Плавное включение галогенных ламп схема

Плавное включение ламп накаливания

Все сталкивались с ситуацией, при которой в самый неожиданный момент выходит из строя лампа накаливания или так называемая галогенная лампа.

Как увеличить продолжительность жизни лампы накаливания? Все зависит от ее режимов работы и условий эксплуатации.

Перегорание нити лампы накаливания чаще всего происходит в момент ее включения. Дело в том, что холодная нить лампы накаливания обладает меньшим сопротивлением, чем раскаленная.

Это значит, что в момент включения значение тока, проходящего через нить, в несколько раз превышает номинальное.

Хотя это происходит на протяжении десятых долей секунды, часто бывает, за это время лампа успевает перегореть. Применение ламп пониженного напряжения (12 В), включаемых в сеть с помощью понижающего трансформатора, не предотвращает быстрое перегорание нитей накала ламп.

Конечно, процесс замены перегоревшей лампы ни у кого не вызывает трудностей, да и стоит она (если это не энергосберегающая лампа) недорого. Куда более неприятно, когда после нажатия на выключатель лампочка с громким хлопком разлетается по комнате в виде множества мелких осколков. Эти осколки очень опасны, о них можно очень сильно порезаться, а собрать их полностью достаточно трудно.

Для того, чтобы решить эту проблему, применяется плавное включение ламп накаливания. Такое включение обеспечивается устройством, которое осуществляет медленный розжиг спирали на протяжении 2-3 секунд.

Таким образом исключается возможность перегорания лампы в момент ее включения.

Схема плавного включения ламп накаливания

Устройство плавного включения ламп имеет достаточно простую схему. Оно подключается последовательно с лампой.

После включения нить накаляется постепенно, выходя на полную мощность через две-пять секунд. Использования устройства плавного включения позволяет в несколько раз продлить продолжительность «жизни» лампы накаливания.

Устройство плавного пуска используется как с лампами для сети 220В, так и лампами низкого напряжения, для подключения которых используется понижающий трансформатор.

При выборе устройства плавного включения необходимо руководствоваться величиной нагрузки, подключаемой через это устройство.

Сделать это не трудно – для этого необходимо всего лишь подсчитать количество и мощность всех ламп в цепи. Чтобы повысить срок службы самого этого устройства, необходимо предусмотреть небольшой запас мощности. Скажем, если суммарная мощность всех ламп равна 850 ватт, то нужно приобретать устройство на 1000 Вт.

Место установки УПВЛ

Благодаря небольшим габаритам устройство можно монтировать практически в любом месте. Обычно оно устанавливается в соединительной коробке, под колпаком люстры, в пространстве над натяжным или гипсокартонным потолком, в подрозетнике выключателя.

Не желательно устройство плавного пуска монтировать в помещениях, где преобладает повышенная влажность. Каждое устройство необходимо подбирать в соответствии с подключаемой к нему нагрузкой.

Запрещается подключать к устройству плавного включения ламп нагрузку, превышающую его номинал.

Сообщества › Кулибин Club › Блог › Электрика: плавное включение света фар

Это будет ещё один вариант схемы плавного включения фар.

Для начала немножко теории.

Многие, наверное, замечали, что перегорание ламп накаливания в подавляющем большинстве случаев приходится на момент их включения. Отчего же это происходит?

Виноват в этом, разумеется, Георг Ом со своим законом. Дело в том, что сопротивление холодной нити лампы в 10-12 раз ниже, чем в разогретом состоянии. По закону Ома, ток в цепи обратно пропорционален сопротивлению: I = U / R. Значит ток в цепи каждой лампы тоже в момент включения в 10-12 раз выше номинального, то есть, для стандартной лампы 55Ватт он может достигать 60 Ампер! Но в течение каких-то сотых долей секунды нить нагревается, сопротивление увеличивается и ток падает до номинального уровня. Обычно этот момент проходит так быстро, что ничуть не вредит ни реле, ни предохранителю, которые подводят ток к двум лампам и рассчитаны на ток куда ниже 120 Ампер.
Рассмотрим чуточку подробнее, что же страшного может случиться в этот краткий миг включения. Для этого рассмотрим нить лампы под электронным микроскопом:

Спиралька не идеальная, какие-то участки её оказываются потоньше, какие-то потолще.

Очевидно, теплоёмкость тонких участков оказывается меньше, а значит, при таком же протекающем токе, они быстрее нагреваются.

Как было упомянуто ранее, сопротивление нагретой спирали больше сопротивления холодной. Ток, как мы знаем, одинаков во всех участках цепи, а по тому же закону того же Георга, падение напряжения на участке цепи равно произведению значений силы тока и сопротивления этого участка. U = I * R. Это значит, что падение напряжения на втором, «тонком» участке будет больше чем на других.
Мощность высчитывается как произведение тока на напряжение: P = I * U. А это значит что на этом самом тоненьком участке цепи будет рассеиваться самая большая мощность.
В результате, пока соседние участки не спешa нагреваются, тоненький отрезок спирали успеет немного выгореть и стать ещё тоньше к следующему включению лампы. А значит при следующем включении различие в нагреве разных участков спирали будет ещё более выраженным. Ситуация будет ухудшаться с каждым включением, пока не произойдёт:

Выход прост: ограничить рассеиваемую мощность, уменьшив ток в цепи. Существует несколько разных вариантов как этого добиться, и самые распространённые из них это:

1. Использование NTC термистора и реле. Термистор около 2-5 Ом (при 25 градусах) включается последовательно с лампой, и часть мощности рассеивается на нём, нагреваясь он уменьшает своё сопротивление, в то время как лампа — плавно разгорается и увеличивает сопротивление. Через некоторое время падение напряжения на лампе окажется достаточным, чтобы замкнуть обмотку включенного параллельно с ней реле. Контакты реле замыкают термистор, исключая его из цепи и передавая тем самым всю мощность лампе.

2. Использование мощного полевого транзистора с конденсатором на затворе. Принцип аналогичен предыдущему. Но вместо термистора ток ограничивается полевым транзистором, затвор которого медленно заряжается, и ток в цепи плавно повышается. При этом на транзисторе в момент включения рассеивается значительное количество тепла, что требует его охлаждения. Однако в полностью открытом состоянии, за счёт низкого сопротивления сток-исток, почти вся мощность идёт на лампу, в результате дополнительное реле не требуется.

3. Широтно-импульсная модуляция. Этот вариант отличается от предыдущих тем, что управляющая схема не ограничивает ток, что уменьшает рассеиваемую на ней мощность, а значит и требования к охлаждению. Вместо этого схема при помощи того же полевого транзистора подаёт ток краткими импульсами, длительностью в несколько десятков микросекунд. За такое короткое время участки нити не успевают нагреться до опасных значений, а в те моменты когда ток через цепь не идёт, тепло с более нагретых участков нити успевает перераспределиться на менее нагретые участки, в результате чего сопротивление разных участков цепи выравнивается.

Именно этот вариант я выбрал для реализации.

Вот что мне хотелось добиться от своей схемы плавного включения света:

1) Распознавание первого включения после включения зажигания. У меня на машине лампы H4 — ближний и дальний в одной колбе. Если зажигание только включено, то свет должен разгораться плавно, чтобы плавно разогреть холодные спираль и колбу. Зато, если зажигание не выключалось, а ближний свет был выключен и включен снова — а такое происходит при включении дальнего света — разогрев должен происходить быстрее, дабы дорога была освещена.

2) Удержание в пол-накала в течение секунды после выключения. В моменты мигания дальним светом, ближний также выключается. Такой алгоритм поможет нити лишний раз не остывать и быстро вернуть свет на прежний уровень.

3) Максимальное снижение энергопотребления схемой при отключении зажигания. Токи утечки должны быть минимальными.

Смотрите так же:  Измерение сопротивления заземляющей проводки

4) Схема должна быть собрана в корпусе штатного реле. Схема не должна требовать вмешательства в проводку, дополнительных проводочков-подключений и полностью заменять штатное реле, а при необходимости — быть заменённой обратно простой перестановкой реле.

Схема подключения штатного реле

Определившись с требованиями, я стал изучать, как подключено штатное реле

Оказалось, в моей машинке выключатель света замыкает минусовой провод обмотки, а реле зажигания — плюсовой.

Очевидно, что при выключении света, будет отключен также и «минус» для питания схемы. Однако, согласно моим хотелкам, схема должна продолжать работать в этой ситуации, мало того — даже держать фары включенными в пол-накала! Идея заключается в том, чтобы брать «минус» для питания схемы с фар.

Схема электронного реле

В итоге родилась такая схема:

Логика управления реализуется микроконтроллером ATtiny13A. Для питания используется линейный стабилизатор 79L05 отрицательного напряжения -5 Вольт, то есть у всей схемы общим является «плюс».

VD3 и VD4 обеспечивают схему «минусом». Это «быстрые» диоды. Пока выключатель света замкнут, минус идёт с него. Когда он разомкнут, микроконтроллер управляет фарами в режиме широтно-импульсной модуляции. В моменты, пока транзистор закрыт, «минус» появляется через лампы фар.

VT4 — силовой pMOSFET, который и подаёт ток на фары. IRF9310 хоть мал и невзрачен на вид, но сопротивление сток-исток у него в открытом состоянии максимум 6,8 миллиОма. Он легко тянет 20 Ампер, а импульсами и все 160.

VT1 — этот друг обесточивает схему, когда зажигание выключено. Благодаря ему потребление тока в выключенном состоянии меньше микроампера.

C1 — конденсатор питает схему в те моменты когда выключатель света разомкнут, а транзистор VT4 открыт. Схема уверено работает и при 15 микрофарадах.

R4 — нужен чтобы снизить ток, который хлынет в разряженный C1 при первом включении. Это снизит нагрузку на транзистор и на сам конденсатор. R6 — позволяет ещё дополнительно снизить ток через выключатель.

VT2 — нужен для информирования МК о том что зажигание выключено и конденсатор вот-вот разрядится. В открытом состоянии он замыкает вывод PB4 микроконтроллера на линию -5 Вольт. В закрытом, вывод PB4 микроконтроллера подтягивается к «питанию» встроенным резистором. На его месте можно было бы использовать простой диод, катодом идущий на вход микроконтроллера, а сам вход подтянуть к «GND» резистором. Однако возможна ситуация когда на линиях зажигания и питания фар окажется значительная разность потенциалов — например, при повреждении реле фар. В этом случае такое подключение убило бы микроконтроллер. Использование транзистора немного усложняет схему, но зато исключает подобные казусы.

VT3 — точно также информирует МК, но о том, что замкнут выключатель света. Он, наоборот, притягивает вход PB3 к «питанию», а в закрытом состоянии этот вход притянут резисторм R7 к «GND». Когда выключатель разомкнут, микроконтроллер должен как можно быстрее перейти к ШИМ-управлению лампами, чтобы давать возможность конденсатору подзарядится в моменты, когда VT4 закрыт.

Пару слов об отводе тепла

Здесь используется один силовой транзистор. По расчётам, при токе 11 Ампер (взято с запасом) и его сопротивлении 6,8мОм (максимум) на нём будет рассеиваться 0,822 Ватта. Что достаточно немного. Однако в тесном корпусе реле негде разместить радиатор. Для эффективного отвода тепла, сток транзистора припаивается как можно ближе, под обильным припоем, к ножке корпуса, которая обладает хорошей теплопроводностью и отводит тепло наружу, в массивную колодку реле и далее в корпус машины. Эксперимент показал, что даже в неподключенном к колодке реле, транзистор нагревается всего на 30-35 градусов.

К слову, штатное реле потребляет ток около 150 миллиампер, и рассеивает почти 2 Ватта тепла.

Почти одновременно с этой задумкой, я обнаружил, что если вынуть в блоке предохранителей шунт и вставить в его место нормальное реле, то включится опция дневных ходовых огней. Реле в KIA довольно занимательные, симметричные: втыкай хоть так, хоть эдак. Пара контактов по диагонали — это обмотка, а по другой диагонали — замыкаемые. Это даёт некоторые неудобства: электронное реле нельзя втыкать «абы как».

В результате в руках у меня оказался шунт, который внешне мало отличим от реле, а кишочки у него выглядят так:

Он куда удобнее для обработки и размещения внутри всяких схем, чем обычное реле. Поработав немного ножовкой и надфилями получилось что-то такое:

Вначале по разработанной схеме был собран прототип:

Так как места в корпусе не слишком много, методом ЛУТ я изготовил двустороннюю плату 19х18мм.

Плавное включение ламп накаливания

Не смотря на широкое распространение компактных люминесцентных ламп существуют помещения, в которых целесообразно применять лампы накаливания. К таким помещениям относятся, прихожие, коридоры, сан узлы, кладовые, где необходимо часто включать и выключать свет. К разновидности ламп накаливания относятся галогенные лампы, которые последнее время нашли широкое применение в современных светильниках. Как правило лампы накаливания «не любят» кратковременных, часто-повторяющих режимов работы, что приводит к сокращению строка их работы на 30-40%. Предложенное устройство постепенно, в течении некоторого времени увеличивает напряжение приложенное к лампе, тем увеличивается ее строк службы.

Сопротивление спирали лампы накаливания в холодном состоянии приблизительно в 10 раз меньше, чем в разогретом. При этом амплитудное значение тока в момент включения лампы мощностью, например 100 Вт достигает 8А.

Устройство с момента включения выключателя постепенно увеличивает фазовый угол, в результате чего происходит постепенный разогрев спирали лампы, на протяжении нескольких полупериодов. При этом напряжение на лампе в течении нескольких секунд плавно увеличится от 5В до 220В. Это сглаживает бросок тока в момент включение лампы, и тем увеличивает ее строк службы при частом включении.

Рис.1 – Схема устройства

Состоит из фазового регулятора DA1. Конструктивно микросхема DA1 содержит два тиристора, включенных встречно-параллельно между выводами 1 и 8, и схему управления тиристорами. Для управления тиристорами служат конденсаторы С1 и С2. Симистор VS1 обеспечивает развязку силовой и управляющей части схемы. Резистор R1 служит для ограничения тока через управляющий электрод VS1. Следует отметить, что схема включается в работу, когда контакты выключателя SA1 находится разомкнутом положении. При размыкании ключа SA1 конденсатор С3 начинает заряжаться и приводит в работу элементы схемы управления тиристорами. При этом на выходе начинает проходить ток, величина которого возрастает по мере заряда конденсатора С3. На управляющем электроде появляется напряжение, которое по мере возрастания тока увеличивается и больше открывает симистор. В управляемую цепь симистора включена лампа накаливания ЕL1. По мере открывания симистора, амплитуда напряжения на нагрузке плавно увеличится с 5В до 220В. Время с момента размыкания контактов выключателем SA1 до загорании лампы в полный накал задается конденсатором С3. При замыкании выключателя SA1, конденсатор С3 начинает разряжаться через резистор R2, при этом напряжение на выходе будет снижаться, по мере разряда конденсатора. Напряжение на нагрузке плавно снизится от 220В до 0В.

Экспериментальным путем была установлена зависимость емкости С3 от времени с момента размыкания ключа до полного разгорании лампы. Значения емкости С3 и примерного времени включения лампы представлены в таблице:

Плавное включение (выключение) ламп накаливания

С помощью специальных устройств можно добиться плавного погасания или загорания ламп накаливания в автомобиле. Данную функцию можно использовать в разных целях, например для экономии ресурса галогенных ламп или просто для красоты. Рассмотрим, каким образом можно сделать плавное включение ламп накаливания своими руками.

Если Вы хотите сделать плавное выключение светодиодов, тогда Вам следует перейти в статью «Плавное выключение светодиодов».

Как обыграть онлайн-казино на 368 548 рублей, используя дыру в алгоритме?
Пошаговая инструкция

Привет! В интернете меня знают, как Джером Холден и я зарабатываю на тестировании алгоритмов всем известного казино Вулкан: ищу уязвимости в играх, делаю ставки и срываю куш.

Сейчас я собираю комьюнити для более глобального проекта, поэтому делюсь схемами бесплатно. Рассказываю все максимально подробно, ничего сложного нет, работать можно прямо с телефона, справятся даже девушки)). Можешь протестировать алгоритмы, заработать денег и решить — присоединиться к моей команде или нет. Подробности тут .

Смотрите так же:  Заземление пзру-1-25

За три месяца я заработал на своих схемах 973 000 рублей:

Чтобы не быть голословным, выкладываю 3 моих любимых схемы. Настало время ограбить казино!

В этой статье речь идет о лампах накаливания.

Для чего вообще нужно делать плавное выкл/вкл лампочек ?

  1. Экономия ресурса галогенных ламп
  2. С точки зрения красоты, как то выделится из массы

Вообще медленное зажигание или погасание ламп накаливания можно использовать где угодно, но в основном этот способ применяют для ближнего света или противотуманных фар (ПТФ).

Рассмотрим подробно, где и как можно это применить:

Простая схема продления ресурса ламп накаливания

Это простое устройство плавного пуска ламп позволяющее многократно снизить риск перегорания ламп и продлить их ресурс.

Лампы накаливания в большинстве случаев перегорают в момент включения. Это происходит потому что холодная нить накаливания имеет меньшее сопротивление, чем горячая нить. Поэтому в момент включения ток проходящий через лампу в десятки раз превышает номинальный. Это длится короткий момент, но этого бывает достаточно, чтобы вывести лампу из строя.

Для продления ресурса ламп в промышленных условиях применяют системы плавного пуска.
Представленная схема является самой простой. Здесь в разрыв существующей цепи питания ламп ставятся реле и резистор. Обмотка реле питается параллельно лампе.
Как это работает: после включения фар, они зажигаются тускло, как габариты и примерно через полсекунды включаются на полную мощность.
В таком режиме зажигания лампы будут жить гораздо больше, особенно перекалки (+50, +90 и т.п.).

Потребуется:

  1. Реле (на каждую лампу) — Реле можно использовать любые 12-ти вольтовое на ток более 5А, можно и автомобильные.
  2. Резистор (номиналом 0,1-0,5 Ом) — подбирается индивидуально под характеристики реле, так чтобы реле срабатывало при максимально возможном значении сопротивления. Резистор нужно использовать мощный керамический около 5 Ватт.

Размещение: две релюшки можно установить где угодно (например, под капотом возле фар или в блоке предохранителей).

Плавное включение ближнего света

Потребуется:

  1. Резисторы (R1=2к, R2=36k, R3=0.22 , R4=180, R5=2.7k, R6=1M, R7=2,7k)
  2. Конденсаторы (C1=100n, C2=22x25B, C3=1500p,C4=22x50B,C5=2мкф)
  3. Микросхема MC34063A (МС34063А можно заменить на КР1156ЕУ5)
  4. Полевой транзистор IRF1405. (Полевик можно использовать любой N канальный с похожими параметрами (IRF3205, IRF3808, IRFP4004, IRFP3206, IRFP3077))
  5. Дроссель 100мкГн, лучше использовать на ток не менее 500мА, ниже нет смысла преобразователь (ШИМ) начинает работать не стабильно. Это проявляется нагревом микросхемы и выхода из строя.
  6. Светодиоды (любые).
  7. Диоды 1N5819 (можно взять Блока питания ПК)

Схема устройства плавного включения ламп:

Если нужно увеличить или уменьшить время розжига ламп, то подбирается С5 и R6.

К примеру, микросхему можно взять из автомобильной зарядки для сотового телефона. Для стабилизатора могут подойти почти все детали.

Печатка:

Окончательный вид собранного устройства плавного зажигания ламп

Корпус готового блока может быть любой, все зависит от Вашей фантазии.

Схема подключение устройства в автомобиль:

  1. Выход устройства +12в.
  2. Вход +12в.
  3. Масса (-).

Для примера, можно расположить блок под панелью за монтажным блоком.

В результате получается эффект немного похожий на включение ксенона.

Так же, Вам возможно понадобятся другие схемы плавного включения. В интернете их очень много.

Порядок подключения Блока Плавного Розжига (БПР) на ближний свет

Понадобится:

  1. 4 мамы широкие
  2. 4 папы широкие
  3. 2 мамы узкие
  4. 2 папы узкие

«Тройник» для разветвления на монтажном блоке массы

Цепляем на три длинных провода (по 35 сантиметров) разъемы «мама» и «папа». Получается что то вроде удлинителя реле ближнего света.
Присоединяем разъемы «мама» и «папа» на провода БПР (Вход +12В — «мама», Выход — галоген — «папа»).

Вытащив реле ближнего света (напомню К4) цепляем на него «удлинитель» на все контакты, кроме 87.

Для удобства можно скрепить «удлинитель» стяжками.
Справа масса (зелёный провод — в блок предохранителей)

Вставляем конец «удлинителя» в блок предохранителей наместо реле.

На другой конец — соответственно реле, которое вытаскивали ранее.

В реле на 87-ю «ногу» одеваем разъем «мама» от БПР (вход +12В), а в блок предохранителей вставляем разъем «папа» (Выход — Галоген), где должна быть «нога» 87.

Окончательный вариант собранной конструкции.

Массу (масса -12 В) берем от куда удобнее (например, с колодки Ш2 монтажного блока — контакт 4.
Вытаскиваем провод (черный) из колодки, вместо него вставляем заготовленный «тройник» от БПР.

Чтобы удобно закрепить реле внутри блока предохранителей, можно купить колодку для реле с защелкой.

И закрепить на задней стенке монтажного блока.

Каждый контакт изолируем (термоусадками, гофрами)

Схема подключения:

Плавное включение и выключение ближнего света

Схема первого вариант немного доработана. (подключение происходит на место штатного реле и добавлена функция плавного гашения)

Из схемы видно, что убран диод параллельный резистору 1МОм.
Подведено отдельно питание на полевой транзистор.

При подключении необходимо убедится что:

  • 86м контакте сидит «масса»
  • 85м контакте +12в при включении ближнего света
  • 30м контакте +12в появляется при включении зажигании ну или там постоянно 12в

В блоке предохранителей меняется только одно реле. Просто с плочка выносные провода с папами и подключаются в гнездо вместо реле.

Плавное включения противотуманных фар

Понадобится:

  1. Разъемы «мама» и «папа»
  2. Фишки

Обрезаем «хвосты» от БПР, монтируем разъемы и надеваем пластиковые фишки.

Переворачиваем блок предохранителей (нам интересны колодки №1 и №2)

Вынимаем с колодки №1 — провод 5 (у меня по схеме цвета не сошлись, аккуратнее)

а с колодки №2 провод 4

Подключаем БПР по схеме

Блок я разместил около блока предохранителей (справа от него). Приклеил на 2-х сторонний скотч и притянул одной стяжкой.

Управление дневным светом автомобиля

Готовые варианты плавного включения/выключения ламп накаливания

Дневные ходовые огни (ДХО, DRL) «СиличЪ-Эклипс»

Устройство плавного включения ламп накаливания от ООО «Шепро».

Контроллеры задержки и плавного включения-выключения салонного света (autodimmer)

Для того, чтобы избавиться от постоянных штрафов с камер, многие наши читатели успешно используют Специальную Нано Пленку на номера . Легальный и 100% надежный способ защиты от штрафов. Ознокомившись и внимательно изучив данный метод мы решили предложить его и Вам.

Для того, чтобы избавиться от постоянных штрафов с камер, многие наши читатели успешно используют Специальную Нано Пленку на номера . Легальный и 100% надежный способ защиты от штрафов. Ознокомившись и внимательно изучив данный метод мы решили предложить его и Вам.

Как сделать плавное включение ламп накаливания и для чего оно нужно

Лампы накаливания светят около 1000 часов, но если их часто включают и выключают – срок службы становится еще ниже. Продлить срок службы можно, установив устройство плавного включения ламп накаливания, а описанный метод подходит и для защиты галогеновых ламп.

Причины преждевременного перегорания

Лампы накаливания – старый источник света, его конструкция предельно проста – в герметичной стеклянной колбе установлена спираль из вольфрама, когда через нее течет ток, она нагревается и начинает светиться.

Однако такая простота не значит долговечность и надежность. Их срок службы порядка 1000 часов, а часто и того меньше. Причиной перегорания могут стать:

  • скачки напряжения в питающей сети;
  • частые включения и выключения;
  • другие причины типа перепадов температуры, механических повреждений и вибраций.

В этой статье мы рассмотрим, как минимизировать вред от частых включений лампы. Когда лампочка выключена, ее спираль холодная. Ее сопротивление в 10 раз ниже, чем у горячей спирали. Основным режимом работы является горячее состояние лампы. Из закона Ома известно, что ток зависит от сопротивления, чем оно ниже, тем выше ток.

Когда вы включаете лампу, через холодную спираль протекает большой ток, но по мере ее нагрева он начинает снижаться. Первоначальный высокий ток оказывает разрушительное воздействие на спираль. Для того чтобы этого избежать нужно организовать плавное включение ламп накаливания.

Смотрите так же:  Автомат ставится перед узо или после

Диммер для плавного включения

Принцип работы

Чтобы ограничить ток включения лампы накаливания можно понизить начальное напряжение и постепенно повысить его до номинальной величины. Для этого используют устройство плавного включения ламп накаливания.

Прибор включается в разрыв питающего провода между выключателем и светильником. Когда вы подаете напряжение, в первый момент времени оно близко к нулю, схема плавного розжига постепенно повышает его. Обычно они собраны по схеме фазоимпульсного регулятора на тиристорах, симисторе или полевых транзисторах.

Скорость нарастания напряжения зависит от схемотехники устройства, обычно 2–3 секунды от 0 до 220 В.

Основной характеристикой блока защиты является допустимая мощность подключенной нагрузки. Обычно лежит в пределах 100–1500 Вт.

Готовые решения

Блоки защиты для светильников продаются практически в каждом магазине бытовых и электротоваров. Такой блок может называться иначе, чем было сказано выше, например: «Устройство защиты галогеновых ламп и ламп накаливания» или другое подобное название. Как уже отмечалось, при покупке, главное, на что следует обратить внимание – это мощность блока розжига.

Широкую линейку таких устройств выпускают под торговой маркой «Гранит».

Есть и миниатюрные блоки Navigator их можно удобно спрятать в распредкоробку, если она не набита проводами доверху. Также поместится внутрь большинства светильников, например, в основание настольной лампы, или между потолком и люстрой, если есть такая возможность.

Компактный блок защиты к содержанию ↑

Так как устройство плавного включения ламп накаливания и галогенных ламп не представляет особой сложности с точки зрения схемотехники, его можно собрать своими руками. Процесс сборки может быть осуществлен:

  • навесным монтажом;
  • на макетной плате;
  • на печатной плате.

И зависит от ваших навыков и возможностей самым надежным будет вариант на печатной плате, от навесного монтажа в этом случае лучше держаться подальше, если вы не владеете особенностями такого монтажа в цепях 220 В.

Плавное включение ламп 220 В: схема на тиристоре

Схема первая представлена на рисунке ниже. Основным ее функциональным элементом является тиристор, включенный в плечах диодного моста. Номиналы всех элементов подписаны. Если использовать ее в качестве плавного розжига для торшера, настольной лампы или другого переносного светильника – удобно заключить ее в корпус, подойдет распредкоробка для наружного монтажа. На выходе установить розетку для подключения светильника. По сути – это обычный диммер, и плавного пуска как такового здесь нет. Вы просто поворачиваете ручку потенциометра, плавно увеличивая напряжение на лампе. Кстати, такая приставка подойдет и для регулировки мощности паяльника или других электроприборов (плиты, коллекторного двигателя и т. д.).

Вариант реализации схемы

Плавное включение ламп 220 В: схема на симисторе

Можно уменьшить количество деталей и собрать такую же схему, которая установлена в фирменные блоки защиты. Она изображена на рисунке ниже.

Схема с симистором

Чем больше постоянная времени R2С1 цепочки, тем дольше происходит розжиг. Для увеличения времени нужно увеличить емкость C1, обратите внимание – это полярный или электролитический конденсатор. Конденсатор C2 должен выдерживать напряжение не менее 400 В – это неполярный конденсатор.

Чтобы увеличить мощность подключенных ламп – измените симистор VS1 на любой подходящий по току к вашей нагрузке.

Дроссель L1 – это фильтрующий элемент, он нужен для уменьшения помех в сети от включения симистора. Его использовать необязательно, на работу схемы не влияет.

Когда включается SA1 (выключатель), ток начинает течь через лампу, дроссель и конденсатор С2. За счет реактивного сопротивления конденсатора, ток через лампу течет маленький. Когда напряжение до которого зарядится С1 достигнет порога открытия симистора – ток потечет через него, лампа включится в полный накал.

Плавное включение ламп 220 В: схема на ИМС КР1182ПМ1

Есть вариант и плавного включения с помощью микросхемы КР1182ПМ1, она обеспечивает плавный пуск ламп и другой нагрузки мощностью до 150 Вт. Подробное описание этой микросхемы вы найдете здесь:

а ниже изображена схема устройства, она предельно проста:

Простая схема

Или вот ее модернизированный вариант для включения мощной нагрузки:

Дополнительно установлен тиристор BTA 16–600, он рассчитан на ток до 16 А и напряжение до 600 В, это видно из маркировки, но можно взять и любой другой. Таким образом, вы можете включать нагрузку мощностью до 3,5 кВт.

Плавное включение ламп 12 В

Часто для точечных светильников используются лампы с напряжением 12 В. Для преобразования 220 в 12 В в настоящее время используют электронные трансформаторы. Тогда устройство плавного включения нужно подключать в разрыв питающего провода электронного трансформатора.

Плавное включение ламп в автомобиле

Если стоит задача организовать плавное включение автомобильных ламп 12 V, то здесь такие схемы не подойдут. В электроцепи автомобиля используется напряжение 24 или 12 V постоянного тока. Здесь можно применить линейные или импульсные схемы так называемые ШИМ-регуляторы.

Простейшим вариантом будет использование двухступенчатой схемы включения.

Двухступенчатая схема включение

Эта схема устанавливается параллельно включаемым лампам. Сначала ток течет через резистор, а лампы горят тускло. Через небольшое время, порядка полсекунды, включается реле, и ток течет через его силовые контакты, они в свою очередь шунтируют резистор и лампы зажигаются на полную яркость.

Номинал резистора от 0,1 до 0,5 Ом, он должен быть большой мощности – около 5 Вт, например, в керамическом корпусе.

Второй вариант – собрать импульсный блок для плавного розжига. Его схема сложнее:

Более сложный для реализации вариант

  1. Резисторы:
  • R1=2 k.
  • R2=36 k.
  • R3=0,22.
  • R4=180.
  • R5, 7=2,7 k.
  • R6=1 M.
  1. Конденсаторы:
  • C1=100 n.
  • C2=22×25 B.
  • C3=1500 p.
  • C4=22×50 B.
  • C5=2 мкф.
  1. Микросхема MC34063A или МС34063А, или КР1156ЕУ5.
  2. Полевой транзистор IRF1405 (или любой N-канальный с похожими параметрами: IRF3205, IRF3808, IRFP4004, IRFP3206, IRFP3077).
  3. Дроссель 100 мкГн, на ток не менее 500 мА.
  4. Светодиоды.
  5. Диоды 1N5819.

Время включения регулируется цепью R6C5. Увеличьте емкость, чтобы увеличить время.

Если вам сложно сделать такую схему, можете купить готовую сборку, типа автоконтроллера ЭКСЭ-2А-1 (25 А/IP54) или любой другой подходящий. В конкретно этой модели есть 2 канала, под каждую фару, 8 программ работы. Он основан на микроконтроллере PIC.

Готовое решение без лишних хлопот к содержанию ↑

Подводим итоги

Плавное включение галогенных ламп и ламп накаливания значительно продлевает их срок службы – до 5–7 раз. С другой стороны – добавление в схему лишних элементов снижает ее надежность. В любом случае стоит попробовать использовать блоки плавного розжига независимо идет речь о лампах для домашних светильников или автомобильных.

Похожие статьи:

  • Узо это предохранитель Электрофорум для электриков и домашних мастеров Меню навигации Пользовательские ссылки Объявление Информация о пользователе Вы здесь » Электрофорум для электриков и домашних мастеров » Общий электротехнический форум » Можно ли поставить […]
  • Замена провода на трансформаторе Инструкция по замене ПК на силовом трансформаторе 1. ОБЩИЕ ПОЛОЖЕНИЯ. 1.1. Настоящая инструкция разработана на основании действующих "Правил безопасной эксплуатации электроустановок" и на основании "Правил технической эксплуатации […]
  • Провода свеч газ 406 Свечи и высоковольтные провода ЗМЗ 405, 406 Владельцам ГАЗ и УАЗ с моторами 405, 406, 409. Свечи и в/в провода — частые ошибки, приводящие к ущербу. Довольно часто приезжают машины с моторами ЗМЗ 405-406 с очень плохо работающим […]
  • Как сделать из 220 12 вольт Блок питания (12 Вольт) своими руками. Схема блока питания на 12 Вольт Блок питания 12 Вольт позволит осуществить питание практически любой бытовой техники, включая даже ноутбук. Обратите внимание на то, что на вход ноутбука подается […]
  • Измерение сопротивления изоляции сборных шин ПУЭ 7. Правила устройства электроустановок. Издание 7 Раздел 1. Общие правила Глава 1.8. Нормы приемо-сдаточных испытаний Сборные и соединительные шины 1.8.24. Шины испытываются в объеме, предусмотренном настоящим параграфом: на […]
  • Заземление зпл-15-03 ЗПЛ-15-03 СИП (25) Заземление переносное ЗПЛ 15-03 СИП (25) Заземление переносное трехфазное для воздушных линий до 15 кВ, ЗПЛ-15-03СИП (25) с проводами СИП, с тремя зажимами типа SL-36 фирмы ENSTO, тремя несъемными […]