Определить температурный коэффициент удельного сопротивления провода

Памятка по электротехнике

Закон Ома устанавливает связь между силой тока в проводнике и разностью потенциалов (напряжением) на его концах. Формулировка для участка электрической цепи (проводника), не содержащего источников электродвижущей силы (ЭДС): сила тока прямо пропорциональна напряжению и обратно пропорциональна сопротивлению проводника. Законы Ома для замкнутой неразветвлённой цепи: сила тока прямо пропорциональна электродвижущей силе и обратно пропорциональна полному сопротивлению цепи. Закон Ома справедлив для постоянных и квазистационарных токов. Был открыт немецким физиком Георгом Омом в 1826 году. * Современная энциклопедия

В случае переменного тока, величины, входящие в расчётные формулы – становятся комплексными.

Закон Ома в дифференциальной форме — описывает исключительно электропроводящие свойства материала, вне зависимости от геометрических размеров.

Удельное электрическое сопротивление вещества есть электросопротивление изготовленного из него куба со сторонами, равными единице (1метр), когда ток идёт перпендикулярно двум его противоположным граням, площадью 1 квадратный метр каждая.

Удельное сопротивление зависит от концентрации в проводнике свободных электронов и от расстояния между ионами кристаллической решетки, иначе говоря, от материала проводника.

Размерность удельного электросопротивления в сист. СИ (международная система единиц, англ. — International System of Units) –
Ом·м [Ом*м^2/м] (SI – Ω·m, рус. – Ом-метр, англ. – ohm-meter). Для измерения проводниковых материалов разрешается использовать внесистемную единицу –
Ом·мм2/м (для миллиметрового сечения проводника, длиной 1 м., то есть – миллионную часть Ом-метра).

Физический смысл удельного сопротивления: материал (однородный и изотропный*) имеет удельное электрическое сопротивление один Ом·м, если изготовленный из этого материала куб со стороной 1 метр имеет сопротивление 1 Ом при измерении на противоположных гранях куба.
* Изотропность – идентичность физических свойств во всех направлениях.

Удельное сопротивление характеризует способность вещества проводить электрический ток и не зависит от формы и размеров вещества, но меняется, при отличии его температуры от 20 °C (то есть, от комнатной, при которой определялись табличные значения для справочников).

На практике, в технике чаще применяется единица, в миллион раз меньшая (миллиметровое токоведущее сечение), чем Ом·м:

1 мкОм·м (SI – µΩ·m, рус. – микроом-метр, англ. – microhm-meter) = 1*10^-6 Ом*м
1 мкОм·м = 1 Ом·мм2/м

При этом, удельное сопротивление однородного куска проводника длиной 1 метр и площадью токоведущего сечения 1 квадратный миллиметр – равно 1 Ом·мм2/м, если его сополтивление равно 1 Ом.
Например, величина удельного сопротивления электротехнической меди, примерно, составляет 1,72*10^-8 Ом·м = 0.0172 мкОм·м (определяется при температуре 20 градусов по Цельсию).

В зависимости от удельного сопротивления все вещества делятся на проводники, диэлектрики и полупроводники. Диэлектрики (изоляторы, например — фарфор) имеют очень высокие значения удельного электрического сопротивления, превышающие 10^12 Ом·м, а проводники (к примеру — серебро, медь) – меньше 10^-2 Ом·м ( R = (R1 * (1 + α * (t2–t1))) * L / S =
= 2,62*10 -8 Ом•м * (1 + 0,0042*95) * 100 / (3,14 * 40 2 * 10 -6 ) = 7,3 * 10 -4 Ом
где:
S – площадь сечения в м 2 (с вычетом толщины слоёв изоляции),
L – длина проводника в метрах.

Температурный коэффициент сопротивления х10 -3 , 1/градус:
Алюминий – 4,2
Бронза оловянистая твёрдотянутая – 0,6-0,7
Вольфрам – 4,2
Графит – -1,3
Дюраль – 2,2
Константан – 0,003-0,005
Латунь – 1,5
Манганин – 0,03-0,06 (при температуре до 250-300°С)
Медь – 4,3
Нихром – 0,14
Серебро – 4,0
Сталь – 9,0
Цинк – 4,2

Постоянные резисторы и их маркировка

В буквенно-цифровой (кодовой) маркировке резисторов – на их корпус наносится числовое значение электрического сопротивления и буквы, первая из которых обозначает множитель (R или Е – Ом,&nbsp K – килоом,&nbsp M – мегаом) и, заодно, определяет положение разделительной запятой десятичного знака. Вторая буква означает класс точности, то есть, допускаемое отклонение от указанной величины. Номиналы на мелкие детали – наносят в виде маркировки цветными кольцами, полосками или точками (в зависимости от применяемого стандарта). Каждому цвету соответствует определенная цифра, означающая число Ом, множитель / степень или процент точности. Для быстрого определения номинала резистора по цветовой кодировке, применяются специальные компьютерные программы.
Читать дальше.

Пример расчёта, на основе школьной задачки по физике из программы 9 класса.

Задание: определить (найти в таблице), по известному удельному сопротивлению p = 0.017Ом·мм2/м — какой это материал? Рассчитать диаметр проволоки. Вычислить электрическое сопротивление провода, длиной L = 80 см, сечением S = 0.2 мм2
Решение задачи:
По таблице определяем, что удельное сопротивление, равное 0.017 Ом·мм2/м может быть у меди.

Из формулы S = 3.1416 * (радиус)^2 = 3.142 * ((диаметр)^2)/4
с помощью своего калькулятора, находится диаметр (в миллиметрах) = корень квадратный из (4 * S / 3.14)

Длина провода, в единицах системы СИ (переводим в метры):
80 см = 0.8 м

Находим электр. сопротивление по формуле:
R = (p * L) / S = (0.017 * 0.8) / 0.2 = 0.068 Ом

Ответ: с точностью до второго знака после запятой, R = 0.07 Ом

Электромонтажные работы — монтаж электрики, подключение и обслуживание электропроводки. | Минисправочник по электрическим параметрам: соотношения Ом х мм2/м и мкОм x м (микроом), в технических расчётах.

Температурный коэффициент сопротивления

Электрическое сопротивление проводника в общем случае зависит от материала проводника, от его длины и от поперечного сечения, или более кратко — от удельного сопротивления и от геометрических размеров проводника. Данная зависимость общеизвестна и выражается формулой:

Известен каждому и закон Ома для однородного участка электрической цепи, из которого видно, что ток тем меньше, чем сопротивление выше. Таким образом, если сопротивление проводника постоянно, то с ростом приложенного напряжения ток должен бы линейно расти. Но в реальности это не так. Сопротивление проводников не постоянно.

За примерами далеко ходить не надо. Если к регулируемому блоку питания (с вольтметром и амперметром) подключить лампочку, и постепенно повышать напряжение на ней, доводя до номинала, то легко заметить, что ток растет не линейно: с приближением напряжения к номиналу лампы, ток через ее спираль растет все медленнее, причем лампочка светится все ярче.

Нет такого, что с увеличением вдвое приложенного к спирали напряжения, вдвое возрос и ток. Закон Ома как-будто не выполняется. На самом деле закон Ома выполняется, и точно, просто сопротивление нити накала лампы непостоянно, оно зависит температуры.

Вспомним, с чем связана высокая электрическая проводимость металлов. Она связана с наличием в металлах большого количества носителей заряда — составных частей тока — электронов проводимости. Это электроны, образующиеся из валентных электронов атомов металла, которые для всего проводника являются общими, они не принадлежат каждый отдельному атому.

Под действием приложенного к проводнику электрического поля, свободные электроны проводимости переходят из хаотичного в более-менее упорядоченное движение — образуется электрический ток. Но электроны на своем пути встречают препятствия, неоднородности ионной решетки, такие как дефекты решетки, неоднородная структура, вызванные ее тепловыми колебаниями.

Электроны взаимодействуют с ионами, теряют импульс, их энергия передается ионам решетки, переходит в колебания ионов решетки, и хаос теплового движения самих электронов усиливается, от того проводник и нагревается при прохождении по нему тока.

В диэлектриках, полупроводниках, электролитах, газах, неполярных жидкостях — причина сопротивления может быть иной, однако закон Ома, очевидно, не остается постоянно линейным.

Таким образом, для металлов, рост температуры приводит к еще большему возрастанию тепловых колебаний кристаллической решетки, и сопротивление движению электронов проводимости возрастает. Это видно по эксперименту с лампой: яркость свечения увеличилась, но ток возрос слабее. То есть изменение температуры повлияло на сопротивление нити накаливания лампы.

В итоге становится ясно, что сопротивление металлических проводников зависит почти линейно от температуры. А если принять во внимание, что при нагревании геометрические размеры проводника меняются слабо, то и удельное электрическое сопротивление почти линейно зависит от температуры. Зависимости эти можно выразить формулами:

Обратим внимание на коэффициенты. Пусть при 0°C сопротивление проводника равно R0, тогда при температуре t°C оно примет значение R(t), и относительное изменение сопротивления будет равно α*t°C. Вот этот коэффициент пропорциональности α и называется температурным коэффициентом сопротивления . Он характеризует зависимость электрического сопротивления вещества от его текущей температуры.

Данный коэффициент численно равен относительному изменению электрического сопротивления проводника при изменении его температуры на 1К (на один градус Кельвина, что равноценно изменению температуры на один градус Цельсия).

Для металлов ТКС (температурный коэффициент сопротивления α) хоть и относительно мал, но всегда больше нуля, ведь при прохождении тока электроны тем чаще сталкиваются с ионами кристаллической решетки, чем выше температура, то есть чем выше тепловое хаотичное их движение и чем выше их скорость. Сталкиваясь в хаотичном движении с ионами решетки, электроны металла теряют энергию, что мы и видим в результате — сопротивление при нагревании проводника возрастает. Данное явление используется технически в термометрах сопротивления.

Смотрите так же:  Заземление без установки узо

Итак, температурный коэффициент сопротивления α характеризует зависимость электрического сопротивления вещества от температуры и измеряется в 1/К — кельвин в степени -1. Величину с обратным знаком называют температурным коэффициентом проводимости.

Что касается чистых полупроводников, то для них ТКС отрицателен, то есть сопротивление снижается с ростом температуры, это связано с тем, что с ростом температуры все больше электронов переходят в зону проводимости, растет при этом и концентрация дырок. Этот же механизм свойственен для жидких неполярных и твердых диэлектриков.

Полярные жидкости свое сопротивление резко уменьшают с ростом температуры из-за снижения вязкости и роста диссоциации. Это свойство применяется для защиты электронных ламп от разрушительного действия больших пусковых токов.

У сплавов, легированных полупроводников, газов и электролитов тепловая зависимость сопротивления более сложна чем у чистых металлов. Сплавы с очень малым ТКС, такие как манганин и константан, применяют в электроизмерительных приборах.

Определить температурный коэффициент удельного сопротивления провода

  • Вы здесь:
  • Главная
  • Уроки начинающим
  • Часть1 — Постоянный ток
  • 11. Физика проводников и диэлектриков
  • 6. Температурный коэффициент сопротивления

6. Температурный коэффициент сопротивления

Температурный коэффициент сопротивления

Как вы могли заметить, значения удельных электрических сопротивлений в таблице из предыдущей статьи даны при температуре 20 ° Цельсия. Если вы предположили, что они могут измениться при изменении температуры, то оказались правы.

Зависимость сопротивления проводов от температуры, отличной от стандартной (составляющей обычно 20 градусов Цельсия), можно выразить через следующую формулу:

Константа «альфа» ( α) известна как температурный коэффициент сопротивления, который равен относительному изменению электрического сопротивления участка электрической цепи или удельного сопротивления вещества при изменении температуры на единицу. Так как все материалы обладают определенным удельным сопротивлением (при температуре 20 ° С) , их сопротивление будет изменяться на определенную величину в зависимости от изменения температуры . Для чистых металлов температурный коэффициент сопротивления является положительным числом, что означает увеличение их сопротивления с ростом температуры. Для таких элементов, как углерод, кремний и германий , этот коэффициент является отрицательным числом , что означает уменьшение их сопротивления с ростом температуры. У некоторых металлических сплавов температурный коэффициент сопротивления очень близок к нулю, что означает крайне малое изменение их сопротивления при изменении температуры. В следующей таблице приведены значения температурных коэффициентов сопротивления нескольких распространенных типов металлов :

Ii. определение температурного коэффициента электрического сопротивления проводников

По выполнению лабораторной работы № 2

«Измерение электрического сопротивления и определение удельного электрического сопротивления проводников. Определение температурного коэффициента электрического сопротивления проводников»

1. Познакомится с основным свойством проводниковых материалов – электропроводностью;

2. Произвести измерение электрического сопротивления и рассчитать удельное электрическое сопротивление проводниковых материалов;

3. Изучить зависимость сопротивления проводников от температуры;

4. Научиться определять температурный коэффициент электрического сопротивления проводников.

5. Закрепить знания, полученные на теоретических занятиях.

Зависимость сопротивления от температуры

Удельное сопротивление проводников и непроводников зависит от температуры.

Сопротивление металлических проводников увеличивается с повышением температуры. У полупроводников сопротивление сильно уменьшается при повышении температуры

У некоторых металлов при температуре, близкой к абсолютному нулю, сопротивление скачком уменьшается до нуля (явление сверхпроводимости).

В таблицах значения удельного сопротивления проводников обычно приводятся для температуры 20°C. Сопротивление или удельное сопротивление при других значениях температуры можно найти пересчетом.

Температурный коэффициент удельного сопротивления металлов

Концентрация свободных электронов n в металлическом проводнике при повышении температуры остается практически неизменной, но возрастает их средняя скорость теплового движения. Усиливаются и колебания узлов кристаллической решетки. Квант упругих колебаний среды принято называть фононом. Малые тепловые колебания кристаллической решетки можно рассматривать как совокупность фононов. С ростом температуры увеличиваются амплитуды тепловых колебаний атомов, т.е. увеличивается сечение сферического объема, который занимает колеблющийся атом.

Таким образом, с ростом температуры появляется все больше и больше препятствий на пути дрейфа электронов под действием электрического поля. Это приводит к тому, что уменьшается средняя длина свободного пробега электрона λ, уменьшается подвижность электронов и, как следствие, уменьшается удельная проводимость металлов и возрастает удельное сопротивление (рис.3.3). Изменение удельного сопротивления проводника при изменении его температуры на 3К, отнесенное к величине удельного сопротивления этого проводника при данной температуре, называют температурным коэффициентом удельного сопротивления TKρ или . Температурный коэффициент удельного сопротивления измеряется в К -3 . Температурный коэффициент удельного сопротивления металлов положителен. Как следует из данного выше определения, дифференциальное выражение для TKρ имеет вид:

(3.9)

Согласно выводам электронной теории металлов значения чистых металлов в твердом состоянии должны быть близки к температурному коэффициенту (ТK) расширения идеальных газов, т.е. 3: 273 = 0,0037. В действительности у большинства металлов ≈ 0,004 Повышенными значениями обладают некоторые металлы, в том числе ферромагнитные металлы — железо, никель и кобальт.

Отметим, что для каждой температуры имеется свое значение температурного коэффициента TKρ. На практике для определенного интервала температур пользуются средним значением TKρ или :

, (3.10)

где ρ3 и ρ2 — удельные сопротивления проводникового материала при температурах Т3 и Т2 соответственно (при этом Т2 >Т3); есть так называемый средний температурный коэффициент удельного сопротивления данного материала в диапазоне температур от Т3 до Т2.

В этом случае при изменении температуры в узком диапазоне от Т3 до Т2 принимают кусочно-линейную аппроксимацию зависимости ρ(Т):

(3.11)

В справочниках по электротехническим материалам обычно приводят значения при 20 0 С.

Рис.3.1 Зависимость удельного сопротивления ρ металлических проводников от температуры Т. Скачок ρ (ветвь 5) соответствует температуре плавления ТПЛ.

Рис.3.2. Зависимость удельного сопротивления меди от температуры. Скачок соответствует температуре плавления меди 1083 0 С.

Как следует из формулы (3.33), удельное сопротивление проводников зависит от температуры линейно (ветвь 4 на рис.3.3), за исключением низких температур и температур больших температуры плавления T>ТПЛ.

При приближении температуры к 0 0 К у идеального металлического проводника удельное сопротивление ρ стремится к 0 (ветвь 3). У технически чистых проводников (с очень малым количеством примесей) на небольшом участке, составляющем несколько кельвинов, значение ρ перестает зависеть от температуры и становится постоянным (ветвь 2). Его называют “остаточным” удельным сопротивлением ρОСТ. Величина ρОСТ определяется только примесями. Чем чище металл, тем меньше ρОСТ .

Вблизи абсолютного нуля возможно и другая зависимость ρ от температуры, а именно, при некоторой температуре ТС удельное сопротивление ρ скачком падает практически до нуля (ветвь 3). Это состояние называют сверхпроводимостью, а проводники, обладающие этим свойством называют сверхпроводниками. Явление сверхпроводимости будет рассмотрено ниже в 3.3.

Пример 3.6. Температурный коэффициент удельного сопротивления меди при комнатной температуре составляет 4,3·30-3 -3 К. Определить во сколько раз изменится длина свободного пробега электрона при нагревании медного проводника от 300 до 3000 К.

Решение. Длина свободного пробега электрона обратно пропорциональна удельному сопротивлению. Поэтому, во сколько раз увеличится при нагревании удельное сопротивление меди, во столько раз уменьшится и длина свободного пробега электрона. Удельное сопротивление меди увеличится в раза. Следовательно, длина свободного пробега электрона уменьшиться в 3 раза.

Изменение удельного сопротивления металлов при плавлении.

При переходе металлов из твердого состояния в жидкое у большинства из них наблюдается увеличение удельного сопротивления ρ, как это показано на рис.3.3 (ветвь5). В табл.3.2 приведены значения, показывающие относительное изменение удельного сопротивления различных металлов при плавлении. Удельное сопротивление увеличивается при плавлении у тех металлов (Hg, Au, Zn, Sn, Na), которые при плавлении увеличивают объем, т.е. уменьшают плотность. Однако некоторые металлы, например, галлий (Ga) и висмут (Bi) при плавлении уменьшают ρ соответственно в 0,58 и в 0,43 раза. У большинства металлов в расплавленном состоянии удельное сопротивление с ростом температуры увеличивается (ветвь 6 на рис.3.3), что связано с увеличением их объема и уменьшением плотности.

Таблица 3.2. Относительное изменение удельного сопротивления различных металлов при плавлении.

Изменение удельного сопротивления металлов при деформациях.

Изменение ρ при упругих деформациях металлических проводников объясняется изменением амплитуды колебаний узлов кристаллической решетки металла. При растяжении эти амплитуды увеличиваются, при сжатии — уменьшаются. Увеличение амплитуды колебаний узлов приводит к уменьшению подвижности носителей зарядов и, как следствие, к возрастанию ρ.

Уменьшение амплитуды колебаний, наоборот, приводит к уменьшению ρ. Однако, даже значительная пластическая деформация, как правило, повышает удельное сопротивление металлов вследствие искажения кристаллической решетки не более чем на 4-6%. Исключением является вольфрам (W), ρ которого возрастает на десятки процентов при значительном обжатии. В связи со сказанным выше, можно использовать пластическую деформацию и возникающий при этом наклеп для повышения прочности проводниковых материалов, не ухудшая их электрических свойств. При рекристаллизации удельное сопротивление может быть вновь снижено до первоначального значения.

Смотрите так же:  Заземление и молния защита

Удельное сопротивление сплавов.

Как уже указывалось, примеси нарушают правильную структуру металлов, что ведут к увеличению их удельного сопротивления. На рис.3.3 приведена зависимость удельного сопротивления ρ и удельной проводимости γ меди от концентрации N различной примеси в долях процента. Подчеркнем, что любое легирование приводит к увеличению удельного электрического сопротивления легированного металла по сравнению с легируемым. Это касается и случаев, когда в легируемый металл добавляется металл с более низким ρ. Например, при легировании меди серебром ρ медно-серебряного сплава будет больше, чем ρ меди, несмотря на то, что ρ серебра меньше, чем ρ меди, как это видно из рис.3.3.

Рис.3.3. Зависимость удельного сопротивления ρ и удельной проводимости γ меди от содержания примесей.

Значительное возрастание ρ наблюдается при сплавлении двух металлов в том случае, если они образуют друг с другом твердый раствор, в котором атомы одного металла входят в кристаллическую решетку другого. Кривая ρ имеет максимум, соответствующий некоторому определенному соотношению между содержанием компонентов в сплаве. Такое изменение ρ от содержания компонентов сплава можно объяснить тем, что вследствие его более сложной структуры по сравнению с чистыми металлами сплав уже нельзя уподоблять классическому металлу.

Изменение удельной проводимости γ сплава в этом случае обусловливается не только изменением подвижности носителей, но в некоторых случаях и частичным возрастанием концентрации носителей при повышении температуры. Сплав, у которого уменьшение подвижности с ростом температуры компенсируется возрастанием концентрации носителей, будет иметь нулевой температурный коэффициент удельного сопротивления. В качестве примера на рис.3.4 показана зависимость удельного сопротивления сплава медь-никель от состава сплава.

Теплоемкость, теплопроводность и теплота плавления проводников.

Теплоемкость характеризует способность вещества поглощать теплоту Q при нагреве. Теплоемкостью С какого-либо физического тела называют величину, равную количеству тепловой энергии, поглощаемой этим телом при нагреве его на 3К без изменения его фазового состояния. Теплоемкость измеряют в Дж/К. Теплоемкость металлических материалов растет с повышением температуры. Поэтому величину теплоемкости С определяют при бесконечно малом изменении его состояния:

. (3.12)

Рис.3.4. Зависимость удельного сопротивления сплавов медь-никель от состава (в процентах по массе).

Отношение теплоемкости С к массе тела m называют удельной теплоемкостью с:

. (3.13)

Удельная теплоемкость измеряется в Дж/(кг?К). Значения удельной теплоемкости металлов приведены в табл. 3.3. Как видно из табл.3.3, тугоплавкие материалы характеризуются низкими значениями удельной теплоемкости. Так, например, у вольфрама (W) с=238, а у молибдена (Mo) с=264Дж/(кг?К). Легкоплавкие же материалы, напротив, характеризуются высоким значением удельной теплоемкости. Так, например, у алюминия (Al) с=922, а у магния (Mg) с=3040Дж/(кг?К). Медь имеет удельную теплоемкость с=385 Дж/(кг?К). У металлических сплавов удельная теплоемкость находится в пределах 300-2000 Дж/(кг?К). С – это важная характеристика металла [5].

Теплопроводностью называют перенос тепловой энергии Q в неравномерно нагретой среде в результате теплового движения и взаимодействия составляющих ее частиц. Перенос теплоты в любой среде или каком-либо теле происходит от более горячих частей к холодным. В результате переноса теплоты происходит выравнивание температуры среды или тела. В металлах перенос тепловой энергии осуществляется электронами проводимости. Количество свободных электронов в единице объема металла весьма велико. Поэтому, как правило, теплопроводность металлов намного больше, чем теплопроводность диэлектриков. Чем меньше примесей содержат металлы, тем выше их теплопроводность. С увеличением примесей их теплопроводность уменьшается.

Как известно, процесс переноса теплоты описывается законом Фурье:

. (3.14)

Здесь — плотность теплового потока, т. е. количество тепла, проходящее вдоль координаты x через единицу площади поперечного сечения за единицу времени, Дж/м 2 ?с,

— градиент температуры вдоль координаты x, К/м,

— коэффициент пропорциональности, называемый коэффициентом теплопроводности (ранее обозначался ), Вт/К?м.

Таким образом, термину теплопроводность соответствуют два понятия: это и процесс переноса тепла и коэффициент пропорциональности, характеризующий этот процесс.

Итак, свободные электроны в металле определяют и его электропроводность и теплопроводность. Чем выше электрическая проводимость γ металла, тем больше должна быть и его теплопроводность. При повышении температуры, когда подвижность электронов в металле и соответственно его удельная проводимость γ уменьшаются, отношение /γ теплопроводности металла к его удельной проводимости должно возрастать. Математически это выражается законом Видемана — Франца — Лоренца

/γ = L T, (3.15)

где Т – термодинамическая температура, K,

L = . (3.16)

Подставляя в это выражение значения постоянной Больцмана k = Дж/К и заряда электрона e = 3,602?30 -39 Кл мы получаем L = /

Закон Видемана — Франца – Лоренца выполняется в области температур, близких к нормальной или несколько повышенных для большинства металлов (исключение составляют марганец, бериллий). Согласно этому закону металлы, имеющие высокую электропроводность, обладают и высокой теплопроводностью.

Температура и теплота плавления. Теплота, поглощаемая твердым кристаллическим телом при переходе его из одной фазы в другую, называется теплотой фазового перехода. В частности, теплота, поглощаемая твердым кристаллическим телом при переходе его из твердого состояния в жидкое, называют теплотой плавления, а температура, при которой происходит плавление (при постоянном давлении), называют температурой плавления и обозначают ТПЛ.. Количество тепла, которое нужно подвести к единице массы твердого кристаллического тела при температуре ТПЛ для его перевода в жидкое состояние, называют удельной теплотой плавления rПЛи измеряют в МДж/кг или в кДж/кг. Величины удельной теплоты плавления для ряда металлов приведены в табл.3.3.

Таблица.3. 3. Удельная теплота плавления некоторых металлов.

В зависимости от температуры плавления различают тугоплавкие металлы, имеющие температуру плавления выше чем у железа, т.е. выше чем 3539 0 С и легкоплавкие с температурой плавления меньше чем 500 0 С. Диапазон температур от 500 0 С до 3539 0 С относится к средним значениям температур плавления.

Работа выхода электрона из металла.

Опытпоказывает, чтосвободные электроны при обычных температурах практически не покидают металл. Это связано с тем, что в поверхностном слое металла создается удерживающее электрическое поле. Это электрическое поле можно представить как потенциальный барьер, препятствующий выходу электронов из металла в окружающий вакуум.

Удерживающий потенциальный барьер создается за счет двух причин. Во-первых за счет сил притяжения со стороны избыточного положительного заряда, возникшего в металле в результате вылета из него электронов, и, во-вторых, за счет сил отталкивания со стороны ранее вылетевших электронов, образовавших вблизи поверхности металла электронное облако. Это электронное облако вместе с наружным слоем положительных ионов решетки образует двойной электрический слой, электрическое поле которого подобно полю плоского конденсатора. Толщина этого слоя равна нескольким межатомным расстояниям (30 -30 -30 -9 м).

Он не создает электрическое поле во внешнем пространстве, но создает потенциальный барьер, препятствующий выходу свободных электронов из металла. Работа выхода электрона из металла – это работа по преодолению потенциального барьера на границе металл-вакуум. Чтобы электрон мог вылететь из металла, он должен обладать определенной энергией, достаточной для того, чтобы преодолеть силы притяжения положительных зарядов, находящихся в металле, и силы отталкивания со стороны ранее вылетевших из металла электронов. Эта энергия обозначается буквой А и называется работой выхода электрона из металла. Работа выхода определяется по формуле:

,

Где e – заряд электрона, К;

— потенциал выхода, В.

Исходя из сказанного можно считать, что весь объем металла для электронов проводимости представляет потенциальную яму с плоским дном, глубина которой равна работе выхода А. Работа выхода выражается в электрон-вольтах (эВ). Значения работы выхода электронов для металлов приведены в табл.3.3.

Если сообщить электронам в металле энергию, достаточную для преодоления работы выхода, то часть электронов может покинуть металл. Это явление испускания металлом электронов называется электронной эмиссией. Для получения свободных электронов в электронных приборах имеется специальный металлический электрод – катод.

В зависимости от способа сообщения электронам катода энергии различают следующие виды электронной эмиссии:

— термоэлектронную, при которой дополнительная энергия сообщается электронам в результате нагрева катода;

— фотоэлектронную,при которой на поверхность катода воздействует электромапгнитное излучение;

— вторичную электронную, являющуюся результатом бомбардировки катода потоком электронов или ионов, двигающихся с большой скоростью;

— электростатическую, при которой сильное электрическое поле у поверхности катода создает силы, способствующие выходу электронов за его пределы.

Явление термоэлектронной эмиссии используется в электронных лампах, рентгеновских трубках, электронных микроскопах и т.д.

Термоэлектродвижущая сила (термо-ЭДС).

При соприкосновении двух различных металлических проводников А и В (или полупроводников) (рис.3.5) между ними возникает контактная разность потенциалов, которая обусловлена разностью значений работы выхода электронов из различных металлов. Кроме того, концентрации электронов у разных металлов и сплавов также могут быть неодинаковым.

В этом случае электроны из металла А, где их концентрация больше, перейдут в тот металл В, где их концентрация меньше. В результате этого металл А будет иметь положительный заряд, а металл В – отрицательный заряд. В соответствии с электронной теорией металлов контактная разность потенциалов или ЭДС между проводниками А и В равна (рис.3.5):

Смотрите так же:  Принципиальная схема электронного счётчика

(3.17)

где UA и UB — потенциалы соприкасающихся металлов; nA и nB — концентрации электронов в металлах А и В; k – постоянная Больцмана, e — заряд электрона, T – термодинамическая температура. Если концентрация электронов будет больше в металле В, то разность потенциалов изменит знак, так как логарифм числа, меньшего единицы, будет отрицательным. Контактную разность потенциалов можно измерить экспериментально. Впервые такие измерения были проведены в 3797 году итальянским физиком А. Вольта, который открыл это явление.

Рис.3.5. Образование контактной разности потенциалов или ЭДС между двумя разными проводниками А и В.

Само собой разумеется, что если два проводника А и В образуют замкнутую цепь (рис.3.6) и температуры обоих контактов одинаковы, то сумма разностей потенциалов или результирующая ЭДС равна нулю.

(3.18)

Если же один из контактов или как их называют «спаев» двух металлов имеет температуру Т3, а другой — температуру Т2. В этом случае между спаями возникает термо-ЭДС, равная

(3.19)

где — постоянный для данной пары проводников коэффициент термо-ЭДС, измеряемый в мкВ/К. Он зависит от абсолютного значения температур «горячего» и «холодного» контактов, а также от природы контактирующих материалов. Как видно из формулы (3.39) термо-ЭДС должна быть пропорциональна разности температур спаев.

Рис3.6. Схема термопары.

Зависимость термо-ЭДС от разности температур спаев может быть не всегда строго линейной. Поэтому коэффициент сТ необходимо корректировать в соответствии со значениями температур Т3 и Т2.

Систему из двух изолированных друг от друга проволок из различных металлов или сплавов, спаянных в двух местах называют термопарой. Ее применяют для измерения температур. Температура одного спая (холодного) обычно бывает известна, а второй спай помещают в то место, температуру которого хотят измерить. К термопаре подключают измерительный прибор, например, милливольтметр mV, проградуированный в градусах Цельсия или в градусах Кельвина (рис.3.6).

В некоторых случаях к концам термопары подключают катушку управляющего реле или соленоида (рис. 3.7). При достижении определенной разности температур под действием термоЭДС по катушке реле Р начинает протекать ток, вызывающий срабатывание реле или открытие клапана с помощью соленоида. Примеры наиболее распространенных термопар, их температурные диапазоны и применения приведены ниже на стр. 325-330.

Рис.3.7. Схема подключения термопары к реле в схеме автоматического регулирования

Термо-ЭДС в одних случаях может быть полезной, а в других – вредной. Например, при измерении температуры термопарами, она полезна. В измерительных приборах и эталонных резисторах она вредна. Здесь стремятся применять материалы и сплавы с возможно меньшим коэффициентом термо-ЭДС относительно меди.

Пример 3.7. Термопара была отградуирована при температуре холодного спая T=0 o C. Данные градуировки приведены в таблице 3.4

Данные градуировки термопары

С помощью этой термопары измерялась температура в печи. Температура холодного спая термопары при измерении равнялась 300 о С. Вольтметр при измерении показал напряжение 7,82 мВ. Пользуясь градуировочной таблицей определить температуру в печи.

Решение. Если температура холодного спая при измерении не соответствует условиям градуировки, то нужно применить закон промежуточных температур, который записывается так:

мВ.

В скобках указаны температуры спаев. Найденной термо-ЭДС соответствует в соответствии с градуировочной таблицей температура в печи T = 900 о С.

Температурный коэффициент линейного расширения проводников (ТКЛР). Этот коэффициент, обозначаемый показывает относительное изменение линейных размеров проводника, и в частности его длины в зависимости от температуры:

. (3.20)

Он измеряется в К -3 . На рис.3.8 приведены удлинения стержней длиной 3м, выполненных из различных материалов, при увеличении температуры ,

Рис.3.8. Зависимость удлинения стержня длиной 1м от температуры материала.

Следует иметь в виду, что если резистор выполнен из провода, то при его нагревании длина провода и его радиус увеличиваются пропорционально его температуре. Сечение же увеличивается пропорционально квадрату линейных размеров, т.е. пропорционально квадрату радиуса. Это значит, что с увеличением линейных размеров провода при нагревании сопротивление этого провода уменьшается. Таким образом, при нагревании провода на величину его сопротивления оказывают влияние два фактора, действующие в противоположных направлениях: увеличение удельного сопротивления ρ и увеличение сечения провода.

В силу сказанного температурный коэффициент электрического сопротивления провода будет равен:

(3.21)

Для чистых металлов обычно -6 /К. Это значит, что при нагревании 3км контактного провода на 3К или на 3 0 С его длина увеличивается на 37мм, а при нагревании на 300 0 С удлинение составит 3700 мм = 3,7м.

Грузовые компенсаторы не смогут компенсировать такого удлинения. Регулировка контактной сети при этом нарушится, стрелы провеса увеличатся, и условия нормального токосъема выполняться не будут. В этих условиях невозможно обеспечить высокую скорость движения поездов и возникнет реальная угроза поломки токоприемников.

С тем, чтобы не допустить такого развития событий, температуру нагрева проводов следует ограничивать величиной, допустимой по условиям обеспечения нормальных условий работы данной конструкции контактной сети. При возрастании температуры сверх этого допустимого значения необходимо ограничить тяговую нагрузку.

Кроме того, следует ограничивать и длину анкерных участков, так, чтобы длина провода не была более 800м. В этом случае при повышении температуры контактного провода на 300 0 С удлинение не будет превосходить значения 3,4м, что вполне допустимо по условиям компенсации удлинения тяговой подвески. Если принять минимальную температуру за -40 0 С , то максимальная температура контактного провода не должна превышать 60 0 С (в некоторых конструкциях 50 0 С).

При создании электровакуумных приборов необходимо подбирать металлические проводники таким образом, чтобы их ТКЛР был примерно одинаковым с ТКЛР вакуумного стекла или вакуумной керамики. Иначе могут возникнуть термоудары, приводящие к разрушению вакуумных приборов.

Механические свойства проводников характеризуют пределом прочности при растяжении и относительным удлинением при разрыве Δl/l, а также хрупкостью и твердостью. Эти свойства зависят от механической и термической обработки, а также от наличия в проводниках легирующих и примесей. Кроме того, предел прочности при растяжении зависит от температуры металла и от времени действия растягивающего усилия.

Как уже отмечалось выше, для компенсации линейного расширения контактных проводов их натяжение осуществляется температурными компенсаторами с грузами, создающими натяжение 30кН (3т). Такое натяжение обеспечивает нормальные условия токосъема. Чем больше натяжение, тем эластичнее будет подвеска и лучше условия токосъема. Однако, допустимое натяжение зависит от временного сопротивления разрыва, которое уменьшается с ростом температуры.

Для твердотянутой меди, из которой изготавливаются контактные провода, резкое снижение временного сопротивления разрыву наступает при температурах более 200 0 С. Снижается временное сопротивление разрыву и с увеличением длительности воздействия высокой температуры. Время до разрушения металла в зависимости от его абсолютной температуры Т (К) и особенностей конструкции и технологии изготовления определяют по формуле:

. (3.22)

Здесь: С3 и С2 – коэффициенты термической стойкости, зависящие от конструкции и свойств металлов. На рис.3.9 приведены зависимости времени до разрушения от температуры, выраженной в градусах Цельсия для проводов из разных металлов.

Таким образом, увеличивая натяжение контактного провода с целью увеличения эластичности подвески, следует учитывать и прочность контактного провода в соответствии с рис.3.9.

Похожие статьи:

  • Провода к свечам зажигания логан Схема подключения свечных проводов Рено Логан, Сандеро, Ларгус Подключение высоковольтных проводов к модулю и свечам зажигания Логан, Сандеро, Ларгус. Автомобили с системой зажигания DIS (Double Ignition System). Искра возникает […]
  • Провода пвс 3х075 Электрический провод ПВС 3x0,75 медный Провод ПВС 3х0.75 гибкий, соединительный, со скрученными медными жилами с ПВХ изоляцией, с ПВХ оболочкой, на напряжение до 380 В Конструкция медного провода ПВС 3х0.75 мм2: 1. Токопроводящая жила […]
  • Диаметр провода сип 2х16 Самонесущий изолированный провод СИП-4 2х16 Алюминиевый провод СИП-4 2х16 мм2 без несущей жилы, с изоляцией из сшитого полиэтилена Конструкция изолированного провода СИП-4: Жилы проводов алюминиевые, круглой формы, многопроволочные, […]
  • Вес 1 м провода сип-3 Самонесущий изолированный провод СИП-4 4х50 Алюминиевый провод СИП-4 4х50 мм2 без несущей жилы, с изоляцией из сшитого полиэтилена Конструкция изолированного провода СИП-4: Жилы проводов алюминиевые, круглой формы, многопроволочные, […]
  • Водонагреватель 380 вольт Проточные водонагреватели 220 Вольт (однофазные) Выбор мощности 13 кВт, 18 кВт, 21 кВт, 24 кВт, 3-х фазное подключение, наличие 2-х ступенчатого регулятора мощности прибора. производитель Германия Проточный водонагреватель, Stiebel […]
  • Обозначение провода и его сечения на схеме ГОСТ 2.709-89 ЕСКД. Обозначения условные проводов и контактных соединений электрических элементов, оборудования и участков цепей в электрических схемах ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР ЕДИНАЯ С И СТЕМА КОНСТРУКТОРСКОЙ ДОКУМЕНТАЦИИ […]