Номинальные токи трансформатора напряжения

Оглавление:

Номинальный ток трансформатора

Номинальный ток трансформатора — значения тока в обмотках, указанные в заводском паспорте, при которых допускается нормальная длительная работа прибора.

Некоторые характеристики показателя.

Номинальные токи на обмотках высшего напряжения (ВН) и обмотках низшего напряжения (НН) относятся к основным параметрам данного вида оборудования.

Обозначается ток символом I, единица измерения – Ампер (А).

Вычисление значений номинального тока.

Для однофазного трансформатора, мощность которого определяется по формуле S = UI, номинальные токи будут следующими:

Для трехфазного при равномерной нагрузке фаз (S=√3*UI):

Для трехфазного при равномерной нагрузке фаз (S=√3*UI):

Таким образом, по значениям мощности (Sном.) и напря¬жений обмоток ВН и НН (Uном.), указанным в паспорте объекта, можно рассчитать показатели номинальных токов трансформатора (Iном.).

Во время работы величина рабочих токов в обмотках не должна превышать номинальную, т.е. трансформатор не должен перегружаться. Лишь изредка допускаются кратковременные перегрузки в определенных пределах значений.

Практические занятия проводятся с целью успешного освоения студентами теоретического материала и применения его для решения задач и анализа полученных результатов. По каждой теме проводятся одно или два практических занятия, на которых подробно разбираются решения нескольких типовых задач. Кроме задач приводятся вопросы для подготовки к занятиям по данной теме. Еще одно практическое занятие «Самостоятельная работа студента» предусматривает решение студентом всех или части приведенных задач с подробным описанием последовательности решения. Поэтому практическому занятию студент оформляет отчет. В этом отчете кроме решений задач должны быть приведены ответы на контрольные вопросы для подготовки к занятиям по данной теме.

Практическое занятие №1. Трансформаторы

6.1.1. Вопросы для подготовки к занятиям

  1. Изобразите (схематически) однофазный трансформатор и объясните принцип его работы.
  2. Выведите выражения для действующих ЭДС, наводимых в первичной и вторичной обмотках трансформатора основным магнитным потоком.
  3. В чем состоит режим холостого хода трансформатора? Начертите векторную диаграмму режима холостого хода.
  4. Что называют коэффициентом трансформации трансформатора?
  5. Почему на сердечнике трансформатора обмотки высшего и низшего напряжений размещают на общем стержне?
  6. Напишите уравнение МДС трансформатора.
  7. Напишите уравнение токов трансформатора и объясните физический смысл составляющих первичного тока.
  8. В чем состоит явление рассеяния в трансформаторе? Как выражается ЭДС рассеяния обмоток?
  9. Напишите уравнения напряжений (уравнения электрического состояния) для первичной и вторичной обмоток и объясните смысл каждого из членов этих уравнений.
  10. Что называют приведенными величинами вторичной обмотки?
  11. Начертите схему замещения трансформатора.
  12. Начертите векторные диаграммы трансформатора для случаев нагрузки его чисто активным и активно-индуктивным сопротивлениями.
  13. Начертите схему опыта холостого хода трансформатора и объясните, какие величины определяются в этом опыте.
  14. Почему в опыте холостого хода мощность потерь в меди настолько мала, что ей можно пренебречь?
  15. Начертите схему опыта короткого замыкания трансформатора и объясните, какие величины определяются в этом опыте.
  16. Почему в опыте короткого замыкания мощность потерь в стали настолько мала, что ею можно пренебречь?
  17. Сформулируйте определение напряжения короткого замыкания; назовите его примерное значение.
  18. Выведите выражение для процентного изменения напряжения трансформатора.
  19. Напишите общее выражение для КПД трансформатора с учетом относительного значения вторичного тока (с учетом коэффициента нагрузки).
  20. Как осуществляется трансформирование трехфазной цепи?
  21. Начертите схему автотрансформатора – однофазного и трехфазного. Каковы преимущества и недостатки автотрансформатора?
  22. Начертите принципиальную схему трансформаторов напряжения и тока.
  23. Какие ошибки возникают при использовании трансформаторов напряжения и тока для измерения напряжения и тока?
  24. Изобразите условно-логическую схему и объясните по ней принцип работы трансформатора.

6.1.2. Расчет основных параметров однофазного трансформатора

Задача 1. Однофазный трансформатор ОМ-6667/35 работает как понижающий. Пользуясь его техническими данными приведенными в таблице 6.1, рассчитать: коэффициент трансформации; номинальные токи первичной вторичной обмоток; напряжение на вторичной обмотке U2 при активно-индуктивной нагрузке, составляющей 50% (β=0,5) от номинальной и cosφ2=0,8; к.п.д. при cosφ2–0,9 и нагрузке, составляющей 75% (β=0,75)от номинальной.

Решение. Коэффициентом трансформации называется отношение высшего напряжения к низшему в режиме холостого хода независимо от того, является ли трансформатор повышающим или понижающим:

.

Номинальные токи первичной и вторичной обмоток определим из формулы номинальной мощности трансформатора:

;

;

.

Активно-индуктивная нагрузка трансформатора приводит к снижению напряжения на его вторичной обмотке U2, которое можно найти из формулы процентного изменения напряжения

,

где: ΔU – процентное изменение напряжения (в трансформаторах ΔU не превышает 1÷6%);
– коэффициент нагрузки;
Ua и Uр – активная и реактивная составляющие напряжения короткого замыкания, выраженные в процентах (; ).

.

где: Р – мощность потерь при холостом ходе, равная сумме потерь в стали на гистерезис и вихревые токи;
Рк – мощность потерь в обмотках при коротком замыкании (при нагрузке, отличной от номинальной, мощность потерь в обмотках Pβ = β 2 Pк.

В современных трансформаторах, особенно мощных, при номинальной нагрузке ρ равно 98 – 99%.

6.1.3. Расчет основных параметров трехфазного трансформатора

Задача 2. Трехфазный трансформатор ТС-180/10 включен в сеть напряжением 10000 В. Пользуясь данными, указанными в паспорте (см. таблицу 6.1 к задаче 1), рассчитать: фазные напряжения, если группа соединения трансформатора Y / Δ — 11; фазный и линейный коэффициенты трансформации; номинальные токи первичной и вторичной обмоток; активные сопротивления обмоток, если при коротком замыкании трансформатора мощности первичной и вторичной обмоток равны; напряжение вторичной обмотки при активно-индуктивной нагрузке, составляющей 75% от номинальной (β=0,75) и cosφ2=0,9; к.п.д. при нагрузке, составляющей 50% (β=0,5) от номинальной и cosφ2=0,8.

Решение. У трансформатора ТС-180/10 первичная обмотка соединена в звезду, а вторичная – в треугольник, поэтому фазные напряжения равны:

Фазный и линейный коэффициенты трансформации соответственно равны:

;

.

Номинальные токи первичной и вторичной обмоток определим из формулы номинальной мощности трансформатора:

.

;

.

Находим активные сопротивления обмоток R1 и R2, с учетом того, что в каждой обмотке трансформатора по три фазы и ток короткого замыкания Iк равен номинальному току I:

;

,

где: .

Напряжение на вторичной обмотке нагруженного трехфазного трансформатора определяют так же как в задаче 1:

где: ; .

В свою очередь Sн – это мощность всех трех фаз, а Рк – мощности потерь в тех фазах, указанные в паспорте.

6.1.4. Расчет параметров автотрансформатора

Задача 3. Автотрансформатор, схема которого изображена на рис. 6.1, включен в сеть с напряжением U1=220 В. Напряжение на вторичных зажимах U2=180 В, ток нагрузки I2=10 А. Обмотка имеет ω1=500 витков. Определить площадь поперечного сечения провода, из которого сделана обмотка, если максимально допустимая плотность тока равна 2,5 А/мм 2 .

Решение. Коэффициент трансформации

.

Ток, потребляемый из сети,

.

Число витков, к которым присоединена нагрузка,

.

Ток, который течет по этим виткам,

.

В верхней части обмотки содержится виток, сечение провода мм 2 .

Сечение провода остальной части обмотки (409 витков) мм 2 .

Если при прочих равных условиях изготовить не автотрансформатор, а трансформатор, то первичная обмотка из 500 витков имела бы сечение S1=3,272 мм 2 , а вторичная из 409 витков мм 2 .

Таким образом, автотрансформаторная схема позволяет сэкономить значительное количество меди при изготовлении обмоток.

6.1.5. Расчет параметров электрической цепи с измерительными трансформаторами

Задача 4. Схема включения измерительных приборов через трансформаторы напряжения 3000/100 В и тока 100/5 А дана на рис. 6.2. Показания приборов оказались следующими: вольтметра U2=80 В, амперметра I2=4 А, ваттметра Р2=256 Вт.

Условие 1. Определить в первичной сети: напряжение U1, ток I1, мощность Р1, расход энергии W1 за 8 ч. работы и показание счетчика W2 за то же время.

Анализ и решение

Коэффициенты трансформации трансформатора напряжения , трансформатора тока .

При заданных показаниях измерительных приборов ; . Мощность в первичной цепи .

Показание ваттметра . Пренебрегая угловой погрешностью и считая , получаем кВт. Расход энергии за 8 ч работы кВт×ч. Показание счетчика

Вт×ч.

Условие 2. Полное сопротивление вторичной цепи трансформатора тока (вторичной обмотки и токовых катушек измерительных приборов) 3 Ом. Определить э.д.с. в первичной и вторичной обмотках трансформатора тока. Определить также э.д.с. во вторичной обмотке трансформатора тока, если эту обмотку разомкнуть.

Анализ и решение

При замкнутой вторичной обмотке э.д.с. в ней В. Коэффициент трансформации

Смотрите так же:  Схема подключения 3 ламп

.

Следовательно, э.д.с. в первичной обмотке

В.

Трансформатор тока нормально работает в режиме, близком к короткому замыканию. Напряжение на выводах вторичной обмотки близко к нулю. При разомкнутой вторичной обмотке ток в ней, размагничивающий трансформатор, становится равным нулю, а намагничивающий ток А остается прежним. Поэтому магнитный поток, а следовательно, э.д.с. во вторичной обмотке трансформатора увеличатся примерно в ki раз, т.е. В. Отсюда следует, что вторичную обмотку трансформатора тока нельзя размыкать в процессе работы; она должна быть замкнута либо накоротко, либо на малое сопротивление токовых катушек измерительных приборов.

6.2. Практическое занятие №2. Самостоятельная работа студента

В процессе выполнения самостоятельной работы студент должен решить все нижеприведенные задачи (или один из вариантов) используя лекционный материал, примеры расчета и анализа задач, рассмотренных на практическом занятии №1.

Задача 1. Номинальная мощность трансформатора S=10 кВ∙А. Номинальное входное напряжение U1=660 В, выходное U2=380 В. Потерями в трансформаторе пренебречь. Определить коэффициент трансформации, токи в первичной и вторичной обмотках.

Задача 2. Однофазный трансформатор номинальной мощностью 400 В∙А имеет активное сопротивление первичной обмотки R1=1,875 Ом.

В опыте короткого замыкания (рис. 6.3), трансформатора замерено напряжение на входе U=10 В, при котором токи в первичной и вторичной обмотках равны номинальным: I1=2 А, I2=10 А. Ваттметр показал Рк=15 Вт. Определить, какую долю от номинального значения составляет напряжение короткого замыкания, активное сопротивление вторичной обмотки.

Задача 3. Трехфазный масляный трансформатор типа ТМ-25/10 имеет потери холостого хода 0,13 кВт, потери короткого замыкания 0,6 кВт.

Определить коэффициент полезного действия трансформатора при активной нагрузке в номинальном режиме работы, КПД при номинальной нагрузке и коэффициенте мощности cosφ=0,85.

Задача 1. При соединении обмоток трехфазного трансформатора по схеме Δ / Δ коэффициент трансформации линейных напряжений nл=0,5. Определить коэффициент трансформации линейных напряжений при соединении обмоток Δ / Y.

Задача 2. Напряжение на входе однофазного трансформатора (рис. 6.4) U1=100 В, ток в первичной цепи I1=10 А. Коэффициент полезного действия 0,9. Вольтметр во вторичной цепи показывает напряжение U2=450 В. Определить показания амперметра во вторичной цепи, сопротивление нагрузки.

Задача 3. Трехфазный масляный трансформатор типа ТМ-160/10 имеет потери холостого хода 0,56 кВт, потери короткого замыкания 2,65 кВт. Определить коэффициент полезного действия трансформатора при номинальной нагрузке и коэффициенте мощности cosφ1=1; при номинальной нагрузке и cosφ2=0,8.

Задача 1. Мощность, потребляемая трансформатором из сети при активной нагрузке, Р1=500 Вт. Напряжение сети U1=100 В. Коэффициент трансформации трансформатора равен 10. Определить ток нагрузки.

Задача 2. Получены следующие показания приборов при холостом ходе трансформатора (рис. 6.5) и частоте 50 Гц: U10=220 В; I10=1,0 А; Р10=120 Вт. Определить коэффициент мощности cosφ1; индуктивность первичной обмотки трансформатора.

Задача 3. Десять витков обмотки понижающего автотрансформатора намотаны толстым проводом, девяносто витков – тонким. Определить коэффициент трансформации автотрансформатора.

Большая Энциклопедия Нефти и Газа

Номинальный ток — вторичная обмотка

Номинальный ток вторичной обмотки у трансформаторов тока принимают равным б А, независимо от коэффициента трансформации. Шкалу амперметра градуируют на первичный ток, и на ней указывают, с каким трансформатором тока должен включаться амперметр. Вторичная цепь трансформатора тока при измерениях должна быть всегда замкнута. Для безопасности один зажим вторичной обмотки и стальной кожух трансформаторов тока заземляют. [1]

Номинальный ток вторичной обмотки обычно 5 А, реже 1 А. Так как сопротивление обмоток приборов, включенных во вторичную цепь трансформаторов тока, невелико, то трансформаторы тока работают в режиме, близком к режиму короткого замыкания. При этом магнитный поток в сердечнике, скомпенсированный вторичным потоком, невелик, напряжение на зажимах вторичной обмотки составляет единицы вольт. При размыкании вторичной цепи магнитный поток резко увеличивается, что приводит к сильному нагреву магнитопровода, напряжение на зажимах вторичной обмотки возрастает до тысяч вольт и становится опасным. [3]

Номинальный ток вторичной обмотки большинства трансформаторов тока 5 А, а первичной обмотки выбирается по принятой стандартом шкале: 5, 10, 15, 20, 30, 40, 50, 75, 100, 150, 200, 300, 400, 600, 800, 1000, 1500, 2000, 3000, 4000, 5000, 60QO, 8000, 10000 и 15000 А. [4]

Не следует удивляться тому, что при номинальном токе вторичной обмотки 1 А можем получить в удвоителе напряжения выходной ток, значение которого примерно в 2 раза меньше номинального. Здесь от одной вторичной обмотки трансформатора работают два выпрямителя. Если бы мы попытались получить выходной ток 1 А, то ток вторичной обмотки трансформатора увеличился бы в 2 раза или даже еще больше, при этом номинальный ток был бы превышен, что вывело бы из строя трансформатор. В общем случае при заданном выходном напряжении максимальный выходной ток определяется номинальной мощностью трансформатора. Поэтому при увеличении выходного напряжения выходной ток падает, так как мощность не должна превышать номинального значения. [5]

Коэффициентом трансформации трансформатора тока называется отношение номинального тока первичной обмотки к номинальному току вторичной обмотки . [6]

Так, трансформатор 220 / 12 В, 250 В-А, имея номинальный ток вторичной обмотки около 20 А, может быть использован при нагрузке линии до 220 X 20 4400 В-А и позволяет увеличить потерю напряжения в сети на ( 12: 220) 100 5 4 % при обеспечении у ламп нормированного уровня напряжения. [8]

Амперметр и последовательная цепь ваттметра в приборе присоединены ко вторичной обмотке встроенного трансформатора тока с номинальным током вторичной обмотки 5 А. [9]

Здесь сетевой трансформатор TV с первичным напряжением 115 В вырабатывает на вторичной обмотке с выводом средней точки полное напряжение 25 2 В; номинальный ток вторичной обмотки 0 5 А. Все диоды имеют максимальный прямой ток 2 А и обратное напряжение 50 В. [10]

Опыты холостого хода и короткого замыкания характеризуют работу силового трансформатора в предельных режимах нагрузки: при отсутствии нагрузки ( / 2 0) и при номинальном токе вторичной обмотки ( / 2 / 2н) — На основе этих опытов определяются исходные данные для расчета основных эксплуатационных характеристик трансформатора и параметров его схемы замещения. [12]

Номинальный первичный и вторичный ток — ток, который трансформатор может пропускать длительно не перегреваясь. Номинальный ток вторичной обмотки стандартизован и может быть 5 или 1 А. Вторичных обмоток может быть несколько с разными номинальными токами. [13]

В токовую цепь включается токовый трансформатор, к вторичной обмотке которого подключается токовая цепь ваттметра. Номинальный ток вторичной обмотки может достигать 5 А. [15]

Номинальное первичное и вторичное напряжения трансформатора

Номинальным первичным напряжением трансформатора называется такое напряжение, которое, необходимо подвести к его первичной обмотке, чтобы на зажимах разомкнутой вторичной обмотки получить вторичное номинальное напряжение, указанное в паспорте трансформатора.

Номинальным вторичным напряжением называют напряжение, которое устанавливается на зажимах вторичной обмотки при холостом ходе трансформатора (к зажимам первичной обмотки подведено напряжение, а вторичная обмотка разомкнута) и при подведении к первичной обмотке номинального первичного напряжения.

Напряжение на вторичной обмотке при нагрузке изменяется, так как ток нагрузки создает падение напряжения на активном и индуктивном сопротивлениях обмотки. Это изменение вторичного напряжения зависит не только от величины тока и сопротивлений обмотки, но и от коэффициента мощности нагрузки (рис. 1). Если трансформатор нагружен чисто активной мощностью (рис. 1, а), то напряжение по сравнению с другими вариантами меняется в меньших пределах.

На векторной диаграмме Е2 — ЭДС. во вторичной обмотке трансформатора. Вектор вторичного напряжения будет равен геометрической разности:

где I2 — вектор тока во вторичной обмотке; X тр и R тр — соответственно индуктивное и активное сопротивления вторичной обмотки трансформатора.

При индуктивной нагрузке и при той же самой величине тока напряжение снижается в большей степени (рис. 1,б). Это связано с тем, что вектор I2 х X тр отстающий от тока на 90°, в этом случае более круто повернут навстречу вектору Е2 , чем в предыдущем. При емкостной нагрузке увеличение тока нагрузки вызывает повышение напряжения на обмотке трансформатора (рис. 2, в). В этом случае вектор I2 х X тр по длине равный аналогичному вектору в первых двух случаях и также отстающий от тока на 90°, благодаря емкостному характеру этого тока оказывается повернутым вдоль вектора Е2 , и увеличивает длину U2 по сравнению с Е2 .

Рис. 1. Изменение вторичного напряжения трансформатора U2 в зависимости от коэффициента мощности нагрузки (угла φ): а — при активной нагрузке; б — при индуктивной нагрузке; в — при емкостной нагрузке; Е2 — ЭДС. во вторичной обмотке трансформатора; I2 — ток во вторичной обмотке (ток нагрузки); I0 — намагничивающий ток трансформатора; Ф — магнитный поток в сердечнике трансформатора; Rтр Xтр. — активное и индуктивное сопротивления вторичной обмотки.

Смотрите так же:  Электрические линейные схемы

В процессе эксплуатации необходимо регулировать величину напряжения на обмотке трансформатора. Это достигается изменением числа витков обмотки высокого напряжения. Меняя число витков этой обмотки, включенных в цепь высокого напряжения, можно менять коэффициент трансформации в пределах от ±5 до ±7,5% номинального значения.

Схема отводов от обмоток с простым переключением представлена на рисунке 2. В соответствии с этими отводами в паспорте указано минимальное высокое напряжение, номинальное и максимальное. Если, например, номинальное вторичное напряжение трансформатора равно 10000 В, то напряжение максимальное 1,05 U н = 10500 В, а напряжение минимальное 0,95 U н = 9500 В.

Для номинального напряжения 6000 В имеем соответственно 6300 и 5700 В. Число витков обмотки высшего напряжения изменяют переключателем, контакты которого находится внутри трансформатора, а рукоятка выведена на его крышку.

Обычно для трансформаторов, которые устанавливаются вблизи понизительной подстанции 35/10 кВ или повышающей 0,4/10 кВ, коэффициент трансформации принимают равным 1 ,05х K н , то есть ставят переключатель отводов в положение +5%. Если потребительская подстанция удалена от районной, в линии электропередачи возникает значительная потеря напряжения, поэтому переключатель ставят в положение -5%. Трансформатор в средней точке линии электропередачи устанавливают на номинальный коэффициент трансформации (рис.3).

Рис. 2. Схема отводов от части витков для измерения коэффициента трансформации на ±5%

Рис. 3. Установка переключателя витков трансформатора в зависимости от удаления потребительской трансформаторной подстанции от питающей районной подстанции.

В настоящее время промышленность освоила выпуск силовых трансформаторов поной шкалы мощностей 25, 40, 63, 100, 160, 250, 400 кВА и т. д. Для регулирования напряжения новые трансформаторы снабжены устройствами ПБВ пли РПН. ПБВ означает: переключение обмоток без возбуждения, то есть при выключенном трансформаторе.

Отпайки от обмоток позволяют посредством их переключения менять напряжение в пределах от -5 до +5% через каждые 2,5%. РПН означает: регулирование напряжения под нагрузкой (автоматическое). Оно позволяет регулировать напряжение в пределах от—7,5 до+7,5% шестью ступенями, или через каждые 2,5%. Такими устройствами могут обеспечиваться трансформаторы от 63 кВА и выше. Обозначение трансформатора с таким устройством — ТМН, ТСМАН.

Трехфазные трансформаторы ТМ и ТМН для трансформации энергии с 20 и 35 кВ на 0,4 кВ имеют мощности 100, 160, 250, 400 и 630 кВА.

Номинальные токи трансформатора напряжения

Трансформаторы ТМ 25, ТМ 40, ТМ 63, ТМ 100, ТМ 160, ТМ 250, ТМ 400, ТМ 630, ТМ 1000

Трансформаторы стационарные силовые масляные понижающие трехфазные двухобмоточные общего назначения нормального конструктивного исполнения (с масляным естественным охлаждением, с переключением ответвлений без возбуждения), мощностью от 25 до 1000кВА напряжением до 10 кВ включительно, предназначены для нужд народного хозяйства.

Трансформаторы пригодны для внутренней и наружной установки и для работы в следующих условиях:

    высота над уровнем моря до 1000м;

Трансформаторы не предназначены для работы в следующих условиях:

Трансформаторы выпускаются с номинальным напряжением первичной обмотки (обмотки высшего напряжения) до 10 кВ включительно.

Номинальные напряжения вторичных обмоток трансформатора (обмоток низшего напряжения), схемы и группы соединения обмоток в соответствии таблицей 2.1.

Регулирование напряжения осуществляется переключением без возбуждения (ПБВ).

Для регулирования напряжения трансформаторы снабжаются высоковольтными переключателями, позволяющими регулировать напряжение ступенями по 2.5% на величину ± 2 ×2.5% от номинального значения при отключенном от сети трансформаторе со стороны ВН и НН.

Расчет основных электрических величин и главной изоляции обмоток трансформатора

Расчет трансформатора начинается с определения основных электрических величин: мощности на одну фазу и стержень; номинальных токов на стороне ВН и НН; фазных токов и напряжений.

¨ Мощность одной фазы трансформатора, кВ*А,

= ,
где S – мощность трансформатора; m – число фаз.

¨ Мощность на одном стержне, кВ*А,

S` = ,
где C– число активных (несущих обмотки) стержней.
Обычно для 3-фазных трансформаторов число фаз равно числу стержней.

¨ Номинальный (линейный) ток, А,

на стороне НН I1 = ;
на стороне ВН I2 = ,
где S – мощность трансформатора, кВ*А; U1и U2 – соответствующие значения напряжений обмоток, кВ.
Для однофазного трансформатора номинальный ток, А, определяется по формуле
I = .
При определении токов мощность подставляется в киловатт-амперах (кВ*А), а напряжение в киловольтах (кВ).

¨ Фазные токи, А, трехфазных трансформаторов

при соединении в звезду или зигзаг:
Iф = Iл;
при соединении обмотки в треугольник
Iф = ,
где IЛ – номинальный линейный ток трансформатора.
Схема соединения и группа обмоток обычно задается.

¨ Фазные напряжения, В, трансформатора

при соединении обмотки в звезду или зигзаг:
=,
при соединении обмотки в треугольник:
Uф = Uл,
где Uл – номинальное линейное напряжение соответствующих обмоток.

¨ Испытательное напряжение трансформатора

Необходимо для определения основных изоляционных промежутков, между обмотками и другими токоведущими деталями.
Это напряжение, при котором проводится испытание трансформатора, а именно электрическая прочность изоляции.
Испытательное напряжение для каждой обмотки трансформатора определяется по табл. 1 или 2 в зависимости от класса напряжения соответствующей обмотки.

Испытательные напряжения промышленной частоты (50 Гц) для масляных силовых трансформаторов (ГОСТ 1516.1-76)

Номинальные токи трансформатора напряжения

В соответствии с «Правилами устройства электро­установок» все силовые трансформаторы должны иметь защиту от коротких замыканий и ненормаль­ных режимов [1]. Для выбора видов защиты и ра­счета их характеристик срабатывания необходимо прежде всего точно знать тип и параметры защищае­мого трансформатора.

Самые важные параметры трансформатора отра­жены в его условном обозначении, которое имеется и в паспорте, и на паспортной табличке, прикрепленной к трансформатору на видном месте. В соответствии с ГОСТ 11677—85 «Трансформаторы силовые» принята единая структурная схема условного обозначения трансформаторов. Буквы в начале обозначают одно­фазный (О) или трехфазный (Т) трансформатор, ука­зывают вид изолирующей и охлаждающей среды (на­пример, буква М соответствует масляному трансфор­матору с естественной циркуляцией воздуха и масла, буква С — сухому трансформатору), а также испол­нение трансформатора и вид переключения ответвле­ний: буква 3 — защитное исполнение, Г — герметич­ное, Н — возможность регулирования напряжения под нагрузкой.

После буквенной части обозначения через тире указывается номинальная мощность трансформатора в киловольт-амперах (кВ-А), затем через дробь — класс напряжения стороны высшего напряжения (ВН) в киловольтах (кВ) и далее через тире — кли­матическое исполнение и категория размещения обору­дования по ГОСТ 15150—69. Согласно этому стандар­ту буквой У обозначают исполнение для умеренного климата, ХЛ — холодного, Т — тропического. Ка­тегории размещения обозначаются цифрами: 1—для работы на открытом воздухе, 2 — для работы в поме­щениях, где температура и влажность такие же, как на открытом воздухе, 3 — для закрытых помещений с естественной вентиляцией, 4 — для работы в поме­щениях с искусственным регулированием климата, 5 — для работы в помещениях с повышенной влаж­ностью.

Например, условное обозначение трансформатора трехфазного масляного с охлаждением при естествен­ной циркуляции воздуха и масла, двухобмоточного, мощностью 250 кВ-А, класса напряжения 10 кВ, ис­полнения У категории 3 (для умеренного климата и закрытых помещений) имеет следующий вид:

Трансформатор трехфазный сухой с естественным воздушным охлаждением при защищенном испол­нении, двухобмоточный, мощностью 400 кВ-А, класса напряжения 10 кВ, исполнения У категории 3 имеет такое условное обозначение:

В паспортной табличке указываются и другие па­раметры трансформатора, необходимые для выбора его защиты:

номинальные напряжения трансформатора (сторон ВН и НН для двухобмоточных трансформаторов);

номинальные токи обмоток ВН и НН;

условное обозначение схемы и группы соединения обмоток;

напряжение короткого замыкания ик (в процен­тах) на основном ответвлении обмотки ВН (для трехобмоточных трансформаторов указывают напряжение короткого замыкания всех пар обмоток).

Номинальные напряжения трансформатора. Транс­форматоры с высшим номинальным напряжением 10 кВ, которым посвящена эта книга, выпускаются с номинальным напряжением стороны низшего напря­жения, равным 0,4 или 0,69 кВ, — для питания элек­троприемников, а также 3,15 или 6,3 кВ, или 10,5 кВ — для связи питающих электрических сетей разных на­пряжений, а иногда и для питания крупных электро­двигателей напряжением выше 1000 В. Например, на подстанции 110/10кВ электродвигатели напряжением 6 кВ могут работать только через трансформаторы 10/6,3 кВ. Однако большинство трансформаторов 10 кВ выпускается с низшим напряжением 0,4 кВ для питания электроприемников напряжением 380 и 220 В.

В обмотке ВН трансформаторов 10 кВ, как масля­ных, так и сухих, предусматривается возможность из­менения напряжения ВН в диапазоне ±5 % номи­нального ступенями по 2,5%. Изменяют напряжения переключением ответвлений обмотки ВН, что произво­дится обязательно при отключении всех обмоток трансформатора от сети. Вид, диапазон и число сту­пеней регулирования напряжения на стороне ВН условно обозначаются буквами и цифрами: ПБВ ± ±2X2,5 %, где ПБВ означает переключение без воз­буждения (в отличие от РПН — регулирования под напряжением, которое выполняется на трансформато­рах более высоких классов напряжения, начиная с 35 кВ).

Номинальные значения мощности и тока. Номи­нальные мощности трансформаторов должны соответ­ствовать ГОСТ 9680—77. Трансформаторы масляные 10 кВ для питания электроприёмников выпускаются с номинальной мощностью до 2,5 MB -А, а для связи между электросетями разных напряжений — до 6,3 МВ-А: например, 25, 40, 63, 100, 160, 250, 400, 630 кВ-А, а также 1; 1,6 и 2,5 МВ-А. Трансформато­ры сухие (ТСЗ) выпускаются с номинальной мощ­ностью 160, 250, 400, 630 кВ-А, а также 1 и 1,6 МВ-А.

Смотрите так же:  Строительные провода

Мощность (в вольт-амперах) трехфазного транс­форматора при равномерной нагрузке фаз определя­ется выражением

где U номинальное междуфазное напряжение, В; / — ток в фазе, А.

Из выражения (1) по известным из паспортных данных номинальным значениям мощности и напря­жений сторон ВН и НН могут быть определены зна­чения номинальных токов (в амперах) обмоток ВН и НН трансформатора

где S ном. указывается в киловольт-амперах (кВ-А), а U ном — в киловольтах (кВ),

Например, для трансформатора мощностью 400 кВ-А с напряжением стороны ВН, равным 10 кВ, и стороны НН, равным 0,4 кВ, номинальные токи об­моток:

Как правило, во время работы трансформаторы не должны перегружаться, т. е. значения рабочих токов в обмотках трансформатора не должны превышать поминальные. Однако допускаются в определенных пределах кратковременные и длительные перегрузки (§ 2).

Схемы и группы соединения обмоток. Трансфор­маторы 10 кВ выпускаются со следующими схемами и группами соединения обмоток:

звезда — звезда с выведенной нейтралью Y / Y -0; треугольник — звезда с выведенной нейтралью ∆/ Y -11; звезда с выведенной нейтралью — треу­гольник Y /∆-11; звезда—зигзаг Y / Y

Трансформаторы 10/0,4 кВ со схемой соединения обмоток Y / Y -0 подключаются к питающей трехфаз­ной сети 10 кВ, работающей с изолированной ней­тралью, и питают трехфазную четырех проводную сеть с наглухо заземленной нейтралью, в которой номи­нальное напряжение между линейными проводами равно 0,38 кВ, а между каждым линейным и нулевым проводом (нейтралью трансформатора)—0,22 кВ. При симметричной нагрузке всех фаз ток в нулевом проводе (нейтрали) невелик и называется током не­баланса. Значение тока небаланса у трансформаторов Y / Y не должно превышать 0,25 номинального тока обмотки НН во избежание перегрева и повреждения трансформатора (ГОСТ 11677—85). На практике не всегда удается выполнить это условие. По этой и не­которым другим причинам (см. § 4 и 9) трансформа­торы со схемой соединения обмоток Y / Y не должны применяться начиная с мощности 400 кВ-А и более.

Трансформаторы со схемой и группой соединения обмоток ∆/ Y -11 подключаются таким же образом, как и трансформаторы Y / Y -0. Особенность схемы и группы соединения ∆/ Y -11 состоит в том, что между векторами напряжений и токов на сторонах НН и ВН существует фазовый сдвиг на угол 30°, Поэтому трансформаторы ∆/ Y -11 не могут работать параллельно с трансформаторами Y / Y -0, у которых нет фазового сдвига между этими векторами. При ошибочном включении их на параллельную работу фазовый сдвиг на угол 30° между векторами вторичных напряжений этих трансформаторов вызовет уравнительный ток между трансформаторами одинаковой мощности, при­мерно в 5 раз превышающий номинальный ток каж­дого из них.

Благодаря соединению обмотки ВН в треугольник для этих трансформаторов допускается продолжи­тельная несимметрия нагрузки и ток в нейтрали об­мотки НН до 0,75 номинального тока в обмотке НН (ГОСТ 11677—85). Соединение обмотки ВН в тре­угольник обеспечивает также значительно большие значения токов при однофазных КЗ на землю в сети НН, работающей с заземленной нейтралью, чем при питании сети НН через трансформатор с такими же параметрами, но со схемой соединения Y / Y -0. Это способствует падежной работе устройств релейной защиты от однофазных КЗ (§ 3). Поэтому начиная с мощности 400 кВ-А должны применяться трансфор­маторы 10/0,4 кВ со схемой соединения обмоток ∆/ Y -11 (как сухие, так и масляные). Трансформато­ры с этой схемой соединения обмоток могут выпус­каться также с номинальным напряжением обмотки НН, равным 0,69 кВ.

Для связи между сетями разных напряжений и для питания крупных электродвигателей выше 1000 В выпускаются трансформаторы 10/3,15, 10/6,3 и 10/10,5 кВ со схемой и группой соединения обмоток Y /∆-11; некоторые трансформаторы для специального назначения могут иметь схемы соединения Y / Y -0, ∆/∆-0, а также Y /∆-11 (обмотки ВН с выведенной нейтралью применяются в трансформаторах, например для включения дугогасящего реактора в сети 10 кВ с компенсированной нейтралью). Особую группу со­ставляют трансформаторы для собственных нужд электростанций, релейная защита которых в этой книге не рассматривается.

Трансформаторы 10 кВ небольшой мощности для сельских электросетей могут выпускаться с особой схемой соединения обмотки НН, называемой зигзаг. Обмотка ВН при этом соединяется в звезду: Y / Y . Соединение вторичной обмотки понижающего транс­форматора в зигзаг обеспечивает более равномерное распределение несимметричной нагрузки НН между фазами первичной сети ВН. При этом обеспечиваются наиболее благоприятные условия работы трансформа­тора. Для выполнения схемы зигзаг вторичная об­мотка каждой фазы составляется из двух половин, одна из которых расположена на одном стержне магнитопровода, вторая — на другом. Выполнение трансформаторов со схемой соединения обмотки НН в зигзаг обходится дороже, чем со схемой соединения обмотки НН в звезду ( Y / Y ), так как соединение в зигзаг требует большего (на 15%) числа витков об­мотки НН. Это объясняется тем, что ЭДС обмоток, расположенных на разных стержнях, складываются геометрически под углом 120° и их суммарное значе­ние на 15% меньше, чем при алгебраическом сложе­нии ЭДС двух обмоток, расположенных на одном стержне магнитопровода. Чтобы получить ЭДС одного и того же значения при соединении в зигзаг, нужно на 15 % больше витков, чем при соединении обмотки НН в звезду. Из-за большей сложности изготовления и более высокой стоимости трансформаторы звезда — зигзаг применяются редко.

Напряжение короткого замыкания. Этот важней­ший параметр трансформатора необходим для расче­тов токов КЗ на выводах вторичной обмотки НН трансформатора и в питаемой сети НН. Напряжение короткого замыкания соответствует значению между­фазного напряжения, которое надо приложить к вы­водам обмотки ВН трансформатора для того, чтобы при трехфазном замыкании на выводах НН через трансформатор прошел ток КЗ, равный его номиналь­ному значению. Напряжение короткого замыкания обозначается U k и выражается в процентах номиналь­ного значения напряжения обмотки ВН. Если, напри­мер, U k = 5 %, это означает, что к обмотке ВН транс­форматора 10 кВ при закороченной обмотке НН надо приложить напряжение 0,5 кВ, чтобы ток трансфор­матора был равен номинальному.

По значению напряжения короткого замыкания, как следует из определения этого параметра, можно вычислить максимальное значение тока при трехфаз­ном КЗ на стороне НН трансформатора, причем как без учета сопротивления питающей энергосистемы до шин 10 кВ, где включен трансформатор, так и с уче­том этого сопротивления. По значению U k вычисля­ется и полное сопротивление трансформатора Z тр (§ 3). Значения U k приводятся в стандартах, а также в паспортах и на паспортных табличках каждого трансформатора (по результатам заводских испыта­ний). Средние значения U k для масляных трансфор­маторов 10 кВ равны примерно 4,5 % —при мощности до 400 кВ-А, 5,5% — при мощности 630 кВ-А и 1 MB -А и 6,5 % — при мощности более 1 МВ-А. У су­хих трансформаторов мощностью от 160 кВ-А до 1,6 MB -А значения напряжения короткого замыкания равны примерно 5,5 %.

Похожие статьи:

  • Abb узо 63 Узо - устройство защитного отключения ABB FH 202 63А/0.03 Описание узо ABB 2х пол. 63А 30ма Устройства дифференциального отключения (узо) ABB 2х пол. 63А 30ма предназначены для защиты людей и электроустановок от короткого замыкания на […]
  • Пускатель магнитный с кнопками 220в Пускатель ПМ12-160120 220В, магнитный ПМ12 160120 160А. Цена. Купить Ном. ток, In, А: 160; Ном. напряжение изоляции, Ui: 1000В; Кол-во полюсов: 3; Доп. контакты: 2з+2р; Напряжение катушки: 220В; Ном. мощность, кВт: 75 […]
  • Узо 40 а 10 ма Узо - устройство защитного отключения АВВ F 204 40А/0.3 Описание узо АВВ 4х пол. 40А 300ма Устройство защитного отключения (узо) АВВ 4х пол. 40А 300ма обеспечивает защиту от поражения электрическим током при прямом и косвенном […]
  • Провода на свечи бмв е34 БМВ 5 (Е34). Свечи зажигания Свеча зажигания состоит из центрального электрода, изолятора, корпуса и бокового электрода (электрода массы). Центральный электрод герметично закреплен в изоляторе, а изолятор жестко связан с корпусом. Между […]
  • Электрические схемы микроволновых печей самсунг Электрические схемы микроволновых печей Микроволновые печи с электромеханическим управлением обычно имеют стандартную электрическую схему. Отличия между различными моделями незначительны и не носят принципиального характера. Силовая часть […]
  • Белый и черный провода где плюс какого цвета провод плюс и минус? в зарядном устройстве 2 провода черный и белый . где плюс где минус? какого цвета провод плюс и минус? в зарядном устройстве 2 провода черный и белый . где плюс где минус? можно определить с помощью […]