Однофазный двигатель переменного тока с конденсатором

Конденсаторный двигатель

В ГОСТ 27471-87 [1] дано следующее определение:
Конденсаторный двигатель — двигатель с расщепленной фазой, у которого в цепь вспомогательной обмотки постоянно включен конденсатор.

Конденсаторный двигатель, хотя и питается от однофазной сети, по существу является двухфазным.

Конструктивно конденсаторный асинхронный двигатель представляет из себя двухфазный двигатель. На статоре располагают две обмотки фаз, оси которых смещены относительно друг друга на 90 электрических градусов. Обе обмотки занимают равное число пазов. Питание электродвигателя осуществляется от однофазной сети переменного тока, при этом одна обмотка подключается непосредственно к сети, а другая через конденсатор. Таким образом, в отличии от однофазного двигателя, который после пуска работает с пульсирующим магнитным потоком, конденсаторный электродвигатель работает с вращающимся магнитным потоком.

Емкость рабочего конденсатора, требуемая для получения кругового вращающегося поля, определяется по формуле [2]

,

  • где Сраб – емкость рабочего конденсатора, Ф,
  • IA — ток обмотки A, А,
  • IB — ток обмотки B, А,
  • — угол фазового сдвига между током IA и напряжением питания U при круговом вращающемся поле, градусов,
  • U — напряжение питания сети, В,
  • f — частота сети, Гц,
  • k — коэффициент, определяемый отношением эффективных чисел витков в обмотках фаз статора B и A.

,

  • где – число последовательно соединенных витков в обмотки фазы А и B статора,
  • kобА и kобВ — обмоточный коэффициент обмоток фаз статора А и B

Для повышения пускового момента параллельно рабочему конденсатору Ср включают пусковой конденсатор Cп. Для создания пускового момента, равного номинальному, требуется пусковой конденсатор Cп в 2 — 2,5 раза больше рабочего Cр.

Однофазный асинхронный электродвигатель

Однофазный асинхронный электродвигатель с пусковой обмоткой

Конструкция однофазного двигателя с вспомогательной или пусковой обмоткой

Статор имеет две обмотки, расположенные под углом 90° относительно друг друга. Основная обмотка называется главной (рабочей) и обычно занимает 2/3 пазов сердечника статора, другая обмотка называется вспомогательной (пусковой) и обычно занимает 1/3 пазов статора.

Двигатель фактически является двухфазным, но так как рабочей является только одна обмотка, электродвигатель называют однофазным.

Ротор обычно представляет из себя короткозамкнутую обмотку, также из-за схожести называемой «беличьей клеткой». Медные или алюминиевые стержни которого с торцов замкнуты кольцами, а пространство между стержнями чаще всего заливается сплавом алюминия. Так же ротор однофазного двигателя может быть выполнен в виде полого немагнитного или полого ферромагнитного цилиндра.

Принцип работы однофазного асинхронного двигателя

Для того чтобы лучше понять работу однофазного асинхронного двигателя, давайте рассмотрим его только с одним витком в главной и вспомогательной обмотки.

Рассмотрим случай когда в вспомогательной обмотки не течет ток. При включении главной обмотки статора в сеть, переменный ток, проходя по обмотке, создает пульсирующее магнитное поле, неподвижное в пространстве, но изменяющееся от +Фmах до -Фmах.

Если поместить ротор, имеющий начальное вращение, в пульсирующее магнитное поле, то он будет продолжать вращаться в том же направлении.

Чтобы понять принцип действия однофазного асинхронного двигателя разложим пульсирующее магнитное поле на два одинаковых круговых поля, имеющих амплитуду равную Фmах/2 и вращающихся в противоположные стороны с одинаковой частотой:

,

  • где nпр – частота вращения магнитного поля в прямом направлении, об/мин,
  • nобр – частота вращения магнитного поля в обратном направлении, об/мин,
  • f1 – частота тока статора, Гц,
  • p – количество пар полюсов,
  • n1 – скорость вращения магнитного потока, об/мин

Действие пульсирующего поля на вращающийся ротор

Рассмотрим случай когда ротор, находящийся в пульсирующем магнитном потоке, имеет начальное вращение. Например, мы вручную раскрутили вал однофазного двигателя, одна обмотка которого подключена к сети переменного тока. В этом случае при определенных условиях двигатель будет продолжать развивать вращающий момент, так как скольжение его ротора относительно прямого и обратного магнитного потока будет неодинаковым.

Будем считать, что прямой магнитный поток Фпр, вращается в направлении вращения ротора, а обратный магнитный поток Фобр — в противоположном направлении. Так как, частота вращения ротора n2 меньше частоты вращения магнитного потока n1, скольжение ротора относительно потока Фпр будет:

,

  • где sпр – скольжение ротора относительно прямого магнитного потока,
  • n2 – частота вращения ротора, об/мин,
  • s – скольжение асинхронного двигателя

Магнитный поток Фобр вращается встречно ротору, частота вращения ротора n2 относительно этого потока отрицательна, а скольжение ротора относительно Фобр

,

  • где sобр – скольжение ротора относительно обратного магнитного потока

Согласно закону электромагнитной индукции прямой Фпр и обратный Фобр магнитные потоки, создаваемые обмоткой статора, наводят в обмотке ротора ЭДС , которые соответственно создают в короткозамкнутом роторе токи I2пр и I2обр. При этом частота тока в роторе пропорциональна скольжению, следовательно:

,

  • где f2пр – частота тока I2пр наводимого прямым магнитным потоком, Гц

,

  • где f2обр – частота тока I2обр наводимого обратным магнитным потоком, Гц

Таким образом, при вращающемся роторе, электрический ток I2обр, наводимый обратным магнитным полем в обмотке ротора, имеет частоту f2обр, намного превышающую частоту f2пр тока ротора I2пр, наведенного прямым полем.

Согласно закону Ампера, в результате взаимодействия электрического тока I2пр с магнитным полем Фпр возникает вращающий момент

,

  • где Mпр – магнитный момент создаваемый прямым магнитным потоком, Н∙м,
  • сM — постоянный коэффициент, определяемый конструкцией двигателя

Электрический ток I2обр, взаимодействуя с магнитным полем Фобр, создает тормозящий момент Мобр, направленный против вращения ротора, то есть встречно моменту Мпр:

,

  • где Mобр – магнитный момент создаваемый обратным магнитным потоком, Н∙м

Результирующий вращающий момент, действующий на ротор однофазного асинхронного двигателя,

,

Тормозящее действие обратного поля

При работе однофазного двигателя в пределах номинальной нагрузки, то есть при небольших значениях скольжения s = sпр, крутящий момент создается в основном за счет момента Мпр. Тормозящее действие момента обратного поля Мобр — незначительно. Это связано с тем, что частота f2обр много больше частоты f2пр, следовательно, индуктивное сопротивление рассеяния обмотки ротора х2обр = x2sобр току I2обр намного больше его активного сопротивления. Поэтому ток I2обр, имеющий большую индуктивную составляющую, оказывает сильное размагничивающее действие на обратный магнитный поток Фобр, значительно ослабляя его.

,

  • где r2 — активное сопротивление стержней ротора, Ом,
  • x2обр — реактивное сопротивление стержней ротора, Ом.

Если учесть, что коэффициент мощности невелик, то станет, ясно, почему Мобр в режиме нагрузки двигателя не оказывает значительного тормозящего действия на ротор однофазного двигателя.

Действие пульсирующего поля на неподвижный ротор

При неподвижном роторе (n2 = 0) скольжение sпр = sобр = 1 и Мпр = Мобр, поэтому начальный пусковой момент однофазного асинхронного двигателя Мп = 0. Для создания пускового момента необходимо привести ротор во вращение в ту или иную сторону. Тогда s ≠ 1, нарушается равенство моментов Мпр и Мобр и результирующий электромагнитный момент приобретает некоторое значение .

Смотрите так же:  Гост номинальные токи автоматических выключателей

Пуск однофазного двигателя. Как создать начальное вращение?

Одним из способов создания пускового момента в однофазном асинхронном двигателе, является расположение вспомогательной (пусковой) обмотки B, смещенной в пространстве относительно главной (рабочей) обмотки A на угол 90 электрических градусов. Чтобы обмотки статора создавали вращающееся магнитное поле токи IA и IB в обмотках должны быть сдвинуты по фазе относительно друг друга. Для получения фазового сдвига между токами IA и IB в цепь вспомогательной (пусковой) обмотки В включают фазосмещающий элемент, в качестве которого используют активное сопротивление (резистор), индуктивность (дроссель) или емкость (конденсатор) [1].

После того как ротор двигателя разгонится до частоты вращения, близкой к установившейся, пусковую обмотку В отключают. Отключение вспомогательной обмотки происходит либо автоматически с помощью центробежного выключателя, реле времени, токового или дифференциального реле, или же вручную с помощью кнопки.

Таким образом, во время пуска двигатель работает как двухфазный, а по окончании пуска — как однофазный.

Подключение однофазного двигателя

С пусковым сопротивлением

Двигатель с расщепленной фазой — однофазный асинхронный двигатель, имеющий на статоре вспомогательную первичную обмотку, смещенную относительно основной, и короткозамкнутый ротор [2].

Однофазный асинхронный двигатель с пусковым сопротивлением — двигатель с расщепленной фазой, у которого цепь вспомогательной обмотки отличается повышенным активным сопротивлением.

Для запуска однофазного двигателя можно использовать пусковой резистор, который последовательно подключается к пусковой обмотки. В этом случае можно добиться сдвига фаз в 30° между токами главной и вспомогательной обмотки, которого вполне достаточно для пуска двигателя. В двигателе с пусковым сопротивлением разность фаз объясняется разным комплексным сопротивлением цепей.

Также сдвиг фаз можно создать за счет использования пусковой обмотки с меньшей индуктивностью и более высоким сопротивлением. Для этого пусковая обмотка делается с меньшим количеством витков и с использованием более тонкого провода чем в главной обмотке.

Отечественной промышленностью изготавливается серия однофазных асинхронных электродвигателей с активным сопротивлением в качестве фазосдвигающего элемента серии АОЛБ мощностью от 18 до 600 Вт при синхронной частоте вращения 3000 и 1500 об/мин, предназначенных для включения в сеть напряжением 127, 220 или 380 В, частотой 50 Гц.

С конденсаторным пуском

Двигатель с конденсаторным пуском — двигатель с расщепленной фазой, у которого цепь вспомогательной обмотки с конденсатором включается только на время пуска.

Среди фазосдвигающих элементов, только конденсатор позволяет добиться наилучших пусковых свойств однофазного асинхронного электродвигателя.

Двигатели в цепь которых постоянно включен конденсатор используют для работы две фазы и называются — конденсаторными. Принцип действия этих двигателей основан на использовании вращающегося магнитного поля.

Однофазный электродвигатель с экранированными полюсами

Двигатель с экранированными полюсами — двигатель с расщепленной фазой, у которого вспомогательная обмотка короткозамкнута.

Статор однофазного асинхронного двигателя с экранированными полюсами обычно имеет явно выраженные полюса. На явно выраженных полюсах статора намотаны катушки однофазной обмотки возбуждения. Каждый полюс статора разделен на две неравные части аксиальным пазом. Меньшую часть полюса охватывает короткозамкнутый виток. Ротор однофазного двигателя с экранированными полюсами — короткозамкнутый в виде «беличьей» клетки.

При включении однофазной обмотки статора в сеть в магнитопроводе двигателя создается пульсирующий магнитный поток. Одна часть которого проходит по неэкранированной Ф’, а другая Ф» — по экранированной части полюса. Поток Ф» наводит в короткозамкнутом витке ЭДС Ek, в результате чего возникает ток Ik отстающий от Ek по фазе из-за индуктивности витка. Ток Ik создает магнитный поток Фk, направленный встречно Ф», создавая результирующий поток в экранированной части полюса Фэ=Ф»+Фk. Таким образом, в двигателе потоки экранированной и неэкранированной частей полюса сдвинуты во времени на некоторый угол.

Пространственный и временной углы сдвига между потоками Фэ и Ф’ создают условия для возникновения в двигателе вращающегося эллиптического магнитного поля, так как Фэ ≠ Ф’.

Пусковые и рабочие свойства рассматриваемого двигателя невысоки. КПД намного ниже, чем у конденсаторных двигателей такой же мощности, что связано со значительными электрическими потерями в короткозамкнутом витке.

Однофазный электродвигатель с асимметричным магнитопроводом статора

Статор такого однофазного двигателя выполняется с ярко выраженными полюсами на не симметричном шихтованном сердечнике. Ротор — короткозамкнутый типа «беличья клетка».

Данный электродвигатель для работы не требует использования фазосдвигающих элементов. Недостатком данного двигателя является низкий КПД.

Однофазный асинхронный электродвигатель

Однофазный асинхронный электродвигатель с пусковой обмоткой

Конструкция однофазного двигателя с вспомогательной или пусковой обмоткой

Статор имеет две обмотки, расположенные под углом 90° относительно друг друга. Основная обмотка называется главной (рабочей) и обычно занимает 2/3 пазов сердечника статора, другая обмотка называется вспомогательной (пусковой) и обычно занимает 1/3 пазов статора.

Двигатель фактически является двухфазным, но так как рабочей является только одна обмотка, электродвигатель называют однофазным.

Ротор обычно представляет из себя короткозамкнутую обмотку, также из-за схожести называемой «беличьей клеткой». Медные или алюминиевые стержни которого с торцов замкнуты кольцами, а пространство между стержнями чаще всего заливается сплавом алюминия. Так же ротор однофазного двигателя может быть выполнен в виде полого немагнитного или полого ферромагнитного цилиндра.

Принцип работы однофазного асинхронного двигателя

Для того чтобы лучше понять работу однофазного асинхронного двигателя, давайте рассмотрим его только с одним витком в главной и вспомогательной обмотки.

Рассмотрим случай когда в вспомогательной обмотки не течет ток. При включении главной обмотки статора в сеть, переменный ток, проходя по обмотке, создает пульсирующее магнитное поле, неподвижное в пространстве, но изменяющееся от +Фmах до -Фmах.

Если поместить ротор, имеющий начальное вращение, в пульсирующее магнитное поле, то он будет продолжать вращаться в том же направлении.

Чтобы понять принцип действия однофазного асинхронного двигателя разложим пульсирующее магнитное поле на два одинаковых круговых поля, имеющих амплитуду равную Фmах/2 и вращающихся в противоположные стороны с одинаковой частотой:

,

  • где nпр – частота вращения магнитного поля в прямом направлении, об/мин,
  • nобр – частота вращения магнитного поля в обратном направлении, об/мин,
  • f1 – частота тока статора, Гц,
  • p – количество пар полюсов,
  • n1 – скорость вращения магнитного потока, об/мин

Действие пульсирующего поля на вращающийся ротор

Рассмотрим случай когда ротор, находящийся в пульсирующем магнитном потоке, имеет начальное вращение. Например, мы вручную раскрутили вал однофазного двигателя, одна обмотка которого подключена к сети переменного тока. В этом случае при определенных условиях двигатель будет продолжать развивать вращающий момент, так как скольжение его ротора относительно прямого и обратного магнитного потока будет неодинаковым.

Будем считать, что прямой магнитный поток Фпр, вращается в направлении вращения ротора, а обратный магнитный поток Фобр — в противоположном направлении. Так как, частота вращения ротора n2 меньше частоты вращения магнитного потока n1, скольжение ротора относительно потока Фпр будет:

,

  • где sпр – скольжение ротора относительно прямого магнитного потока,
  • n2 – частота вращения ротора, об/мин,
  • s – скольжение асинхронного двигателя

Магнитный поток Фобр вращается встречно ротору, частота вращения ротора n2 относительно этого потока отрицательна, а скольжение ротора относительно Фобр

Смотрите так же:  Узо ф-4211

,

  • где sобр – скольжение ротора относительно обратного магнитного потока

Согласно закону электромагнитной индукции прямой Фпр и обратный Фобр магнитные потоки, создаваемые обмоткой статора, наводят в обмотке ротора ЭДС , которые соответственно создают в короткозамкнутом роторе токи I2пр и I2обр. При этом частота тока в роторе пропорциональна скольжению, следовательно:

,

  • где f2пр – частота тока I2пр наводимого прямым магнитным потоком, Гц

,

  • где f2обр – частота тока I2обр наводимого обратным магнитным потоком, Гц

Таким образом, при вращающемся роторе, электрический ток I2обр, наводимый обратным магнитным полем в обмотке ротора, имеет частоту f2обр, намного превышающую частоту f2пр тока ротора I2пр, наведенного прямым полем.

Согласно закону Ампера, в результате взаимодействия электрического тока I2пр с магнитным полем Фпр возникает вращающий момент

,

  • где Mпр – магнитный момент создаваемый прямым магнитным потоком, Н∙м,
  • сM — постоянный коэффициент, определяемый конструкцией двигателя

Электрический ток I2обр, взаимодействуя с магнитным полем Фобр, создает тормозящий момент Мобр, направленный против вращения ротора, то есть встречно моменту Мпр:

,

  • где Mобр – магнитный момент создаваемый обратным магнитным потоком, Н∙м

Результирующий вращающий момент, действующий на ротор однофазного асинхронного двигателя,

,

Тормозящее действие обратного поля

При работе однофазного двигателя в пределах номинальной нагрузки, то есть при небольших значениях скольжения s = sпр, крутящий момент создается в основном за счет момента Мпр. Тормозящее действие момента обратного поля Мобр — незначительно. Это связано с тем, что частота f2обр много больше частоты f2пр, следовательно, индуктивное сопротивление рассеяния обмотки ротора х2обр = x2sобр току I2обр намного больше его активного сопротивления. Поэтому ток I2обр, имеющий большую индуктивную составляющую, оказывает сильное размагничивающее действие на обратный магнитный поток Фобр, значительно ослабляя его.

,

  • где r2 — активное сопротивление стержней ротора, Ом,
  • x2обр — реактивное сопротивление стержней ротора, Ом.

Если учесть, что коэффициент мощности невелик, то станет, ясно, почему Мобр в режиме нагрузки двигателя не оказывает значительного тормозящего действия на ротор однофазного двигателя.

Действие пульсирующего поля на неподвижный ротор

При неподвижном роторе (n2 = 0) скольжение sпр = sобр = 1 и Мпр = Мобр, поэтому начальный пусковой момент однофазного асинхронного двигателя Мп = 0. Для создания пускового момента необходимо привести ротор во вращение в ту или иную сторону. Тогда s ≠ 1, нарушается равенство моментов Мпр и Мобр и результирующий электромагнитный момент приобретает некоторое значение .

Пуск однофазного двигателя. Как создать начальное вращение?

Одним из способов создания пускового момента в однофазном асинхронном двигателе, является расположение вспомогательной (пусковой) обмотки B, смещенной в пространстве относительно главной (рабочей) обмотки A на угол 90 электрических градусов. Чтобы обмотки статора создавали вращающееся магнитное поле токи IA и IB в обмотках должны быть сдвинуты по фазе относительно друг друга. Для получения фазового сдвига между токами IA и IB в цепь вспомогательной (пусковой) обмотки В включают фазосмещающий элемент, в качестве которого используют активное сопротивление (резистор), индуктивность (дроссель) или емкость (конденсатор) [1].

После того как ротор двигателя разгонится до частоты вращения, близкой к установившейся, пусковую обмотку В отключают. Отключение вспомогательной обмотки происходит либо автоматически с помощью центробежного выключателя, реле времени, токового или дифференциального реле, или же вручную с помощью кнопки.

Таким образом, во время пуска двигатель работает как двухфазный, а по окончании пуска — как однофазный.

Подключение однофазного двигателя

С пусковым сопротивлением

Двигатель с расщепленной фазой — однофазный асинхронный двигатель, имеющий на статоре вспомогательную первичную обмотку, смещенную относительно основной, и короткозамкнутый ротор [2].

Однофазный асинхронный двигатель с пусковым сопротивлением — двигатель с расщепленной фазой, у которого цепь вспомогательной обмотки отличается повышенным активным сопротивлением.

Для запуска однофазного двигателя можно использовать пусковой резистор, который последовательно подключается к пусковой обмотки. В этом случае можно добиться сдвига фаз в 30° между токами главной и вспомогательной обмотки, которого вполне достаточно для пуска двигателя. В двигателе с пусковым сопротивлением разность фаз объясняется разным комплексным сопротивлением цепей.

Также сдвиг фаз можно создать за счет использования пусковой обмотки с меньшей индуктивностью и более высоким сопротивлением. Для этого пусковая обмотка делается с меньшим количеством витков и с использованием более тонкого провода чем в главной обмотке.

Отечественной промышленностью изготавливается серия однофазных асинхронных электродвигателей с активным сопротивлением в качестве фазосдвигающего элемента серии АОЛБ мощностью от 18 до 600 Вт при синхронной частоте вращения 3000 и 1500 об/мин, предназначенных для включения в сеть напряжением 127, 220 или 380 В, частотой 50 Гц.

С конденсаторным пуском

Двигатель с конденсаторным пуском — двигатель с расщепленной фазой, у которого цепь вспомогательной обмотки с конденсатором включается только на время пуска.

Среди фазосдвигающих элементов, только конденсатор позволяет добиться наилучших пусковых свойств однофазного асинхронного электродвигателя.

Двигатели в цепь которых постоянно включен конденсатор используют для работы две фазы и называются — конденсаторными. Принцип действия этих двигателей основан на использовании вращающегося магнитного поля.

Однофазный электродвигатель с экранированными полюсами

Двигатель с экранированными полюсами — двигатель с расщепленной фазой, у которого вспомогательная обмотка короткозамкнута.

Статор однофазного асинхронного двигателя с экранированными полюсами обычно имеет явно выраженные полюса. На явно выраженных полюсах статора намотаны катушки однофазной обмотки возбуждения. Каждый полюс статора разделен на две неравные части аксиальным пазом. Меньшую часть полюса охватывает короткозамкнутый виток. Ротор однофазного двигателя с экранированными полюсами — короткозамкнутый в виде «беличьей» клетки.

При включении однофазной обмотки статора в сеть в магнитопроводе двигателя создается пульсирующий магнитный поток. Одна часть которого проходит по неэкранированной Ф’, а другая Ф» — по экранированной части полюса. Поток Ф» наводит в короткозамкнутом витке ЭДС Ek, в результате чего возникает ток Ik отстающий от Ek по фазе из-за индуктивности витка. Ток Ik создает магнитный поток Фk, направленный встречно Ф», создавая результирующий поток в экранированной части полюса Фэ=Ф»+Фk. Таким образом, в двигателе потоки экранированной и неэкранированной частей полюса сдвинуты во времени на некоторый угол.

Пространственный и временной углы сдвига между потоками Фэ и Ф’ создают условия для возникновения в двигателе вращающегося эллиптического магнитного поля, так как Фэ ≠ Ф’.

Пусковые и рабочие свойства рассматриваемого двигателя невысоки. КПД намного ниже, чем у конденсаторных двигателей такой же мощности, что связано со значительными электрическими потерями в короткозамкнутом витке.

Однофазный электродвигатель с асимметричным магнитопроводом статора

Статор такого однофазного двигателя выполняется с ярко выраженными полюсами на не симметричном шихтованном сердечнике. Ротор — короткозамкнутый типа «беличья клетка».

Данный электродвигатель для работы не требует использования фазосдвигающих элементов. Недостатком данного двигателя является низкий КПД.

Конденсаторные двигатели — устройство, принцип действия, применение

В этой статье поговорим о конденсаторных двигателях, которые по сути являются обычными асинхронными, отличающимися лишь способом подключения к сети. Затронем тему подбора конденсаторов, разберем причины необходимости точного подбора емкости. Отметим основные формулы, которые помогут в приблизительной оценке требуемой емкости.

Смотрите так же:  Подключение двигателя 380 на 220в

Конденсаторным двигателем называется асинхронный двигатель, в цепь статора которого включена дополнительная емкость, с целью создать сдвиг фаз тока в обмотках статора. Зачастую это касается однофазных цепей при использовании трехфазных или двухфазных асинхронных двигателей.

Обмотки статора асинхронного двигателя физически сдвинуты друг относительно друга, и одна из них включается непосредственно в сеть, в то время как вторая, либо вторая и третья подключаются к сети через конденсатор. Емкость конденсатора подбирается так, чтобы сдвиг фаз токов между обмотками получился бы равным или хотя бы близким к 90°, тогда ротору будет обеспечен максимальный вращающий момент.

При этом модули магнитной индукции обмоток должны получиться одинаковыми, чтобы магнитные поля обмоток статора оказались бы сдвинуты относительно друг друга так, чтобы суммарное поле вращалось по кругу, а не по эллипсу, увлекая за собой ротор с наибольшей эффективностью.

Очевидно, ток и его фаза в подключенной через конденсатор обмотке связаны как с емкостью конденсатора, так и с эффективным импедансом обмотки, который в свою очередь зависит от скорости вращения ротора.

При старте двигателя импеданс обмотки определяется лишь ее индуктивностью и активным сопротивлением, поэтому он относительно мал в момент пуска, и здесь нужен конденсатор большей емкости для обеспечения оптимального пуска.

Когда же ротор разгонится до номинальных оборотов, магнитное поле ротора станет индуцировать в обмотках статора ЭДС, которая будет направлена против питающего обмотку напряжения — эффективное сопротивление обмотки теперь растет, и требуемая емкость снижается.

При оптимально подобранной емкости в каждом режиме (пусковой режим, рабочий режим) магнитное поле будет круговым, и здесь имеет значение как скорость вращения ротора, так и напряжение, и число витков обмотки, и подключенная в текущий момент емкость. Если оптимальное значение какого-нибудь параметра нарушено, поле становится эллиптическим, характеристики двигателя соответственно падают.

Для двигателей разного назначения схемы подключения емкостей разные. Когда требуется значительный пусковой момент, применяют конденсатор большей емкости, чтобы обеспечить оптимальные ток и фазу именно в момент пуска. Если пусковой момент не особо важен, то внимание уделяют только созданию оптимальных условий рабочего режима, при номинальной скорости вращения, и емкости подбирается для номинальных оборотов.

Довольно часто для качественного пуска применяют пусковой конденсатор, который на время запуска подключается параллельно рабочему конденсатору относительно малой емкости, чтобы вращающееся магнитное поле и при пуске было круговым, затем пусковой конденсатор отключают, и двигатель продолжает работу только с рабочим конденсатором. В особых случаях прибегают к набору конденсаторов с возможностью переключения для разных нагрузок.

Если пусковой конденсатор случайно не будет отключен после выхода двигателя на номинальные обороты, сдвиг фаз в обмотках уменьшится, не будет уже оптимальным, и магнитное поле статора станет эллиптическим, что ухудшит рабочие характеристики двигателя. Крайне важно правильно подобрать пусковую и рабочую емкости, чтобы двигатель работал эффективно.

На рисунке показаны типичные схемы включения конденсаторных двигателей, применяемые на практике. Например рассмотрим двухфазный двигатель с короткозамкнутым ротором, статор которого имеет две обмотки для питания в двух фазах А и В.

В цепь дополнительной фазы статора включен конденсатор С, поэтому токи IA и IВ текут в обеих обмотках статора в двух фазах. Наличием емкости добиваются фазового сдвига токов IA и IВ в 90°.

Векторная диаграмма показывает, что суммарный ток сети образован геометрической суммой токов обеих фаз IA и IВ. Подбором емкости С добиваются такого сочетания с индуктивностями обмоток, чтобы фазовый сдвиг токов получился именно 90°.

Ток IA запаздывает относительно приложенного сетевого напряжения UА на угол φА, а ток IВ — на угол φВ относительно напряжения UB, приложенного к зажимам второй обмотки в текущий момент. Угол между напряжением сети и напряжением, приложенным ко второй обмотке составляет 90°. Напряжение на конденсаторе UС образует угол 90° с током IВ.

По диаграмме видно, что полная компенсация фазового сдвига при φ = 0 достигается тогда, когда реактивная мощность потребляемая двигателем из сети равна реактивной мощности конденсатора С. Рядом на рисунке показаны типичные схемы включения трехфазных двигателей с конденсаторами в цепях обмоток статоров.

Промышленностью сегодня выпускаются конденсаторные двигатели на базе двухфазных. Трехфазные легко модифицируются вручную для питания от однофазной сети. Встречаются и мелкосерийные трехфазные модификации, уже оптимизированные при помощи конденсатора под однофазную сеть.

Часто такие решения можно встретить в бытовых приборах, таких как посудомоечные машины и комнатные вентиляторы. Промышленные циркуляционные насосы, воздуходувки и дымососы также часто используют в своей работе конденсаторные двигатели. Если требуется включить трехфазный двигатель в однофазную сеть — применяют фазосдвигающий конденсатор, то есть опять же переделывают двигатель в конденсаторный.

Для приблизительного расчета емкости конденсатора применяют известные формулы, в которые достаточно подставить напряжение питания и рабочий ток двигателя, и легко вычислить необходимую емкость для соединения обмоток звездой или треугольником.

Для нахождения рабочего тока двигателя достаточно прочитать данные на его шильдике (мощность, кпд, косинус фи), и так же подставить в формулу. В качестве пускового конденсатора принято устанавливать конденсатор в два раза большей емкости, чем рабочий.

К преимуществам конденсаторных двигателей, по сути — асинхронных, относится главным образом одно — возможность включить трехфазный двигатель в однофазную сеть. Из недостатков — необходимость оптимальной емкости под конкретную нагрузку, и недопустимость питания от инверторов с модифицированной синусоидой.

Надеемся, что эта статья была для вас полезной, и теперь вы понимаете, для чего асинхронным двигателям конденсаторы, и как подбирать их емкость.

Похожие статьи:

  • Батареи 380 вольт Солнечные панели Солнечные батареи, представленные в нашем магазине, сделаны в Китае, на одном из крупнейших заводов. По данным Европейской ассоциации производителей фотоэлектрических систем (EPIA), на данный момент около 70% компаний, […]
  • Выбор провода по мощности сип Выбор сечений изолированных проводов СИП Сечения изолированных проводов СИП до 1 кВ выбирают по экономической плотности тока и нагреву при числе часов использования максимума нагрузки более 4000 - 5000, при меньшей продолжительности […]
  • Крепление провода в стене ПромАльпФорум Крепление провода к стене Крепление провода к стене Сообщение TrojAn » 31 окт 2006, 01:11 Здравствуйте, товарищи!Суть такая: люди на крыше ставят тарелку спутникового Интернета или телевидения, опускают провод к квартире […]
  • Магнитный пускатель пма-цена Пускатель ПМА-4110 380В, магнитный ПМА 4110 380В 63А. Цена. Купить Допустимый ток, In, A: 63; Рабочее напряжение, В: 380; Мощность потребителя: 30кВт; Доп. контакты: 2з+2р; Степень защиты: IP40; Климатическое исполнение: […]
  • Формула расчета тока в трехфазной сети Формула мощности При проектировании электрооборудования и расчёте кабелей и пусковой и защитной аппаратуры важно правильно рассчитать мощность и ток электроаппаратуры. В этой статье рассказывается о том, как найти эти параметры. Формулы […]
  • Расчет тока медного провода Сечение провода по мощности. Расчёт сечения провода по мощности выполняется для того, чтобы убедиться в том, что выбранный провод отвечает требованиям надёжности и безопасной эксплуатации электропроводки. Если использовать сечение […]