Определение единицы измерения тока

В помощь изучающему электронику

Формулы, вычисления, .

— Единицы измерения —

Данный справочник собран из разных источников. Но на его создание подтолкнула небольшая книжка «Массовой радиобиблиотеки» изданная в 1964 году, как перевод книги О. Кронегера в ГДР в 1961 году. Не смотря на такую ее древность, она является моей настольной книгой (наряду с несколькими другими справочниками). Думаю время над такими книгами не властно, потому что основы физики, электро и радиотехники (электроники) незыблемы и вечны.

Единицы измерения механических и тепловых величин.

Единица ускорения а метр на секунду в квадрате (м/сек 2 ).

Метр на секунду в квадрате

—ускорение такого равнопеременного движения, при котором скорость за 1 сек изменяется на 1 м!сек.
Единица силы Fньютон (и).

— сила, которая массе т в 1 кг сообщает ускорение а, равное 1 м/сек 2 :

1н=1 кг×1м/сек 2 =1(кг×м)/сек 2

Единица работы А и энергии — джоуль (дж).

—работа, которую совершает постоянная сила F, равная 1 н на пути s в 1 м, пройденном телом под действием этой силы по направлению, совпадающему с направлением силы:

Единица мощности W —ватт (вт).

— мощность, при которой за время t=-l сек совершается работа А, равная 1 дж:

Единица количества теплоты q джоуль (дж). Эта единица определяется из равенства:

Единицы измерения электромагнитных величин

— сила не изменяющегося тока, который, проходя по двум параллельным прямолинейным проводникам бесконечной длины и ничтожно малого кругового сечения, расположенных на расстоянии 1 м один от другого в вакууме, вызывал бы между этими проводниками силу, равную 2×10 -7 ньютона.

— заряд, переносимый через поперечное сечение проводника в 1 сек при силе тока, равной 1 а:

—разность потенциалов двух точек электрического поля, при перемещении между которыми заряда Q в 1 к совершается работа в 1 дж:

Эта единица совпадает с единицей механической мощности.

— емкость проводника., потенциал которого повышается на 1 в, если на этот проводник внести заряд 1 к:

-сопротивление такого проводника, по которому течет ток силой 1 а при напряжении на концах проводника в 1 в:

— абсолютная диэлектрическая проницаемость диэлектрика, при заполнении которым плоский конденсатор с пластинами площадью S по 1 м 2 каждая и расстоянием между пластинами d

1 м приобретает емкость 1 ф.
Формула, выражающая емкость плоского конденсатора:

магнитный поток, при убывании которого до нуля за 1 сек в контуре, сцепленном с этим потоком, возникает э. д. с. индукции, равная 1 в.
Закон Фарадея — Максвелла:

— индукция такого однородного магнитного поля, в котором магнитный поток ф через площадь S в 1 м*, перпендикулярную направлению поля, равен 1 вб:

1тл=1вб/1м 2 =1вб/м 2

— напряженность магнитного поля, создаваемого прямолинейным бесконечно длинным током силой в 4 па на расстоянии г=.2м от проводника с током:

индуктивность такого контура, с которым оцеплен магнитный поток 1 вб, когда по контуру течет ток силой 1 а:

—абсолютная магнитная проницаемость вещества, в котором при напряженности магнитного поля в 1 а/м магнитная индукция равна 1 тл:

1гн/м = 1вб/м 2 / 1а/м = 1вб/(а×м)

Соотношения между единицами магнитных величин
в системах СГСМ и СИ

1гс=10 -4 тл; 1тл=10 4 гс;

1мкс=10 -8 вб; 1вб=10 8 мкс

напряженность поля в 1 э соответствует напряженности 1/4 π × 10 3 а/м = 79,6 а/м

Внесистемные единицы
Некоторые математические и физические понятия
применяемые радиотехнике

— коэффициент усиления по напряжению;

— коэффициент усиления по напряжению в децибелах.

— коэффициент усиления по току в децибелах.

— коэффициент усиления по мощности в децибелах.

Для определения мощности сигнала в зоне приема используется другая логарифмическая единица ДБМ — дицибелл на метр.
Мощность сигнала в точке приема в дбм:

P[дбм] = 10 log U 2 / R +30 = 10 log P + 30. [дбм];

Эффективное напряжение на нагрузке при известной P[дбм] можно определить по формуле:

Размерные коэффициенты основных физических величин

Оглавление.

Основные понятия. 5.2 Замкнутая и разветвленная цепи постоянного тока

Основные понятия, Сопротивление в цепи переменного тока , Конденсатор в цепи переменного тока, Индуктивность в цепи переменного тока, Мощность переменного тока

Основные зависимости, Последовательный колебательный контур, Параллельный колебательный контур

Входная цепь приемника

RC и LC фильтры — общие положения, RC фильтры, 9.3 LC фильтры

Аттенюаторы, Согласование источника с нагрузкой по мощности, току и напряжению

Основные параметры передающих антенн, Параметры приемных антенн, Вибраторные антенны, Рамочные антенны, Приемные ферритовые антенны, Формулы для расчета вибраторных антенн

РАСПРОСТРАНЕНИЕ РАДИОВОЛН В СВОБОДНОМ ПРОСТРАНСТВЕ — Общие положения, ИОНОСФЕРА И ЕЕ ВЛИЯНИЕ НА РАСПРОСТРАНЕНИЕ РАДИОВОЛН, Преломление и отражение радиоволн в ионосфере, Особенности распространения сверхдлинных и длинных волн, Особенности распространения средних волн, Особенности распространения коротких волн, РАСПРОСТРАНЕНИЕ УЛЬТРАКОРОТКИХ ВОЛН В ПРИЗЕМНОМ ПРОСТРАНСТВЕ, Распространения радиоволн над поверхностью земли, дальний прием

Ток в 1 ампер, физический смысл одного ампера, в чем измеряется?

Формулировка «единица силы тока» была впервые употреблена французским математиком и физиком А. Ампером при повторении опытов электромагнитного взаимодействия. Впоследствии начиная с 1881 года, когда состоялся Первый Международный конгресс электриков, ампером стали называть единицу силы тока.

Какие характеристики определяют силу тока в 1 ампер

Формальное определение данной единицы – ампер – было введено в 1948 году по предложению МКМВ (Международного комитета мер и весов). Оно гласит, что ампер – это сила постоянного тока, который протекает по беспредельно тонким длинным параллельным проводникам, отстоящим друг от друга на 1 метр и находящимся в вакууме, вызывая взаимодействие между ними силой 2 × 10−7 ньютона на каждый участок длиной 1 метр.

На практике воспроизвести условия определения невозможно, проводники имеют как конечную длину, так и конкретное сечение. Обычно сила взаимодействия определяется между двумя катушками с большим количеством витков провода. Этот принцип до 1992 года лежал в основе определения эталона ампера на токовых весах. При этом измерялась сила или момент сил, действующих на помещенную в магнитное поле катушку с током. Сила электрического тока измеряется амперметром.

С 1992 года эталон ампера в РФ определяется косвенным путем с использованием закона Ома, благодаря чему погрешность значения уменьшилась на два порядка.

Силу электрического тока можно представить как скорость изменения заряда, т. е. 1 ампер – это такая сила тока, когда за каждую секунду через поперечник проводника проходит количество электричества, равное 1 кулону (6,241·10¹⁸ электронов).

Закон Ампера – определение

А. М. Ампер не только дал свое имя единице силы тока, но и установил закон, определяющий силу воздействия однородного магнитного поля на проводник, размещенный в нем. Ее величина прямо пропорционально зависит от длины проводника, силы протекающего по нему тока, вектора магнитной индукции и синуса угла между вектором и направлением тока.

Физик первым установил особенности взаимодействия двух проводников с током. Направленное перемещение электронов – протекание тока в них – обуславливает притяжение проводников (ток течет в едином для обоих направлении) или отталкивание этих проводов при противоположном направлении протекания тока.

Представление о силе тока дают следующие характеристики процессов:

— в канале молнии она равна примерно 500 килоамперам (1 кА = 10³ А);

— во включенной стоваттной электрической лампочке протекает ток силой ≈ 0,5 А;

— примерная сила тока при лечении электрофорезом равняется 0,8 мА (1мА = 0,001A);

— в ТЭНе электрообогревателя проходит ток до 10 А.

В замкнутой цепи в любом ее месте через поперечник проводника ежесекундно проходит одно и то же количество электричества, т. е. сила тока на каждом участке цепи одинакова. Ее величина не зависит от толщины электрического проводника, т. к. заряды не имеют свойства накапливаться в одном месте.

Перспективы единицы силы тока в будущем

Условиями будущей ревизии единиц системы СИ, принятыми XXIV ГКМВ в октябре 2011 года, предусмотрено переопределение некоторых величин, в том числе и ампера. На величину единицы будет влиять вновь определенное значения электрического заряда (e = 1,602 17X·10−19 Кл).

Ампер в будущем также будет определять силу тока, но его величина будет устанавливаться в зависимости от данного числа.

Единица измерения силы тока

Как становится известно любому школьнику, начинающему знакомиться с физикой, каждое физическое «количество» обязательно связано с его единицей. В области электричества ампер, вольт и ватт настолько распространены, что каждый, кто сменил лампочку или предохранитель, знаком с этими названиями. Это относится к подавляющему большинству людей, независимо от их образования.

Что такое ампер

Сила тока определятся количественным показателем заряда, прошедшего по сечению провода в единичный отрезок времени. Так как I = q/t, то единица силы тока будет Кл/с (заряд измеряется в кулонах, а время в секундах).

Все электрические процессы можно описать формулами, а расчеты по этим выражениям должны производиться в определенных единицах. За единицу измерения электрического тока, кроме расчетной – Кл/с, приняли ампер.

Ампер – это базовая единица СИ, единственная из электрических, полученная из результатов эксперимента. Определение единицы измерения силы тока происходит из исследования магнетизма. Электрические токи в проводах приводят к возникновению магнитных полей (закон Био-Савара). Магнитные поля характеризуются действием магнитных сил (закон Ампера).

Официальное определение ампера в системе СИ выглядит так: если постоянный ток силой в 1 А поддерживается в двух параллельных проводниках бесконечной длины и пренебрежимо малого поперечного сечения, размещенных на дистанции 1 м в вакууме, то созданная между ними сила равна 2 х 10 (в минус седьмой степени) Н на метр длины.

Определение единицы силы тока

Диапазон тока в разных условиях сильно варьируется, на много порядков, поэтому удобно использовать кратные величины:

  • 1 мкА (микроампер) равен 0,000001 А;
  • 1 мА (миллиампер) равен 0,0001 А;
  • 1кА (килоампер) равен 1000 А.

Другие электрические единицы связаны с ампером и между собой. Так, например, единица напряжения вольт (В) – это Вт/А, где Вт – единица мощности, а единичная величина сопротивления Ом – это В/А. Измерение напряженности электрического поля производят в В/м.

Повседневные примеры использования силы тока:

  • устройство для слухового аппарата – 0,7 мА;
  • 56-дюймовый телевизор с плазменной технологией – 250/290 мА;
  • небольшая духовка или тостер – 120 мА;
  • лампа накаливания – 500/830 мА;
  • фен – 15 мА.

В 80-е годы 19-го века фактическое значение ампера было определено и электролитическим методом – путем определения веса металла, который он способен осаждать из раствора за определенное время. Количество осажденного металла пропорционально всему количеству проходящего электричества.

Смотрите так же:  Заземление кабеля с одной стороны

Интересно. Результаты, полученные разными исследованиями, находились в тесном соответствии, вывод состоял в следующем: ампер представлен тем количеством тока, которое способно осаждать 4,025 грамма серебра в час или 0,001118 грамм в секунду.

Единица силы тока ампер названа в честь французского физика и математика Андре-Мари Ампера. Он провел много экспериментов, связанных с ранней наукой об электричестве. Учитывая эту новаторскую работу, многие считают его отцом электродинамики. В знак признания большого вклада Ампера в создание фундаментальных основ современной электротехники название «ампер» было установлено как стандартная единица измерения силы тока на международной конференции электриков в 1881 году.

В 2011 г. принято решение о пересмотре определения отдельных единиц, в частности ампера. Предполагается, что он будет привязан к заряду электрона, который составляет 1, 602176565 х 10 (в минус 19 степени) Кл. Тогда и 1 Кл равен 6,241509343 х 10 (в 18 степени) заряда электрона.

Другие системы единиц

В альтернативных системах, не получивших широкого распространения, присутствуют другие единицы измерения тока:

  1. Система СГСМ (электромагнитная). Один абампер, или био, определяется, исходя из измерения силы в динах, а длины – в сантиметрах. Физический смысл абампера идентичный. 1 абампер = 10 ампер;
  2. Система СГСЭ (электростатическая). Взаимосвязь между ампером и статампером: 1 А = 2997924536,843 статА.

Эти единичные величины часто используются в теоретической физике.

Для практического измерения силы тока применяются амперметры, которые существуют аналоговые и цифровые, для измерения постоянного и переменного тока, больших и малых величин. Их шкала проградуирована в амперах (мА, кА). Подключение в электроцепь выполняется последовательно.

С помощью количественной единицы тока можно просчитать любую цепь, определить параметры электрических аппаратов и приборов и выбрать их для использования.

Определение силы тока

Если известно количество электрических зарядов, направленное движение которых принято называть электрическим током, и единица времени, за которую электричество в таком объеме проходит через поперечное сечение проводника, можно узнать характеристику интенсивности тока, то есть вычислить силу тока.

Точное определение силы тока необходимо для правильного понимания процессов, происходящих при подаче электроэнергии для питания двигателей и прочего оборудования.

Определение силы тока и способы ее измерения

Значение количества электричества можно использовать для определения и расчета силы тока, благодаря существованию правила постоянства тока в замкнутых цепях (в каждой точке цепи). Суть правила в том, что количество проходящего за одну секунду тока будет одинаковым для любого сечения в любом месте цепи, независимо от толщины проводника (правило действует для цепей без разветвлений).

Измерить силу тока можно с помощью специального оборудования. Обычно применяют следующие приборы:

  • амперметр (наиболее востребованный вариант);
  • мультиметр;
  • миллиамперметр;
  • микроамперметр.

Последние два варианта служат для измерения малых сил тока, составляющих миллионные доли ампера, например, возникающих при прохождении тока через фотоэлементы.

Чтобы получить значение силы тока с помощью амперметра, прибор следует подключить в разрыв цепи (в любой ее точке) таким образом, чтобы ток проходил через амперметр. Стрелка устройства при этом будет показывать силу тока в цепи. Амперметр можно подключить как до, так и после устройства-потребителя, поскольку миф о том, что в потребителе остается «часть тока» и после него сила тока в цепи меньше, не соответствует действительности.

Сила тока — обозначение и базовые формулы

В формулах при расчете такого параметра, как сила тока, обозначение его величины с помощью буквы «I» является общепринятым. Основная формула выглядит как I=q/t, где q – количество электричества, а t – временной отрезок.

Также для расчета силы тока можно использовать такие параметры, как:

  • фактическое напряжение (U);
  • мощность (P).

В этом случае применяется формула I= P/U. Получение силы тока расчетным методом актуально в тех случаях, когда невозможно применение измерительных приборов, например, на этапе проектирования электросетей.

Основные единицы измерения силы тока

В качестве основной единицы измерения силы тока используют ампер (краткое обозначение – А). Ампер, получивший свое название по имени ученого физика Анри Ампера, входит в Международную систему единиц (СИ).

Если через поперечное сечение в течение 1 секунды проходит 1 кулон электричества, то сила тока в этом проводнике равна одному амперу. Как вспомогательные единицы применяются:

  • миллиамперы (ма), одна тысячная или 10 -3 ампер;
  • микроамперы (мкА), одна миллионная или 10 -6 ампер.

Сила тока является важным параметром, знание которого поможет в выборе кабелей с оптимальным для планируемой нагрузки размером сечения.

Определение единицы измерения тока

В принципе, можно представить себе какое угодно большое число разных систем единиц, но широкое распространение получили лишь несколько. Во всем мире для научных и технических измерений и в большинстве стран в промышленности и быту пользуются метрической системой.

Основные единицы . В системе единиц для каждой измеряемой физической величины должна быть предусмотрена соответствующая единица измерения. Таким образом, отдельная единица измерения нужна для длины, площади, объема, скорости и т.д., и каждую такую единицу можно определить, выбрав тот или иной эталон. Но система единиц оказывается значительно более удобной, если в ней всего лишь несколько единиц выбраны в качестве основных, а остальные определяются через основные. Так, если единицей длины является метр, эталон которого хранится в Государственной метрологической службе, то единицей площади можно считать квадратный метр, единицей объема – кубический метр, единицей скорости – метр в секунду и т.д.

Удобство такой системы единиц (особенно для ученых и инженеров, которые гораздо чаще встречаются с измерениями, чем остальные люди) в том, что математические соотношения между основными и производными единицами системы оказываются более простыми. При этом единица скорости есть единица расстояния (длины) в единицу времени, единица ускорения – единица изменения скорости в единицу времени, единица силы – единица ускорения единицы массы и т.д. В математической записи это выглядит так: v = l / t , a = v / t , F = ma = ml / t 2 . Представленные формулы показывают «размерность» рассматриваемых величин, устанавливая соотношения между единицами. (Аналогичные формулы позволяют определить единицы для таких величин, как давление или сила электрического тока.) Такие соотношения носят общий характер и выполняются независимо от того, в каких единицах (метр, фут или аршин) измеряется длина и какие единицы выбраны для других величин.

В технике за основную единицу измерения механических величин обычно принимают не единицу массы, а единицу силы. Таким образом, если в системе, наиболее употребительной в физических исследованиях, металлический цилиндр принимается за эталон массы, то в технической системе он рассматривается как эталон силы, уравновешивающей действующую на него силу тяжести. Но поскольку сила тяжести неодинакова в разных точках на поверхности Земли, для точной реализации эталона необходимо указание местоположения. Исторически было принято местоположение на уровне моря на географической широте 45 ° . В настоящее же время такой эталон определяется как сила, необходимая для того, чтобы придать указанному цилиндру определенное ускорение. Правда, в технике измерения проводятся, как правило, не со столь высокой точностью, чтобы нужно было заботиться о вариациях силы тяжести (если речь не идет о градуировке измерительных приборов).

Немало путаницы связано с понятиями массы, силы и веса. Дело в том, что существуют единицы всех этих трех величин, носящие одинаковые названия. Масса – это инерционная характеристика тела, показывающая, насколько трудно выводится оно внешней силой из состояния покоя или равномерного и прямолинейного движения. Единица силы есть сила, которая, воздействуя на единицу массы, изменяет ее скорость на единицу скорости в единицу времени.

Все тела притягиваются друг к другу. Таким образом, всякое тело вблизи Земли притягивается к ней. Иначе говоря, Земля создает действующую на тело силу тяжести. Эта сила называется его весом. Сила веса, как указывалось выше, неодинакова в разных точках на поверхности Земли и на разной высоте над уровнем моря из-за различий в гравитационном притяжении и в проявлении вращения Земли. Однако полная масса данного количества вещества неизменна; она одинакова и в межзвездном пространстве, и в любой точке на Земле.

Точные эксперименты показали, что сила тяжести, действующая на разные тела (т.е. их вес), пропорциональна их массе. Следовательно, массы можно сравнивать на весах, и массы, оказавшиеся одинаковыми в одном месте, будут одинаковы и в любом другом месте (если сравнение проводить в вакууме, чтобы исключить влияние вытесняемого воздуха). Если же некое тело взвешивать на пружинных весах, уравновешивая силу тяжести силой растянутой пружины, то результаты измерения веса будут зависеть от места, где проводятся измерения. Поэтому пружинные весы нужно корректировать на каждом новом месте, чтобы они правильно показывали массу. Простота же самой процедуры взвешивания явилась причиной того, что сила тяжести, действующая на эталонную массу, была принята за независимую единицу измерения в технике.

Метрическая система единиц . Метрическая система – это общее название международной десятичной системы единиц, основными единицами которой являются метр и килограмм. При некоторых различиях в деталях элементы системы одинаковы во всем мире.

История. Метрическая система выросла из постановлений, принятых Национальным собранием Франции в 1791 и 1795 по определению метра как одной десятимиллионной доли участка земного меридиана от Северного полюса до экватора.

Декретом, изданным 4 июля 1837, метрическая система была объявлена обязательной к применению во всех коммерческих сделках во Франции. Она постепенно вытеснила местные и национальные системы в других странах Европы и была законодательно признана как допустимая в Великобритании и США. Соглашением, подписанным 20 мая 1875 семнадцатью странами, была создана международная организация, призванная сохранять и совершенствовать метрическую систему.

Ясно, что, определяя метр как десятимиллионную долю четверти земного меридиана, создатели метрической системы стремились добиться инвариантности и точной воспроизводимости системы. За единицу массы они взяли грамм, определив его как массу одной миллионной кубического метра воды при ее максимальной плотности. Поскольку было бы не очень удобно проводить геодезические измерения четверти земного меридиана при каждой продаже метра ткани или уравновешивать корзинку картофеля на рынке соответствующим количеством воды, были созданы металлические эталоны, с предельной точностью воспроизводящие указанные идеальные определения.

Вскоре выяснилось, что металлические эталоны длины можно сравнивать друг с другом, внося гораздо меньшую погрешность, чем при сравнении любого такого эталона с четвертью земного меридиана. Кроме того, стало ясно, что и точность сравнения металлических эталонов массы друг с другом гораздо выше точности сравнения любого подобного эталона с массой соответствующего объема воды.

В связи с этим Международная комиссия по метру в 1872 постановила принять за эталон длины «архивный» метр, хранящийся в Париже, «такой, каков он есть». Точно так же члены Комиссии приняли за эталон массы архивный платино-иридиевый килограмм, «учитывая, что простое соотношение, установленное создателями метрической системы, между единицей веса и единицей объема представляется существующим килограммом с точностью, достаточной для обычных применений в промышленности и торговле, а точные науки нуждаются не в простом численном соотношении подобного рода, а в предельно совершенном определении этого соотношения». В 1875 многие страны мира подписали соглашение о метре, и этим соглашением была установлена процедура координации метрологических эталонов для мирового научного сообщества через Международное бюро мер и весов и Генеральную конференцию по мерам и весам.

Смотрите так же:  Передача изображения на телевизор без провода

Новая международная организация незамедлительно занялась разработкой международных эталонов длины и массы и передачей их копий всем странам-участницам.

Эталоны длины и массы, международные прототипы . Международные прототипы эталонов длины и массы – метра и килограмма – были переданы на хранение Международному бюро мер и весов, расположенному в Севре – пригороде Парижа. Эталон метра представлял собой линейку из сплава платины с 10% иридия, поперечному сечению которой для повышения изгибной жесткости при минимальном объеме металла была придана особая X -образная форма. В канавке такой линейки была продольная плоская поверхность, и метр определялся как расстояние между центрами двух штрихов, нанесенных поперек линейки на ее концах, при температуре эталона, равной 0 ° С. За международный прототип килограмма была принята масса цилиндра, сделанного из того же платино-иридиевого сплава, что и эталон метра, высотой и диаметром около 3,9 см. Вес этой эталонной массы, равной 1 кг на уровне моря на географической широте 45 ° , иногда называют килограмм-силой. Таким образом, ее можно использовать либо как эталон массы для абсолютной системы единиц, либо как эталон силы для технической системы единиц, в которой одной из основных единиц является единица силы.

Международные прототипы были выбраны из значительной партии одинаковых эталонов, изготовленных одновременно. Другие эталоны этой партии были переданы всем странам-участницам в качестве национальных прототипов (государственных первичных эталонов), которые периодически возвращаются в Международное бюро для сравнения с международными эталонами. Сравнения, проводившиеся в разное время с тех пор, показывают, что они не обнаруживают отклонений (от международных эталонов), выходящих за пределы точности измерений.

Международная система СИ . Метрическая система была весьма благосклонно встречена учеными 19 в. частично потому, что она предлагалась в качестве международной системы единиц, частично же по той причине, что ее единицы теоретически предполагались независимо воспроизводимыми, а также благодаря ее простоте. Ученые начали выводить новые единицы для разных физических величин, с которыми они имели дело, основываясь при этом на элементарных законах физики и связывая эти единицы с единицами длины и массы метрической системы. Последняя все больше завоевывала различные европейские страны, в которых ранее имело хождение множество не связанных друг с другом единиц для разных величин.

Хотя во всех странах, принявших метрическую систему единиц, эталоны метрических единиц были почти одинаковы, возникли различные расхождения в производных единицах между разными странами и разными дисциплинами. В области электричества и магнетизма появились две отдельные системы производных единиц: электростатическая, основанная на силе, с которой действуют друг на друга два электрических заряда, и электромагнитная, основанная на силе взаимодействия двух гипотетических магнитных полюсов.

Положение еще более усложнилось с появлением системы т.н. практических электрических единиц, введенной в середине 19 в. Британской ассоциацией содействия развитию науки для удовлетворения запросов быстро развивающейся техники проводной телеграфной связи. Такие практические единицы не совпадают с единицами обеих названных выше систем, но от единиц электромагнитной системы отличаются лишь множителями, равными целым степеням десяти.

Таким образом, для столь обычных электрических величин, как напряжение, ток и сопротивление, существовало несколько вариантов принятых единиц измерения, и каждому научному работнику, инженеру, преподавателю приходилось самому решать, каким из этих вариантов ему лучше пользоваться. В связи с развитием электротехники во второй половине 19 и первой половине 20 вв. находили все более широкое применение практические единицы, которые стали в конце концов доминировать в этой области.

Для устранения такой путаницы в начале 20 в. было выдвинуто предложение объединить практические электрические единицы с соответствующими механическими, основанными на метрических единицах длины и массы, и построить некую согласованную (когерентную) систему. В 1960 XI Генеральная конференция по мерам и весам приняла единую Международную систему единиц (СИ), дала определение основных единиц этой системы и предписала употребление некоторых производных единиц, «не предрешая вопроса о других, которые могут быть добавлены в будущем». Тем самым впервые в истории международным соглашением была принята международная когерентная система единиц. В настоящее время она принята в качестве законной системы единиц измерения большинством стран мира.

Международная система единиц (СИ) представляет собой согласованную систему, в которой для любой физической величины, такой, как длина, время или сила, предусматривается одна и только одна единица измерения. Некоторым из единиц даны особые названия, примером может служить единица давления паскаль, тогда как названия других образуются из названий тех единиц, от которых они произведены, например единица скорости – метр в секунду. Основные единицы вместе с двумя дополнительными геометрического характера представлены в табл. 1. Производные единицы, для которых приняты особые названия, даны в табл. 2. Из всех производных механических единиц наиболее важное значение имеют единица силы ньютон, единица энергии джоуль и единица мощности ватт. Ньютон определяется как сила, которая придает массе в один килограмм ускорение, равное одному метру за секунду в квадрате. Джоуль равен работе, которая совершается, когда точка приложения силы, равной одному ньютону, перемещается на расстояние один метр в направлении действия силы. Ватт – это мощность, при которой работа в один джоуль совершается за одну секунду. Об электрических и других производных единицах будет сказано ниже. Официальные определения основных и дополнительных единиц таковы.

Метр – это длина пути, проходимого в вакууме светом за 1/299 792 458 долю секунды. Это определение было принято в октябре 1983.

Килограмм равен массе международного прототипа килограмма.

Секунда – продолжительность 9 192 631 770 периодов колебаний излучения, соответствующего переходам между двумя уровнями сверхтонкой структуры основного состояния атома цезия-133.

Кельвин равен 1/273,16 части термодинамической температуры тройной точки воды.

Моль равен количеству вещества, в составе которого содержится столько же структурных элементов, сколько атомов в изотопе углерода-12 массой 0,012 кг.

Радиан – плоский угол между двумя радиусами окружности, длина дуги между которыми равна радиусу.

Стерадиан равен телесному углу с вершиной в центре сферы, вырезающему на ее поверхности площадь, равную площади квадрата со стороной, равной радиусу сферы.

Для образования десятичных кратных и дольных единиц предписывается ряд приставок и множителей, указываемых в табл. 3.

Таблица 3. ПРИСТАВКИ И МНОЖИТЕЛИ ДЕСЯТИЧНЫХ КРАТНЫХ И ДОЛЬНЫХ ЕДИНИЦ МЕЖДУНАРОДНОЙ СИСТЕМЫ СИ

Таким образом, километр (км) – это 1000 м, а миллиметр – 0,001 м. (Эти приставки применимы ко всем единицам, как, например, в киловаттах, миллиамперах и т.д.)

Первоначально предполагалось, что одной из основных единиц должен быть грамм, и это отразилось в названиях единиц массы, но в настоящее время основной единицей является килограмм. Вместо названия мегаграмм употребляется слово «тонна». В физических дисциплинах, например для измерения длины волны видимого или инфракрасного света, часто применяется миллионная доля метра (микрометр). В спектроскопии длины волн часто выражают в ангстремах ( ); ангстрем равен одной десятой нанометра, т.е. 10 — 10 м. Для излучений с меньшей длиной волны, например рентгеновского, в научных публикациях допускается пользоваться пикометром и икс-единицей (1 икс-ед. = 10 –13 м). Объем, равный 1000 кубических сантиметров (одному кубическому дециметру), называется литром (л).

Масса, длина и время . Все основные единицы системы СИ, кроме килограмма, в настоящее время определяются через физические константы или явления, которые считаются неизменными и с высокой точностью воспроизводимыми. Что же касается килограмма, то еще не найден способ его реализации с той степенью воспроизводимости, которая достигается в процедурах сравнения различных эталонов массы с международным прототипом килограмма. Такое сравнение можно проводить путем взвешивания на пружинных весах, погрешность которых не превышает 1 Ч 10 –8 . Эталоны кратных и дольных единиц для килограмма устанавливаются комбинированным взвешиванием на весах.

Поскольку метр определяется через скорость света, его можно воспроизводить независимо в любой хорошо оборудованной лаборатории. Так, интерференционным методом штриховые и концевые меры длины, которыми пользуются в мастерских и лабораториях, можно проверять, проводя сравнение непосредственно с длиной волны света. Погрешность при таких методах в оптимальных условиях не превышает одной миллиардной ( 1 Ч 10 –9 ). С развитием лазерной техники подобные измерения весьма упростились, и их диапазон существенно расширился. См. также ОПТИКА.

Точно так же секунда в соответствии с ее современным определением может быть независимо реализована в компетентной лаборатории на установке с атомным пучком. Атомы пучка возбуждаются высокочастотным генератором, настроенным на атомную частоту, и электронная схема измеряет время, считая периоды колебаний в цепи генератора. Такие измерения можно проводить с точностью порядка 1 Ч 10 –12 – гораздо более высокой, чем это было возможно при прежних определениях секунды, основанных на вращении Земли и ее обращении вокруг Солнца. Время и его обратная величина – частота – уникальны в том отношении, что их эталоны можно передавать по радио. Благодаря этому всякий, у кого имеется соответствующее радиоприемное оборудование, может принимать сигналы точного времени и эталонной частоты, почти не отличающиеся по точности от передаваемых в эфир. См. также ВРЕМЯ.

Механика . Исходя из единиц длины, массы и времени, можно вывести все единицы, применяемые в механике, как было показано выше. Если основными единицами являются метр, килограмм и секунда, то система называется системой единиц МКС; если – сантиметр, грамм и секунда, то – системой единиц СГС. Единица силы в системе СГС называется диной, а единица работы – эргом. Некоторые единицы получают особые названия, когда они используются в особых разделах науки. Например, при измерении напряженности гравитационного поля единица ускорения в системе СГС называется галом. Имеется ряд единиц с особыми названиями, не входящих ни в одну из указанных систем единиц. Бар, единица давления, применявшаяся ранее в метеорологии, равен 1 000 000 дин/см 2 . Лошадиная сила, устаревшая единица мощности, все еще применяемая в британской технической системе единиц, а также в России, равна приблизительно 746 Вт.

Температура и теплота . Механические единицы не позволяют решать все научные и технические задачи без привлечения каких-либо других соотношений. Хотя работа, совершаемая при перемещении массы против действия силы, и кинетическая энергия некой массы по своему характеру эквивалентны тепловой энергии вещества, удобнее рассматривать температуру и теплоту как отдельные величины, не зависящие от механических.

Смотрите так же:  Автомат диф узо

Термодинамическая шкала температуры . Единица термодинамической температуры Кельвина (К), называемая кельвином, определяется тройной точкой воды, т.е. температурой, при которой вода находится в равновесии со льдом и паром. Эта температура принята равной 273,16 К, чем и определяется термодинамическая шкала температуры. Данная шкала, предложенная Кельвином, основана на втором начале термодинамики. Если имеются два тепловых резервуара с постоянной температурой и обратимая тепловая машина, передающая тепло от одного из них другому в соответствии с циклом Карно, то отношение термодинамических температур двух резервуаров дается равенством T 2 / T 1 = – Q 2 Q 1 , где Q 2 и Q 1 – количества теплоты, передаваемые каждому из резервуаров (знак «минус» говорит о том, что у одного из резервуаров теплота отбирается). Таким образом, если температура более теплого резервуара равна 273,16 К, а теплота, отбираемая у него, вдвое больше теплоты, передаваемой другому резервуару, то температура второго резервуара равна 136,58 К. Если же температура второго резервуара равна 0 К, то ему вообще не будет передана теплота, поскольку вся энергия газа была преобразована в механическую энергию на участке адиабатического расширения в цикле. Эта температура называется абсолютным нулем. Термодинамическая температура, используемая обычно в научных исследованиях, совпадает с температурой, входящей в уравнение состояния идеального газа PV = RT , где P – давление, V – объем и R – газовая постоянная. Уравнение показывает, что для идеального газа произведение объема на давление пропорционально температуре. Ни для одного из реальных газов этот закон точно не выполняется. Но если вносить поправки на вириальные силы, то расширение газов позволяет воспроизводить термодинамическую шкалу температуры.

Международная температурная шкала . В соответствии с изложенным выше определением температуру можно с весьма высокой точностью (примерно до 0,003 К вблизи тройной точки) измерять методом газовой термометрии. В теплоизолированную камеру помещают платиновый термометр сопротивления и резервуар с газом. При нагревании камеры увеличивается электросопротивление термометра и повышается давление газа в резервуаре (в соответствии с уравнением состояния), а при охлаждении наблюдается обратная картина. Измеряя одновременно сопротивление и давление, можно проградуировать термометр по давлению газа, которое пропорционально температуре. Затем термометр помещают в термостат, в котором жидкая вода может поддерживаться в равновесии со своими твердой и паровой фазами. Измерив его электросопротивление при этой температуре, получают термодинамическую шкалу, поскольку температуре тройной точки приписывается значение, равное 273,16 К.

Существуют две международные температурные шкалы – Кельвина (К) и Цельсия (С). Температура по шкале Цельсия получается из температуры по шкале Кельвина вычитанием из последней 273,15 К.

Точные измерения температуры методом газовой термометрии требуют много труда и времени. Поэтому в 1968 была введена Международная практическая температурная шкала (МПТШ). Пользуясь этой шкалой, термометры разных типов можно градуировать в лаборатории. Данная шкала была установлена при помощи платинового термометра сопротивления, термопары и радиационного пирометра, используемых в температурных интервалах между некоторыми парами постоянных опорных точек (температурных реперов). МПТШ должна была с наибольшей возможной точностью соответствовать термодинамической шкале, но, как выяснилось позднее, ее отклонения весьма существенны.

Температурная шкала Фаренгейта . Температурную шкалу Фаренгейта, которая широко применяется в сочетании с британской технической системой единиц, а также в измерениях ненаучного характера во многих странах, принято определять по двум постоянным опорным точкам – температуре таяния льда (32 ° F ) и кипения воды (212 ° F ) при нормальном (атмосферном) давлении. Поэтому, чтобы получить температуру по шкале Цельсия из температуры по шкале Фаренгейта, нужно вычесть из последней 32 и умножить результат на 5/9.

Единицы теплоты . Поскольку теплота есть одна из форм энергии, ее можно измерять в джоулях, и эта метрическая единица была принята международным соглашением. Но поскольку некогда количество теплоты определяли по изменению температуры некоторого количества воды, получила широкое распространение единица, называемая калорией и равная количеству теплоты, необходимому для того, чтобы повысить температуру одного грамма воды на 1 ° С. В связи с тем что теплоемкость воды зависит от температуры, пришлось уточнять величину калории. Появились по крайней мере две разные калории – «термохимическая» (4,1840 Дж) и «паровая» (4,1868 Дж). «Калория», которой пользуются в диететике, на самом деле есть килокалория (1000 калорий). Калория не является единицей системы СИ, и в большинстве областей науки и техники она вышла из употребления.

Электричество и магнетизм . Все общепринятые электрические и магнитные единицы измерения основаны на метрической системе. В согласии с современными определениями электрических и магнитных единиц все они являются производными единицами, выводимыми по определенным физическим формулам из метрических единиц длины, массы и времени. Поскольку же большинство электрических и магнитных величин не так-то просто измерять, пользуясь упомянутыми эталонами, было сочтено, что удобнее установить путем соответствующих экспериментов производные эталоны для некоторых из указанных величин, а другие измерять, пользуясь такими эталонами.

Единицы системы СИ . Ниже дается перечень электрических и магнитных единиц системы СИ.

Ампер, единица силы электрического тока, – одна из шести основных единиц системы СИ. Ампер – сила неизменяющегося тока, который при прохождении по двум параллельным прямолинейным проводникам бесконечной длины с ничтожно малой площадью кругового поперечного сечения, расположенным в вакууме на расстоянии 1 м один от другого, вызывал бы на каждом участке проводника длиной 1 м силу взаимодействия, равную 2 Ч 10 — 7 Н.

Вольт, единица разности потенциалов и электродвижущей силы. Вольт – электрическое напряжение на участке электрической цепи с постоянным током силой 1 А при затрачиваемой мощности 1 Вт.

Кулон, единица количества электричества (электрического заряда). Кулон – количество электричества, проходящее через поперечное сечение проводника при постоянном токе силой 1 А за время 1 с.

Фарада, единица электрической емкости. Фарада – емкость конденсатора, на обкладках которого при заряде 1 Кл возникает электрическое напряжение 1 В.

Генри, единица индуктивности. Генри равен индуктивности контура, в котором возникает ЭДС самоиндукции в 1 В при равномерном изменении силы тока в этом контуре на 1 А за 1 с.

Вебер, единица магнитного потока. Вебер – магнитный поток, при убывании которого до нуля в сцепленном с ним контуре, имеющем сопротивление 1 Ом, протекает электрический заряд, равный 1 Кл.

Тесла, единица магнитной индукции. Тесла – магнитная индукция однородного магнитного поля, в котором магнитный поток через плоскую площадку площадью 1 м 2 , перпендикулярную линиям индукции, равен 1 Вб.

Практические эталоны . На практике величина ампера воспроизводится путем фактического измерения силы взаимодействия витков провода, несущих ток. Поскольку электрический ток есть процесс, протекающий во времени, эталон тока невозможно сохранять. Точно так же величину вольта невозможно фиксировать в прямом соответствии с его определением, так как трудно воспроизвести с необходимой точностью механическими средствами ватт (единицу мощности). Поэтому вольт на практике воспроизводится с помощью группы нормальных элементов. В США с 1 июля 1972 законодательством принято определение вольта, основанное на эффекте Джозефсона на переменном токе (частота переменного тока между двумя сверхпроводящими пластинами пропорциональна внешнему напряжению). См. также СВЕРХПРОВОДИМОСТЬ; ЭЛЕКТРИЧЕСТВО И МАГНЕТИЗМ.

Свет и освещенность . Единицы силы света и освещенности нельзя определить на основе только механических единиц. Можно выразить поток энергии в световой волне в Вт/м 2 , а интенсивность световой волны – в В/м, как в случае радиоволн. Но восприятие освещенности есть психофизическое явление, в котором существенна не только интенсивность источника света, но и чувствительность человеческого глаза к спектральному распределению этой интенсивности.

Международным соглашением за единицу силы света принята кандела (ранее называвшаяся свечой), равная силе света в данном направлении источника, испускающего монохроматическое излучение частоты 540 Ч 10 12 Гц ( l = 555 нм), энергетическая сила светового излучения которого в этом направлении составляет 1/683 Вт/ср. Это примерно соответствует силе света спермацетовой свечи, которая когда-то служила эталоном.

Если сила света источника равна одной канделе во всех направлениях, то полный световой поток равен 4 p люменов. Таким образом, если этот источник находится в центре сферы радиусом 1 м, то освещенность внутренней поверхности сферы равна одному люмену на квадратный метр, т.е. одному люксу.

Рентгеновское и гамма-излучение, радиоактивность . Рентген (Р) – это устаревшая единица экспозиционной дозы рентгеновского, гамма- и фотонного излучений, равная количеству излучения, которое с учетом вторичноэлектронного излучения образует в 0,001 293 г воздуха ионы, несущие заряд, равный одной единице заряда СГС каждого знака. В системе СИ единицей поглощенной дозы излучения является грэй, равный 1 Дж/кг. Эталоном поглощенной дозы излучения служит установка с ионизационными камерами, которые измеряют ионизацию, производимую излучением.

Кюри (Ки) – устаревшая единица активности нуклида в радиоактивном источнике. Кюри равен активности радиоактивного вещества (препарата), в котором за 1 с происходит 3,700 Ч 10 10 актов распада. В системе СИ единицей активности изотопа является беккерель, равный активности нуклида в радиоактивном источнике, в котором за время 1 с происходит один акт распада. Эталоны радиоактивности получают, измеряя периоды полураспада малых количеств радиоактивных материалов. Затем по таким эталонам градуируют и поверяют ионизационные камеры, счетчики Гейгера, сцинтилляционные счетчики и другие приборы для регистрации проникающих излучений. См. также ИЗМЕРЕНИЯ И ВЗВЕШИВАНИЕ; ИЗМЕРИТЕЛЬНЫЕ ИНСТРУМЕНТЫ; ЭЛЕКТРИЧЕСКИЕ ИЗМЕРЕНИЯ.

Таблица 2. ПРОИЗВОДНЫЕ ЕДИНИЦЫ СИ, ИМЕЮЩИЕ СОБСТВЕННЫЕ НАИМЕНОВАНИЯ

Похожие статьи:

  • Инвертор 12 220 схема простая Простой самодельный инвертор напряжения 12-220В на двух транзисторах В настоящее время интернет пестрит всевозможными схемами инверторов 12-220 Вольт, которые построены на микросхемах серии TL и полевых транзисторах и нет ни одной схемы […]
  • Электрические схемы газ-66 Схема электропроводки ГАЗ 66: особенности системы зажигания и освещения Понравилась статья? Следите за новыми идеями полезных авто советов в нашем канале. Подписывайтесь на нас в Яндекс.Дзене. Подписаться. Серийное производство самого […]
  • Провода переходники для магнитолы Провода переходники для магнитолы Камеры заднего вида 1DIN и 2DIN автомагнитолы Усилители Кабели Провода Зеркала заднего вида Адаптеры руля и усилителя ISO-переходники Intro CON VW G-7 Переходник со штатного разъема 2015 […]
  • Линия для производства провода Линия для производства провода Линия для производства проводов с пластмассовой изоляцией . инд.591.465 Линия состоит из: · Пресс червячный ЧП 32х25 · Ванна охлаждения I · Ванна охлаждения II (2 штуки) · Компенсатор (2 штуки) Диаметр […]
  • Реле переменного тока 220 в Реле МК2Р (АС 220 В) Реле МК2Р (АС 220 В) предназначено для защиты от перегрузок сети и коротких замыканий в жилых и промышленных помещениях. Область применения Реле переменного тока широко используется для контроля работы двигателя, […]
  • Удельная тепловая мощность тока единицы измерения Работа и мощность тока. Закон Джоуля-Ленца Кулоновские и сторонние силы при перемещении заряда q вдоль электрической цепи совершают работу A. Рассмотрим однородный проводник с сопротивлением R, к концам которого приложено напряжение U. […]