресурсе описывали в соответствующих статьях.

Если воздушная линия от дома до самой КТП выполнена СИП’ом, то можно применить TN-C-S. Если только участок, а остальное голые провода, то уже TT. Так как ток замыкания на землю в TT может быть недостаточным для срабатывания автомата, то дифзащита обязательна.

А в TN-C-S обязательно следить за своим ВРУ, состоянием контактов и т.п. И если хорошее заземление, то на него будет потенциал и уходить.

В любом случае, если дома сработает реле контроля напряжения, лучше не обниматься с потенциально опасными электроприборами.

Дмитрий.Я,как обыватель, не могу оценить качество линии.Тут надо специалистов,лабораторию,документы и тд.На первый взгляд вроде все нормально,линия 2000г.,опоры ж/б,тп в 40м от дома,тоже 2000г.провод неизолированый,я подключен первым на линии,дома 3 фазы.НО я ведь не могу быть уверенным на 100%,что завтра не отгорит ноль допустим в присоеденении кабеля от РУ ТП на опоре к неизолированому проводу.Кто обслуживает эти соеденения,или машина какая может оборвать.Что касается повторных заземлений,то они есть,но какое у них состояние.У нас опоры меняют,новые бревна привязывают к старым пасынкам и просто перекидывают провода,и проволоку заземления оставляют ту-же,меряют при этом сопротивление или нет я не знаю,но скорей нет,чем да,потому-что это так топорно все делается.Где новые линии там все аккуратно,а вот при ремонте старых качество не ахти.Я перечитал уже все и на форуме,но так и не смог определить для себя что-же лучше.Есть сторонники ТТ(Елаекс),есть TN-C-S(тупос) и тд.ВОт я и хотел, чтоб админ всетаки расставил точки над И,что же всетаки лучше для частного дома.Я больше склоняюсь к TN-C-S,но придется наверно переделывать ВРУ,так-как у меня в ограде,надо наверно перенести на фасад,чтоб вводной кабель не шел по стенам,если уж загорит,так хоть пожара не будет.

А интересный вопрос был задан в одном из первых комментов, на который никто не ответил…
«Дмитрий К.:
17.04.2016 в 16:20

Кстати, в 7.1.21 ПУЭ сказано, что нужно обязательно разрывать N. Ни одно из перечисленных реле не разрывает N. Насколько данное требование критично с точки зрения практики? Ставить дополнительно контактор для очень маловероятной ситуации не все захотят.»

Приходилось сталкиваться с подобным)

Один раз видел ВРУ в частном доме, которую собрали непонятные электрики) — ноль был подключен через однополюсной автомат, а три фазы через трёхполюсной автомат)). Одним движением пальца деревянный дом мог бы перейти в состояние пепла.

На частном секторе, если по опорам проложен провод АС, можно увидеть на нолевом проводнике следы прогорания алюминиевых жил. Особо прошаренные бестолочи закидыват на ноль крючок, который прикреплён к проводу — так делают те, кому отрезают ввод от изоляторов на столбе, за неуплату за свет. Т.к. контакт между крючком и проводником плохой, то всё это дело искрит и пережигает алюминиевые жилы до самого сердечника АС)). Граждане, если вы есть тут такие прошареные, то знайте, обмануть судьбу не получится) результат вашей прошариности всё-равно заставит заплатить деньги энергосбытовой компании, ну и соседям вы тоже выплатите(читайте статью).

Ещё был случай, на многоквартирном доме. Как-то «Спецстрой России» нагнал гастарбайтеров из солнечного Узбекистана(или Азербайджана)) на работу по обшивке фасада МКД. Короче, фасад зашили вместе с вводным кабелем, который был проложен на стене дома) Маладцы! Потом один работник зачем-то начал сверлить фасад дома, и попал в тот кабель. Да так попал неудачно — разорвал нолевую жилу кабеля. В общем весь дом потом избавлялся от бытовой техники(она просто стала безполезным хламом). И хорошо то, что не случился пожар.

Так как же осуществить одновременное отключение фазы и нуля?

Сергей, 3 двухполючных автомата или 1 четырёхполючный

Схема такая. На ответвление устанавливается двухполюсный автомат допустим АВВ, к нему с боку присоединяется расцепитель максимального напряжения ABB 2SC-OVP1,(у них все предусмотрено)который отслеживает напряжение между фазой и нейтралью ; когда перенапряжение достигает 275 вольт устройство отключает присоединенный к нему автомат. Фаза и нуль отключаются одновременно. Есть такие расцепители и у других фирм. У Schneider выпускаются минимальный/максимальный расцепитель.

Сергей, есть некоторые реле напряжения (вроде у АВВ), которые рвут одновременно, и фазу, и ноль. Но точно какие сказать не могу — нужно искать и читать. Но как вариант, можно после реле напряжения установить контактор, и им уже разрывать оба полюса.

Дмитрий,а можете схемку монтажную нарисовать и скинуть мне ,как это все пограмотнее сделать вместе со счетчиком?

объясните, пож-та, я правильно понял что при обрыве нуля в розетку придут 2 разные фазы с линейным напряжением 380 или фаза и ноль с напряжением 380?

Сергей, между Вашей фазой и смещенным нулем появится напряжение, которое может быть, либо близкое к линейному напряжению, либо значительно уменьшиться, все зависит от нагрузки Ваших соседей. Посмотрите еще раз векторную диаграмму, где указаны фазные напряжения уже после обрыва нуля (я их выделил красным цветом).

Спасибо за пояснение

А если отгорит ноль на вводе в здание в ВРУ где ТN-C-S- то на всех заземленных приборах во всем доме будет напряжение(смещения нейтрали)?

ответьте, пож-та, поправьте если я не прав

«Сергей:
26.04.2016 в 21:57
А если отгорит ноль на вводе в здание в ВРУ где ТN-C-S- то на всех заземленных приборах во всем доме будет напряжение(смещения нейтрали)?»

И в не заземленных тоже
А какая связь между заземленным или нет прибором и обрывом нейтрали? Заземление от этой напасти не защищает

В TN-C-S и т.п. всегда будет сохраняться опасность, что корпуса электроприборов могут оказаться под напряжением. И через импульсные блоки питания в какой-нибудь технике с N на PE может прилететь. Но не стоит загружать голову до уровня подсознательного страха.

26.04.2016 в 21:57

А если отгорит ноль на вводе в здание в ВРУ где ТN-C-S- то на всех заземленных приборах во всем доме будет напряжение(смещения нейтрали)?

Сергей, если отгорить N в системе TN-C-S, то потребители в зависимости от нагрузки окажутся или под повышенным или пониженным напряжением, но корпуса останутся заземленными. И если при повышении напряжения на потребителе сгорит допустим спираль, то при ее прикосновении корпуса потребителя произойдет КЗ.

Админ,скажите.Вы написали «Если же в этажном щите Вы сделали разделение PEN проводника и перешли с системы заземления TN-C на TN-C-S, то эта разность потенциалов окажется не только на отгоревшем нуле и на конструкции щита, но и на корпусах всех Ваших электрических приборов и техники»

Смотрите так же:  Заземление ивантеевка

А если сделано разделение на вводе,то не будет этой разности потенциалов на корпусах приборов. Или также будет(т.к. РЕ шина соединена с нейтралью нагрузки)?.Не «въеду» до конца.

Администратору -Спасибо ! Красавчик -наставник. Я еще делаю так : в частных домах с трехфазным напряжением ставлю на каждую фазу РН-111 с контактором на 25 ампер , что удобно там есть индикаторное цифровое табло напряжения , плюс время включения на каждой фазе можно выставлять потенциометром.
Получается , что при обрыве нуля , фазные токи встречаются в общей нулевой шине и вместо нуля на приборы потребления идет дополнительное напряжение (две фазы), реле устанавливается после общей шины и каждое реле с индивидуальной нулевой колодкой для потребителей.

Два с половиной месяца назад. Утро. Сижу в туалете, читаю книжку. Вдруг вижу лампочка начала моргать, а затем гореть ярче. Т.к. я сам давно связан с электричеством, то сразу начал выключать все приборы в квартире из розеток. Оставили включенной только лампочку в ванной, т.к. жене с сыном нужно как-то умыться. Я думал, что лампочка перегорит, свет от нее был почти белого цвета. Замерил для интереса напряжение в розетке — 323 вольта! Я отключил питание квартиры в этажном щитке и уехал на работу. Вечером пообщались с соседями. У кого тостер сгорел, у кого радиоприемник. У меня ничего не сгорело. Я успел все выключить.

Алкксандр:
30.04.2016 в 09:05

Связаны давно с электричеством. Отключили в этажном щитке и уехали? )))
А аварийную службу кто вызывал, бабушки с горящими тостерами? ))

Зачастую ноль,зараза,отгорает именно в точке балансового разграничения. Если грубо,то : приходящая с улицы нулевая жила на болтовое соединение принадлежит РЭС ,а уходящая с болта жила в дом это уже ЖЭК. В итоге за сам отгоревший болт отвечает потребитель. Есть какие то документы,законы,акты,которые заставят платить поставщика или эксплуатационщиков за сгоревшее.

Евген: такого не может быть что никому, ведь болт тоже должен (как шина) или туда или сюда относиться по разграничению. Суд разберётся в пользу пострадавших

Евгений, а болт где находится, в вашей сборке? Если в вашей сборке, то ответственность за контакт в точке присоединения несет ваш электроперсонал.

Здравствуйте. Извините, что не по теме, но хотел бы,чтобы появилась статья о заземлении, занулении в РУ и т.д. На пальцах, так скажем. Сам ещё ученик. Спасибо.

я не понимаю в статье как считается и откуда эта j берется и некоторые числа когда эта j появляется. а так статья отличная

В бытность работы в энергонадзоре, помню коллега участвовал в расследовании пожара в общежитии, отгорел ноль!

У меня и в доме и в квартире стоят УЗМ. Прежде чем ставить один был разобран и практически убит в своей лаборатории. У Питерцев получилось удачное изделие.

Возможно, кому-то такой факт может показаться странным, но разница между этими нулевыми проводами огромная. При обрыве магистрального N-проводника напряжение в сети, то есть в розетках вашей квартиры, не исчезнет.

Сталкивался с такой ситуацией: ВРУ установлено в подвале. Для освещения подвала от него зачем-то сделали двухфазное ответвление и PEN проводник. Во ВРУ PEN проводник соприкасался с фазным. Он грелся и со временем изоляция расплавилась, произошло короткое замыкание и PEN проводник отгорел. Появилось напряжение 400 В (замерял мультиметром в патроне, розеток там нет). Ну и вопрос: откуда оно взялось, и почему лампы светили если PEN проводник оборван?

Дмитрий, доброго времени суток! Спасибо за интересный материал! Я сам не электрик, но статья понятная. А вопрос вот какой: на днях монтировал настенный электрический котёл трёхфазный, 12 кВт, «воду» спаял, опрессовал. К моему приходу заказчик должен был подвести мне на трёхфазный автомат питание, но не успел подключали вместе, кабель СИП 4х16. Подключил: чёрные с цветными полосками на фазы, а полностью чёрный на ноль. Земли не предвиделось. Включаем рубильник — котёл моргнул….и больше не дышал. Начал звонить тестером, оказалось ноль сидел на каком то из цветных проводов. Мучают меня три вопроса: 1) почему не сработал автомат на который приходят две фазы и ноль? Ведь через котёл они же должны как то соединяться наверно? 2) наличие заземления спасло бы котёл в такой ситуации? 3) у котла внутри тоже есть автомат, он размером как два однофазных и без кнопок и выключателей. Вопрос мог ли он сгореть или выбить или же всё таки сгорели микросхемы? Спасибо

Владимир, у вас два плеча нагрузки оказались под напряжением 380В, а одно под фазным напряжением, т.е. КЗ не было, поэтому автомат не сработал. В принципе внутреннее защитное устройство должно обеспечить защиту.

Очень много полезного и интересного почерпнул из ваших статей , началось все с заземления , прочитав я понял , что лучше в моем случае ограничиться узо ,и соседу подзатыльников дать , ну а третий провод будет резервным или до лучших времен. Спасибо.

Спасибо за интересную статью. Но я хотел бы уточнить один момент. По поводу разрыва нейтрали. Делаю АВР. Почему сам — на это много причин, одна из них: требование «скрестить» 3х фазный ввод с однофазным генератором, вторая: это чуть более чем АВР, но еще система динамического распределения электроэнергии и защиты. Сейчас у меня временная схема, которая уже нас спасла и спасает до сих пор (сидим снова на гене, про ЧП на севере Подмосковья кто нибудь слышал?): N гены и N ввода соединены. 3 вводных автомата отключают ввод, На гену тоже 3 автомата, которые коммутируют L генератора на L1, 2, 3 домашней сети. 3Х фазных нагрузок нет, по этому тут нет ничего криминального. 3 автомата отдельных нужны для последовательного ввода нагрузки. Мне кажется, это не безопасно. При обрыве нуля, даже если будут отключены фазы, на N гены будет подаваться потенциал. Линия воздушная, хоть и кабель изолирован, но уже обрывы частичные, к счастью фаз, встречались. Заземление — TT, по этому на L гены будет напряжение N в обрыве + Uг относительно «земли». То есть уже может быть смертельным для фильтров импульсников и сетевых. Хоть там и на 1000V, вроде, а прецеденты их взрыва даже в штатной ситуации и изделий «именитого» производителя были!
Пока сам прибор управления разрабатываю, делаю полуавтомат ввода резерва. И в его силовом модуле уже нейтраль отключается пускателем. Пускатели — не совсем обычные, скорее мощные реле. Основной — 2 НЗ, 2 НР, остальные — 2 НР. Пока защита только релейная. Жалко, нельзя схему выложить. Попробую на словах: Основной коммутирует N и L1 (ток реле — 65А), Один НЗ используется для сигнализации (подключает звонок к вводу, при восстановлении ввода получаем звуковой сигнал, сейчас контрольная лампа), второй — для «защиты от дурака». Нужен для предотвращения замыкания фаз при питании от генератора (забыли отключить гену и включили ввод).
Спасибо автору за мысль, век живи, век учись, как говориться. Сознаю, не учел, что основной пускатель может выйти из строя, и будут включены L2, L3 но L1 и N будут обесточены. По этому хочу на дополнительный пускатель пустить запитку катушки по цепи N после основного. То есть, если основной не стработал — не включится и дополнительный. Если, допустим, отгорели контакты N, будет меньшее из зол — 2 фазы L1 у всех потребителей…
Вопрос, такое решение возможно по стандартам безопасности?
И вопрос номер два. Покороче, но не менее важный. Снова же со стороны норм безопасности: Надо ли заземлять N генератора? С одной стороны гена гальванически развязан и при переключении N индикатором будем иметь 2 нейтрали. Но при пробое, например, насоса или бойлера УЗО становится бесполезным. Пока сложно представить смертельную ситуацию из за этого, после восстановления штатного режима УЗО сработает. Но и не вижу ничего плохого в заземлении N генератора. Не подскажите, что про это говорят нормы, а то на форумах — холивар?
С уважением, Константин.

Константин:
22.11.2016 в 14:12

Ищи в поиске «авр механическая блокировка» есть готовые модели Контакторов — это для защиты от Одновременного включения или залипания контактов

«3 вводных автомата отключают ввод, На гену тоже 3 автомата, которые коммутируют L генератора на L1, 2, 3 домашней сети. 3Х фазных нагрузок нет, по этому тут нет ничего криминального. 3 автомата отдельных нужны для последовательного ввода нагрузки. Мне кажется, это не безопасно.»
нужно 4полючные автоматы, а если нужно «последовательного ввода нагрузки» то сразу за ними 1полюсные как в квартирном щитке : вводной и отходящие

схему нужно выложить на обменник и дать сюда ссылку

Есть уже про это, правда, не про АВР, а про объединение 3-хфазной линии в дом и про остальное. Поделюсь своим.
Простым АВР не доверяю. Обычный переключатель на 4 направления- 3ф и нейтраль и три положения ЛЭП-откл-генератор(Г). Переход на Г объединяет все линии потребителей в доме и перебрасывает нейтраль дома на Г, отрывая от ЛЭП. Заземление Г- само собой и непременно- и Г и дома. Если есть необходимость нагружать Г ступенями, бывает, включаю линии своими АВ в доме последовательно. Если Г достаточно мощный и тянет беспроблемно, например, пару одновременно стартующих х-ков, то можно и не заморачиваться.

ПАВ, спасибо за ответ. Я АВР тоже не доверяю, по этому разрабатываю свой контроллер. Достаточно интересное решение. Который — не только контроллер АВР, но и распределения энергии + в последствии (сразу не потяну по времени, буду строить модульно) — контроллер температуры.
Про генератор. Почему я хочу вводить сразу (и ввожу) резерв поэтапно. Даже если чисто активные нагрузки (бойлер, конвекторы и п.д.), то получается следующие: Мы включили Г. У меня он 7.5кВт в номинале. Прогрели. И если сразу подключить все, то его регулятор частоты вращения начнет колбасить от перерегулировки. Не долго, но неприятно. Соответственно, плывет частота и напряжение. А дешевые слабые Г, то есть, Г натуральное, практически в разнос идут. Хорошо, если заглохнет а не зависнет с открытым дросселем.
Генератор у меня заземлен, сабо собой. А у Вас Nг заземлена? В схеме с переброской нейтрали. Возможно, если успею, позже выложу схему того, что сейчас, без мозгов, правда пока. На кнопках и реле…

Нет, у меня изначально ТТ, нейтраль не связана с землей, тем не менее- предпочел от нее отрываться при работе Г.

Добрий вечер!
Прочитав сайт, поставил реле напряжения Зубр 32А на однофазную (старый дом, 2 провода в квартиру) проводку. Что будет, если на щитке лесничной площадки перепутают на входящем в квартиру проводе ноль и фазу? Реле сгорит, отключится или ещо какие варианты?
Заранее спасибо за ответ.
С уважением,Ярослав.

Ярослав, реле в таком случае все равно отработает и обесточит нагрузку, только вместо фазы будет разорван ноль. Главное, что к электроприемникам не будет приложено напряжение и они будут в безопасности.

Практическая работа: электрик домоуправления менял прибор учета в этажном щитке. В соседних квартирах сгорели холодильник и еще чего-то (не запомнил). Вопрос (риторический): какой провод оторвал «специалист»?
Напряжение он восстановил, но на всех приборах учета лампа-индикатор не горит. Сегодня поедут смотреть это художество

Agentish: При всем уважении к Вам посмотрите на «тему» в ТРЕХФАЗНЫХ сетях. Я сомневаюсь что в Ваших этажных щитах стоят 3-х фазные приборы учета. И просьба. Когда посмотрятрят на это художество отпишитесь пожалуйста о выводах и принятых решениях.

Прошу простить за малограмотность. Почему на векторной диаграмме линейные напряжения имеют направления Uab от B к А, Ubc от C к B и т.д. И при расчетах смещения нуля напряжения вычитаются , а не складываются.
С уважением, Владимир.
Статья отличная. Автору +++++++++++!

Дмитрий, прошу извинить, почему при расчёте фазных токов при обрыве нуля , Вы взяли ток фазы А со знаком минус : 2,72*угол-24,2° , а не +24,2°.
С уважением , Владимир.

Статья, замечательная, огромное спасибо за наглядность и доступность!

Здравствуйте. Можно ли рассчитать напряжение на фазах при обрыве нуля(в рассмотренным Вами примере) без применения векторных диаграмм?

Дмитрий, так я и определил фазные напряжения в случае обрыва нуля исключительно по формулам.

Как будет выглядеть векторная диаграмма напряжений после обрыва PEN в системе TN-C-S?

Сергей, в статье есть пример диаграммы после обрыва нуля.

Т.е.на корпусах приборов также будет напряжение

За счет чего же оно там будет? Где есть прибор, питание которого сразу, при производстве, сделано так, что на корпусе предполагается и ноль и земля? Много таких? Да, есть, не часто, бытовая аппаратура, в которой нет гальванической развязки сеть/шасси, но там приняты меры для предотвращения контакта шасси с потребителем.

Дмитрий здравствуйте. Я писал вам в разделе контакты, но ответа нет и я решил спросить здесь. У нас у соседей в декабре ночью загорелся дом, мороз 20 градусов, ветер почти ноль. После того как был потушен пожар, я замерил напряжение, оказалось 360В. Эксперты сказали что загорелся холодильник в результате длительного перенапряжения. Потерпевшие подали в суд на электросети. Я был вызван как свидетель, судья задала мне вопрос » мог ли пожар стать причиной перенапряжения ?», я ответил, нет. Она задала этот вопрос начальнику электросетей, он ответил «да, конечно же мог». Судья не просила объяснить точку зрения. И я теперь ломаю голову, каким образом пожар в частном доме, с однофазным подключением мог стать ( по мнению начальника) причиной перенапряжения, не только в этом доме но и у соседей? Притом есть свидетели как электрики после пожара, палкой разъединяли слипшиеся провода за пять домов до места пожара. Могли ли бы вы высказать свою точку зрения по поводу случившегося? Судебное разбирательство не закончилось и возможно меня ещё будут вызывать в суд.

Админ,В системе TN-C-S напряжение смещения нейтрали будет как-либо уменьшатся за счет того,что общей точкой становится земля или все тоже самое,как и в TN-C? Есть какие-либо различия?(какие есть плюсы и минусы)

Александр:
15.04.2017 в 01:20

Пожар в доме мог стать причиной возникшего перенапряжения в общей сети. Если от пожара в доме загорелась изоляция эл. проводки, то произойдет КЗ , при этом автомат не сработал и ток КЗ ушел в общую линию. Автомат защиты общей сети не рассчитанный на такой ток КЗ также не сработал, вот провода через пять домов и слиплись и как результат перенапряжение в общей сети.

вик-тор спасибо за комментарий, видимо вопрос слишком сложный оказался, что никто не мог его прокомментировать долгое время, даже «хозяин» страницы. Неужели 25-ти амперный автомат «китаец» выдержал такой ток, ведь он через него проходил, который заставил слипнутся провода на линии? Да и автомат устанавливали сами электросети.

1. Какого сечения кабель защищал этот китаец.
2. автомат этот еще стоит на месте или сняли, если не сняли надо снять и проверить в лаборатории на отключение.
3.есть ли у вас проект на электроснабжения домов в том числе сгоревшего.
4 есть ли акт разграничения по балансовой и эксплуатационной ответственности.
5 Надо узнать почему не сработал автомат защищающий основную линию.
Во общем, чтобы разобраться нужен специалист, с сетями бодаться трудно.

Не только обгорание нуля может напряжение «всколыхнуть» как в большую, так и в меньшую сторону. Сгорела плавкая вставка одной из фаз, двигатель (схема звезда) без нуля, реле контроля фаз или частотные преобразователи отсутствовали (времянка). И как в песне:- «а на утро двигатель уже остывал»). Вопрос — сгорели бы обмотки двигателя при подключении по схеме «треугольник»? И чего он вообще сгорел, раз обмотки рассчитаны на 380 ±10% да еще и запас поди какой есть. Я бы сам себе ответил, наподобие ваших расчетов, только у меня «синий» диплом и формулы переводов градусов в в цифры я не понял))))
Вопрос №2. Схема заземления TN-C-S,дополнительное заземление присутствует, отгорел ноль на, допустим, столбе. Ноль и земля объединены в щите, что естественно. Как изменится разница потенциалов между фазой и нулем? Ведь технически ток пойдет в землю через дополнительный контур заземления. (предположим что никаких УЗО нет).

Александр, всем пишу и вам тоже- вот это- … Неужели 25-ти амперный автомат «китаец» выдержал такой ток, ведь он через него проходил, который заставил слипнутся провода на линии?…(с) не говорит ни о чем! Какая ВТХ автомата?

ПАВ:
03.07.2017 в 19:18
Простите что вклиниваюсь в ваш диалог, но по поводу автоматов хочу сказать, что брака в них случается предостаточно. Независимо от крутизны фирмы.
Вызвали в офис, как-то, лет десять назад с просьбой устранить неисправность в сети, проверяю напряжение в розетках между фазой и нейтралью — ноль, зато между нейтралью и землей 220В. Также и между фазой и землей. Проверяю диф, а у него на выходах, снизу тобишь, фаза на обоих сидит, и главное работает. Выключил-включил и опа-на угол-шоу, починил проводку в офисе))Вот, спрашивается, как?
Также автоматы с литерой «D» отрабатывали быстрее чем с «С».
А если длинный кабель, то автомат «примет» КЗ за нагрузку вообще.

В статье не рассмотрен один из аспектов обрыва нуля связанный с применением электронных УЗО и дифавтоматов.

Грубо говоря, при обрыве нуля в двухфазной сети на нулевых проводниках появляется фаза, а энергии для функционирования электронного УЗО нет. А т.к. все перечисленные Вами реле напряжение не отключают нулевой провод, то они не обеспечивают полную защиту при отгорании нуля, человек может быть поражён электротоком с нулевого провода на землю.

В трёхфазных сетях ситуация несколько лучше, напряжение никогда не будет равно 0. Поэтому если установить реле напряжения после электронного дифавтомата или УЗО, скажем, EKF АВДТ-63 сохраняет работоспособность при напряжениях 100В … 270В и срабатывает при перенапряжении (ГОСТ Р 51326.1-99 требует работоспособности от 0.85*Un до 1.1*Un и не требует отключения при перенапряжении), то при умеренном перекосе фаз опасность невелика. Но гарантий нет, в рассмотренном Вами случае, A=65В, B=335В, C=372В, квартиры B и C будут отключены электронным дифавтоматом EKF АВДТ-63, а квартира A останется с нулевым проводом под напряжением и риском получить удар током примерно 65 мА.

Комплектная защита от негативных последствий обрыва нуля может быть обеспечена, либо реле напряжения совместно с нормально разомкнутым контактором, либо реле напряжения с электромеханическим дифавтоматом или УЗО.

Чунга-чанга:
03.07.2017 в 16:17
Наберите в поисковике «Что происходит с электродвигателем при потере фазы и однофазном режиме работы» Очень хорошо тема объяснина

Того автомата уже давно нет, проводка давно новая и произведён кап.ремонт и люди живут снова, и всё что его(автомата) касается находится в суде, а я этих дел не касаюсь, меня слава Богу больше не вызывали. Но заявление о том что к.з. в доме стало причиной слипания проводов на в.л., сильно попахивает бредом, типа к.з. было такой силы, что аж холодильник не выдержал и загорелся.

У нас в доме в ВРУ приходит с ТП 2 фазы и ноль.При обрыве нуля будет аналогичная ситуация?

Сергей (21.07.2017 в 00:37),

Если фаз больше одной, то при обрыве нуля напряжение может повысится до межфазного.

Единственное, если дело происходит на Оклахомщине, то углы могут быть не 120º, а 180º

Добрый день. Спасибо за полезную статью. Тем ни менее для меня остаётся открытым один важный вопрос. Как сделать заземление в одной из 4-х квартир 2-х этажного дома? На первом этаже установлен ВРУ. Приходит 3 фазы и PEN проводник на полосу щита без изоляторов (щит не заземлён).
В 50-ти метрах от дома стоит еще одна щитовая (заземлена) так же 3 фазы и PEN на полосу без изоляторов.
А в двухста метрах от дома Трансформаторная подстанция с глухозаземленной нейтралью (тесть смотрел, он там работает на территории Ростелекома)
Как выполнить заземление?
Вот варианты, из них надо выбрать один.
Сделать зануление на рабочий ноль в доме в ВРУ.
Собственное аземление не рассматривается пока.
Купил реле напряжение Зубр D40t
В доме алюминиевая проводка, я проложил новый Кабель от ВРУ в щитовую на этаже, в котором рабочий и защитный ноль находятся на корпусе щита одновременно.
Если сделать зануление, взять рабочий и защитный ноль в ВРУ в доме и фазу завести в квартиру, 3-жильным кабелем, получается, что я разделил PEN на PE и N, значит в щите в квартире надо объединить шину PE и N? Так как в ПУЭ сказано, что нельзя разъединять PEN проводник с глухозаземленной нейтралью, но не запрещается делать свой контур заземления.
Посоветуйте!
Спасибо!

И ещё вопрос. Какой все таки автомат ставить на вводе двух или однополюсный?еще будет после счетчика ухо селективное на 0.1 Ам. После него реле напряжения, и ещё три УЗО 0,01 и два 0.03 Ам. И много автоматов С16 и С10. Группы вообще будут не нагружены. Достаточно ли этой защиты? Или все же сделать зануление?

) этот Т9!
Конечно же селективное УЗО АВВ 40А =0.1Ам

Алексей, правильный вариант — это только монтаж ЗУ (заземляющего устройства) около ВРУ Вашего дома. Насколько я понял, то ВРУ-шка установлена на первом этаже. Откуда Вы знаете, что вторая щитовая в 50 метрах от дома заземлена? Там прям видно отходящий заземляющий проводник на заземляющее устройство? Скажу Вам, что на вряд ли! Поэтому считаем, что заземления там скорее всего тоже нет. Поэтому в любом случае, нужно будет его монтировать. А как это сделать, я подробно рассказывал в статье про монтаж контура заземления на примере жилого дома.

Про зануление уже много раз обсуждали в комментариях на сайте. К тому же, Вы прочитали статью и все же решили сделать зануление! Это же опасно! Про правильное разделение PEN проводника вот очень подробная статья.

В Вашем случае правильно будет сделать следующим образом. Выполнить монтаж ЗУ около Вашего ВРУ, установить в ВРУ две шины N и РЕ. На шину РЕ завести заземляющий проводник от ЗУ. Сделать правильное разделение вводного нуля PEN (см. ссылку выше). Затем выполнить прокладку новых 5-проводных магистралей от ВРУ до этажных щитов, а затем выполнить вводы в квартиры, соответственно, трехжильными кабелями. В таком случае на вводе в квартиру можно установить двухполюсный автомат, а иначе только однополюсный, т.к. разрывать PEN проводник коммутационными аппаратами запрещено.

Что скажете как вариант для защиты от перекоса фаз соединение нулевого провода и контура заземления на вводе в дом? Если это частный дом, ввод однофазный и имеется контур заземления. Тогда при перекосе фаз пойдет конечно смещение и токи на заземление потекут, но напряжения не так изменятся по фазам.

Похожие статьи:

  • Таблица стрела провеса провода сип Форум проектировщиков электрических и слаботочных сетей Автор Тема: таблица стрел провиса СИП одноцепной ВЛИ (Прочитано 9079 раз) 0 Пользователей и 1 Гость просматривают эту тему. Быстрый ответ Предупреждение: в данной теме не […]
  • Фекальные насосы 220 вольт Погружной фекальный насос ДЖИЛЕКС ФЕКАЛЬНИК 150/7 Н Товар временно отсутствует в продаже Характеристики Тип насоса погружной Конструкция насоса дренажный Для колодца + Центробежный + Назначение по воде фекальные воды […]
  • Расчёт стрелы провеса провода онлайн Расчёт стрелы провеса провода онлайн РАСЧЕТ МОНТАЖНЫХ ТЯЖЕНИЙ И СТРЕЛ ПРОВЕСА ПРОВОДОВ,ТРОСОВ И САМОНЕСУЩИХ КАБЕЛЕЙ ЛИНИЙ СВЯЗИ И ЭЛЕКТРОПЕРЕДАЧИ НА ОСНОВЕ ПРОГРАММЫ LineMount Автор Валерий Лебедев Расчётная часть программы испытана […]
  • Фильтр на 220 вольт Фильтр магистральный для воды ITA FILTER ITA-21-1/2 F20121-1/2 Товар временно отсутствует в продаже Характеристики Тип фильтра для воды магистральный Назначение фильтра для воды для холодной воды Функциональные особенности […]
  • Стандартные сечения провода Провод. Какие бывают сечения, марки проводов. Какие провода лучше использовать? В электротехнике проводом принято называть металлический проводник, который имеет в своей структуре одну или несколько жил, по которым проходит электрический […]
  • Схема электронного полива Устройство автоматического полива - схема Устройство для автоматического полива представляет собой электронное реле на транзисторе VT1, база и эмиттер которого соединены с пластинами из токопроводящего материала, воткнутыми в почву на […]