Правила измерения электрического тока в цепи амперметром

Правила измерения электрического тока в цепи амперметром

Азбука физики

Научные игрушки

Простые опыты

Этюды об ученых

Решение задач

Презентации

Книги по физике
Умные книжки

Есть вопросик?

Его величество.

Музеи науки.

Достижения.

Викторина по физике

Физика в кадре

Учителю

Читатели пишут

Физика 8 класс. ИЗМЕРЕНИЕ СИЛЫ ТОКА В УЧАСТКЕ ЦЕПИ

Для измерения силы тока существует измерительный прибор — амперметр.


Условное обозначение амперметра на электрической схеме:

При включении амперметра в электрическую цепь необходимо знать :

1. Амперметр включается в электрическую цепь последовательно с тем элементом цепи,
силу тока в котором необходимо измерить.

2. При подключении надо соблюдать полярность: «+» амперметра подключается к «+» источника тока,
а «минус» амперметра — к «минусу» источника тока.

ИЗМЕРЕНИЕ НАПРЯЖЕНИЯ
НА УЧАСТКЕ ЭЛЕКТРИЧЕСКОЙ ЦЕПИ

Для измерения напряжения существуют специальный измерительный прибор — вольтметр.


Условное обозначение вольтметра на электрической схеме:

При включении вольтметра в электрическую цепь необходимо соблюдать два правила:

1. Вольтметр подключается параллельно участку цепи, на котором будет измеряться напряжение;


2. Соблюдаем полярность : «+» вольтметра подключается к «+» источника тока,
а «минус» вольтметра — к «минусу» источника тока.

Для измерения напряжения источника питания вольтметр присоединяют непосредственно к его зажимам.

ИЗМЕРЕНИЕ РАБОТЫ И МОЩНОСТИ
ЭЛЕКТРИЧЕСКОГО ТОКА

Для определения работы или мощности тока можно использовать специальный измерительный прибор — ваттметр.
При отсутствии ваттметра пользуются одновременным подключением двух измерительных приборов к нужному участку цепи: амперметра и вольтметра.

Далее проводится расчет работы и мощности тока по формулам.

P = UI . и . A = UIt

1. Что изменилось на участке цепи, если включенный параллельно вольтметр
показывает уменьшение напряжения?

2. Какими способами можно определить напряжение в городской сети,
имея в своем распоряжении любые приборы, кроме вольтметра?

Правила измерения электрического тока в цепи амперметром

Амперметр — это прибор для измерения силы электрического тока.

Большинство аналоговых амперметров работает за счёт поворота катушки с током в магнитном поле. Это возможно, так как угол поворота катушки пропорционален силе тока, протекающего через неё.

Амперметр включается в цепь последовательно, чтобы через него протекал весь измеряемый ток. Но как и любой электроприбор, амперметр имеет сопротивление, следовательно, после включения его в цепь её полное сопротивление увеличится, а сила тока уменьшится (по закону Ома), поэтому амперметр покажет силу тока меньшую, чем та, которая была до его включения в цепь. Следовательно, амперметр должен иметь очень маленькое сопротивление, во много раз меньшее, чем сопротивление цепи.

Предельный угол поворота катушки в конструкции прибора ограничивает максимальную силу тока, измеряемую с помощью данного амперметра. Для измерения большей силы тока параллельно амперметру присоединяют шунт, через который проходит часть измеряемого тока.

Шунт — это проводник, присоединяемый параллельно амперметру для увеличения предела его измерений.

Вольтметр — прибор для измерения электрического напряжения.

Принцип действия вльтметра такой же, как и у амперметра.

Вольтметр включается параллельно тому участку цепи, на котором необходимо измерить напряжение, но при этом сопротивление уменьшается, следовательно, уменьшается и напряжение (по закону Ома), поэтому вольтметр покажет напяжение меньшее, чем то, которое было на участке до его подключения. Следовательно, вольтметр должен иметь большое сопротивление, значительно превосходящее сопротивление цепи.

Для увеличения предела измерений вольтметра, последовательно ему подключают дополнительное сопротивление.

Дополнительное сопротивление — это проводник, присоединяемый последовательно с вольтметром для увеличения предела его измерений.

Измерение тока

Измерение постоянных токов

В электронной технике чаще всего приходится измерять постоянные токи. Видимо, по этой причине многие мультиметры, большей частью дешевые, могут измерять только постоянный ток. Диапазон измерения переменного тока есть у некоторых моделей мультиметров, которые подороже, но верить этим показаниям можно лишь в случае, когда ток имеет синусоидальную форму и частота не превышает 50 Гц.

Требования к амперметру

Любой измерительный прибор считается хорошим, если он не вносит искажений в измеряемую величину, вернее говоря, вносит, но как можно меньше. Для вольтметра это высокое входное сопротивление, поскольку он включается параллельно участку цепи. Здесь уместно вспомнить, что при параллельном соединении общее сопротивление участка уменьшается.

Амперметр включается в разрыв участка цепи, поэтому для него положительным качеством считается, в отличие от вольтметра, как раз низкое внутреннее сопротивление. При этом, чем меньше, тем лучше, особенно при измерении малых токов, столь присущих электронным схемам. Процесс измерения тока показан на рисунке 1.

На схеме показана простая электрическая цепь, состоящая из гальванической батареи и двух резисторов, пригодная только для проведения опытов по измерению токов. Прежде всего, следует обратить внимание на полярность включения прибора, она должна совпадать с направлением тока, которое обозначено стрелками.

На рисунке показан стрелочный прибор, который в обратную сторону показывать не будет. Для цифрового мультиметра направление тока безразлично. При неправильном подключении он просто покажет знак «минус», и на этом конфликт будет исчерпан. Математики бы сказали, что измерен модуль числа, кажется, так называется число без знака.

Рисунок 1. Процесс измерения тока

Что покажет амперметр

Для такой простейшей цепи подсчитать ток совсем несложно, он составит 0,018А или 18мА. Вместе с этим на рисунке показано, что миллиамперметр в одну и ту же цепь включен в трех различных точках. Согласно законам физики его показания будут совершенно одинаковы, ведь, сколько электронов «вытекает» из плюса батареи столько же возвращается обратно, но уже через «минус». А дорога у всех этих электронов одна: это соединительные провода, резисторы, а если подключены, то и миллиамперметры.

На рисунке 2 показана схема двухтранзисторного приемника из книги М.М. Румянцева «50 схем транзисторных приемников» (1966).

Рисунок 2. Схема двухтранзисторного приемника

В те далекие времена схемы в книгах сопровождались подробными описаниями и методикой их наладки. Часто рекомендовалось измерить токи на определенных участках схемы, обычно коллекторные токи транзисторов. Места измерения токов показывались на схеме крестиком. В этом месте, естественно в разрыв проводника, подключался миллиамперметр и с помощью подбора номинала резистора, отмеченного звездочкой, подбирался ток, указанный тут же на схеме.

Подводные камни при измерении токов

На рисунках 3 и 4 показана простейшая цепь, — батарейка, резистор и мультиметр. По закону Ома нетрудно подсчитать, что ток в этой цепи будет

I = U/R = 1,5 / 10 = 0,15А или 150мА.

Если приглядеться к обоим рисункам, то выяснится, что показания приборов разные, хотя в самих схемах, если их так можно назвать, ничего не изменилось. На рисунке 3 показания полностью соответствуют расчету по закону Ома.

Рисунок 3. Измерения тока в программе симуляторе Multisim

А вот на рисунке 4 они стали несколько ниже, а именно 148,515mA. Спрашивается, почему? Ведь на схеме ничего не изменилось, источник тот же и резистор не стал больше или меньше.

Рисунок 4. Измерения тока в программе симуляторе Multisim

Дело в том, что любые свойства мультиметра можно изменять, что делается с помощью нажатия на кнопку «Параметры». В данном случае изменено входное сопротивление амперметра: на рисунке 3 оно было 1nΩ, а на рисунке 4 увеличено до 100mΩ, или всего 0,1Ω. Этот пример приведен для того, чтобы продемонстрировать, как влияют на результат свойства измерительного прибора. В данном случае амперметра.

Попробуем в этой схеме увеличить ток в 10 раз. Для этого достаточно уменьшить номинал резистора также в 10 раз, тогда нетрудно подсчитать, что амперметр покажет полтора ампера. Если входное сопротивление принять равным 1nΩ, как на рисунке 3, то результат будет 1,5A, что полностью соответствует расчету по закону Ома.

Если с помощью упомянутой кнопки «Параметры» сделать сопротивление амперметра 0,1Ω, то на шкале прибора можно будет увидеть 1,364А. Конечно, 0,1Ω несколько великовато для реального амперметра, а 1nΩ, наверно, бывает только в программе – симуляторе все равно можно увидеть, как внутреннее сопротивление прибора влияет на результат измерений. Вообще, проводя подобные измерения, надо сразу прикидывать «в уме» хотя бы порядок результата. Но начинать следует с заведомо большего диапазона на приборе.

Так дело обстоит при измерении токов в программе симуляторе, где все заведомо настроено на достижение лучших результатов. Все детали с минимальными допусками, входные сопротивления приборов тоже идеальны, температура окружающей среды 25 градусов. Но, как было только что показано, параметры приборов, деталей и даже температуры можно задавать по желанию пользователя.

Измерения настоящим прибором

В реальной жизни все совсем не так гладко. Резисторы для широкого применения могут иметь допуски, как правило, ± 5, 10 и 20 процентов. Конечно, есть и резисторы с допусками в десятые доли процента, но они применяются лишь там, где это действительно необходимо, а вовсе не в аппаратуре широкого применения около каждого транзистора и возле каждой микросхемы.

Предполагается, что опыты по измерению токов проводятся с резисторами с 5% допуском. Тогда при номинальном значении (то, что написано на корпусе резистора), например, 10КОм под руку может попасться резистор с сопротивлением в пределах 9,5…10,5КОм. Если такой резистор подключить к источнику напряжения, например 10В, то при измерении токов можно получить значения в диапазоне 1,053…0,952мА, вместо ожидаемого 1мА. Еще больший разброс получится при использовании резисторов с допуском 10 или 20 процентов.

Смотрите так же:  Схема подключения 3 ламп

И совсем удивительные результаты можно получить в том случае, если эти опыты проводятся от батарейки. Схема совершенно та же, как на рисунках 3 и 4. Она настолько проста, что можно вполне обойтись без пайки и печатных плат, все элементарно сделать на скрутках или просто подержать в руках.

Прикинем, что же должно получиться, что должен показать прибор. Известно, что напряжение батарейки 1,5В, сопротивление 10 Ω . Тогда по закону Ома I = U/R = 1,5/10 = 0,15А или 150мА.

При реальных измерениях вместо ожидаемых 150мА прибор показал 98,3мА. Даже если принять, что резистор попался с 20 процентным допуском I = U/R = 1,5/12 = 0,125А или 125мА.

Маловато будет! Куда же все пропало? В нашем случае оказалась виноватой «подсевшая» батарейка. В процессе эксплуатации она потеряла часть заряда, а ее внутреннее сопротивление увеличилось. Сложившись с сопротивлением внешнего резистора, внутреннее сопротивление внесло свой «посильный вклад» в искажение результата измерений. Именно эти обстоятельства и привели к тому, что показания прибора оказались, мягко говоря, очень далеко от ожидаемых.

Поэтому при проведении измерений в электронных схемах надо быть предельно внимательным, аккуратность тоже не будет лишней. Качества, прямо противоположные только что упомянутым, приводят к плачевным результатам. Измерительные приборы можно спалить, разрабатываемые или ремонтируемые устройства тоже, а в некоторых случаях даже получить электротравму. Чтобы избежать огорчений от таких случаев, можно лишний раз рекомендовать вспомнить правила техники безопасности.

Подключение амперметра и вольтметра в сети постоянного и переменного тока

Постоянный ток не меняет направления во времени. Примером может служить батарейка в фонарике или радиоприемнике, аккумулятор в автомобиле. Мы всегда знаем, где положительная клейма источника питания, а где отрицательная.

Переменный ток — это ток, который с определенной периодичностью меняет направление движения. Такой ток протекает в нашей розетке, когда мы к ней подключаем нагрузку. Тут нет положительного и отрицательного полюса, а есть только фаза и ноль. Напряжение на нуле близко по потенциалу с потенциалом земли. Потенциал же на фазовом выводе меняется с положительного до отрицательного с частотой 50 Гц, го есть ток под нагрузкой будет менять свое направление 50 раз в секунду.

В течение одного периода колебания величина тока повышается от нуля до максимума, затем уменьшается и проходит через ноль, а потом совершается обратный процесс, но уже с другим знаком.

Получение и передача переменного тока намного проще, чем постоянного: меньше потерь энергии, С помощью трансформаторов мы можем легко менять напряжение переменного тока.

При передаче большого напряжения требуется меньший ток для той же мощности. Это позволяет использовать более тонкие довода. В сварочных трансформаторах используется обратный процесс — понижают напряжение для повышения сварочного тока.

Измерение постоянного тока

Чтобы в электрической цепи измерить ток, необходимо последовательно с приемником электроэнергии включить амперметр или миллиамперметр. При этом, чтобы исключить влияние измерительного прибора на работу потребителя, амперметр должен обладать очень малым внутренним сопротивлением, чтобы практически его можно было бы принять равным нулю, чтобы падением напряжения на приборе можно было бы просто пренебречь.

Включение амперметра в цепь — всегда последовательно с нагрузкой. Если подключить амперметр параллельно нагрузке, параллельно источнику питания, то амперметр просто сгорит или сгорит источник, поскольку весь ток потечет через мизерное сопротивление измерительного прибора.

Шунт

Пределы измерения амперметров, предназначенных для проведения измерений в цепях постоянного тока, расширяемы, путем подключения амперметра не напрямую измерительной катушкой последовательно нагрузке, а путем подключения измерительной катушки амперметра параллельно шунту.

Так через катушку прибора пройдет всегда лишь малая часть измеряемого тока, основная часть которого потечет через шунт, включенный в цепь последовательно. То есть прибор фактически измерит падение напряжения на шунте известного сопротивления, и ток будет прямо пропорционален этому напряжению.

Практически амперметр сработает в роли милливольтметра. Тем не менее, поскольку шкала прибора градуирована в амперах, пользователь получит информацию о величине измеряемого тока. Коэффициент шунтирования выбирают обычно кратным 10.

Шунты, рассчитанные на токи до 50 ампер монтируют непосредственно в корпуса приборов, а шунты для измерения больших токов делают выносными, и тогда прибор соединяют с шунтом щупами. У приборов, предназначенных для постоянной работы с шунтом, шкалы сразу градуированы в конкретных значениях тока с учетом коэффициента шунтирования, и пользователю уже не нужно ничего вычислять.

Если шунт наружный, то в случае с калиброванным шунтом — на нем указывается номинальный ток и номинальное напряжение: 45 мВ, 75 мВ, 100 мВ, 150 мВ. Для текущих измерений выбирают такой шунт, чтобы стрелка отклонялась бы максимум — на всю шкалу, то есть номинальные напряжения шунта и измерительного прибора должны быть одинаковыми.

Если речь идет об индивидуальном шунте для конкретного прибора, то все, конечно, проще. По классам точности шунты делятся на: 0,02, 0,05, 0,1, 0,2 и 0,5 — это допустимая погрешность в долях процента.

Шунты изготавливают из металлов с малым температурным коэффициентом сопротивления, и обладающих значительным удельным сопротивлением: константан, никелин, манганин, — чтобы когда протекающий через шунт ток нагревает его, это не отражалось бы на показаниях прибора. Еще для снижения температурного фактора при измерениях, последовательно с катушкой амперметра включают добавочный резистор из материла такого же рода.

Измерение постоянного напряжения

Чтобы измерить постоянное напряжение между двумя точками цепи, параллельно цепи, между этими двумя точками, подключают вольтметр. Вольтметр включается всегда параллельно приемнику или источнику. А чтобы подключенный вольтметр не оказывал влияния на работу цепи, не вызывал бы снижения напряжения, не вызывал потерь, — он должен обладать достаточно высоким внутренним сопротивлением, чтобы током через вольтметр можно было бы пренебречь.

Добавочный резистор

И чтобы расширить пределы измерения вольтметра, последовательно с его рабочей обмоткой включается добавочный резистор, чтобы только часть измеряемого напряжения приходилась бы непосредственно на измерительную обмотку прибора, пропорционально ее сопротивлению. А при известном значении сопротивления добавочного резистора, по зафиксированному на нем напряжению легко определяется полное измеряемое напряжение, действующее в данной цепи. Так работают все классические вольтметры.

Коэффициент, появляющийся в результате добавления добавочного резистора, покажет, во сколько раз измеряемое напряжение больше напряжения, приходящегося на измерительную катушку прибора. То есть пределы измерения прибора зависят от величины добавочного резистора.

Добавочный резистор встраивается в прибор. Для снижения влияния температуры окружающей среды на измерения, добавочный резистор изготавливают из материала обладающего малым температурным коэффициентом сопротивления. Поскольку сопротивление добавочного резистора во много раз больше сопротивления прибора, то и сопротивление измерительного механизма прибора в итоге не зависит от температуры. Классы точности добавочных резисторов выражаются аналогично классам точности шунтов — в долях процентов обозначают величину погрешности.

Чтобы еще больше расширить пределы измерения вольтметров, применяют делители напряжения. Это делается для того, чтобы при измерении на прибор приходилось напряжение, соответствующее номиналу прибора, то есть не превышало бы предел на его шкале. Коэффициентом деления делителя напряжения называется отношение входного напряжения делителя к выходному, измеряемому напряжению. Коэффициент деления берут равным 10, 100, 500 и более, в зависимости от возможностей применяемого вольтметра. Делитель не вносит большой погрешности, если сопротивление вольтметра также высоко, а внутреннее сопротивление источника мало.

Измерение переменного тока

Чтобы точно измерить прибором параметры переменного тока, необходим измерительный трансформатор. Измерительный трансформатор, применяемый в целях измерений, к тому же дает персоналу безопасность, поскольку благодаря трансформатору достигается гальваническая развязка от цепи высокого напряжения. Вообще, техника безопасности запрещает подключать электроизмерительные приборы без таких трансформаторов.

Применение измерительных трансформаторов позволяет расширить пределы измерения приборов, то есть появляется возможность измерять большие напряжения и токи при помощи низковольтных и слаботочных приборов. Так, измерительные трансформаторы бывают двух типов: трансформаторы напряжения и трансформаторы тока.

Измерительный трансформатор напряжения

Чтобы измерить переменное напряжение применяют трансформатор напряжения. Это понижающий трансформатор с двумя обмотками, первичная обмотка которого присоединяется к двум точкам цепи, между которыми нужно измерить напряжение, а вторичная — непосредственно к вольтметру. Измерительные трансформаторы на схемах изображают как обычные трансформаторы.

Трансформатор без нагруженной вторичной обмотки работает в режиме холостого хода, и при подключенном вольтметре, сопротивление которого велико, трансформатор остается практически в этом режиме, и поэтому можно считать измеренное напряжение пропорциональным напряжению, приложенному к первичной обмотке, с учетом коэффициента трансформации, равного соотношению количеств витков во вторичной и первичной его обмотках.

Таким образом можно измерять высокое напряжение, при этом на прибор будет подаваться небольшое безопасное напряжение. Останется умножить измеренное напряжение на коэффициент трансформации измерительного трансформатора напряжения.

Те вольтметры, которые изначально предназначены для работы с трансформаторами напряжения, имеют градуировку шкалы с учетом коэффициента трансформации, тогда по шкале без дополнительных вычислений сразу видно значение измененного напряжения.

В целях повышения безопасности при работе с прибором, на случай повреждения изоляции измерительного трансформатора, один из выводов вторичной обмотки трансформатора и его каркас сначала заземляются.

Измерительные трансформаторы тока

Для подключения амперметров к цепям переменного тока служат измерительные трансформаторы тока. Это двухобмоточные повышающие трансформаторы. Первичная обмотка включается последовательно в измеряемую цепь, а вторичная — к амперметру. Сопротивление в цепи амперметра мало, и получается, что трансформатор тока работает практически в режиме короткого замыкания, при этом можно считать, что токи в первичной и вторичной обмотках относятся друг к другу как количества витков во вторичной и первичной обмотках.

Смотрите так же:  Соединение генератора с потребителем звездой

Подобрав подходящее соотношение витков, можно измерять значительные токи, при этом через прибор всегда будут протекать токи достаточно малые. Останется умножить измеренный во вторичной обмотке ток на коэффициент трансформации. Те амперметры, которые предназначены для постоянной работы совместно с трансформаторами тока, имеют градуировку шкал с учетом коэффициента трансформации, и по шкале прибора без вычислений можно легко считать значение измеряемого тока. С целью повышения безопасности персонала, один из выводов вторичной обмотки измерительного трансформатора тока и его каркас сначала заземляются.

Во многих применениях удобны проходные измерительные трансформаторы тока, у которых магнитопровод и вторичная обмотка изолированы и расположены внутри проходного корпуса, через окно которого проходит медная шина с измеряемым током.

Вторичная обмотка такого трансформатора никогда не оставляется разомкнутой, ибо сильное увеличение магнитного потока в магнитопроводе может не только привести к его разрушению, но и навести на вторичной обмотке опасную для персонала ЭДС. Чтобы провести безопасное измерение, вторичную обмотку шунтируют резистором известного номинала, напряжение на котором будет пропорционально измеряемому току.

Для измерительных трансформаторов характерны погрешности двух видов: угловая и коэффициента трансформации. Первая связана с отклонением угла сдвига фаз первичной и вторичной обмоток от 180°, что приводит к неточным показаниям ваттметров. Что касается погрешности связанной с коэффициентом трансформации, то это отклонение показывает класс точности: 0,2, 0,5, 1 и т. д. — в процентах от номинального значения.

Как измерять силу тока в электрической цепи

Для измерения силы тока применяется измерительный прибор, который называется Амперметр. Силу тока приходится измерять гораздо реже, чем напряжение или сопротивление, но, тем не менее, если нужно определить потребляемую мощность электроприбором, то без зная величины потребляемого ним тока, мощность не определить.

Ток, как и напряжение, бывает постоянным и переменным и для измерения их величины требуются разные измерительные приборы. Обозначается ток буквой I, а к числу, чтобы было ясно, что это величина тока, приписывается буква А. Например, I=5 A обозначает, что сила тока в измеренной цепи составляет 5 Ампер.

На измерительных приборах для измерения переменного тока перед буквой А ставится знак «

«, а предназначенных для измерения постоянного тока ставится ««. Например, –А означает, что прибор предназначен для измеренная силы постоянного тока.

О том, что такое ток и законы его протекания в популярной форме Вы можете прочитать в статье сайта «Закон силы тока». Перед проведением измерений настоятельно рекомендую ознакомиться с этой небольшой статьей. На фотографии Амперметр, рассчитанный на измерение силы постоянного ток величиной до 3 Ампер.

Схема измерения силы тока Амперметром

Согласно закону, ток по проводам течет в любой точке замкнутой цепи одинаковой величины. Следовательно, чтобы измерять величину тока, нужно прибор подключить, разорвав цепь в любом удобном месте. Надо отметить, что при измерении величины тока не имеет значение, какое напряжение приложено к электрической цепи. Источником тока может быть и батарейка на 1,5 В, автомобильный аккумулятор на 12 В или бытовая электросеть 220 В или 380 В.

На схеме измерения также видно, как обозначается амперметр на электрических схемах. Это прописная буква А обведенная окружностью.

Приступая к измерению силы тока в цепи необходимо, как и при любых других измерениях, подготовить прибор, то есть установить переключатели в положение измерения тока с учетом рода его, постоянного или переменного. Если не известна ожидаемая величина тока, то переключатель устанавливается в положение измерения тока максимальной величины.

Как измерять потребляемый ток электроприбором

Для удобства и безопасности работ по измерению потребляемого тока электроприборами необходимо сделать специальный удлинитель с двумя розетками. По внешнему виду самодельный удлинитель ничем не отличается от обыкновенного удлинителя.

Но если снять крышки с розеток, то не трудно заметить, что их выводы соединены не параллельно, как во всех удлинителях, а последовательно.

Как видно на фотографии сетевое напряжение подается на нижние клеммы розеток, а верхние выводы соединены между собой перемычкой из провода с желтой изоляцией.

Все подготовлено для измерения. Вставляете в любую из розеток вилку электроприбора, а в другую розетку, щупы амперметра. Перед измерениями, необходимо переключатели прибора установить в соответствии с видом тока (переменный или постоянный) и на максимальный предел измерения.

Как видно по показаниям амперметра, потребляемый ток прибора составил 0,25 А. Если шкала прибора не позволяет снимать прямой отсчет, как в моем случае, то необходимо выполнить расчет результатов, что очень неудобно. Так как выбран предел измерения амперметра 0,5 А, то чтобы узнать цену деления, нужно 0,5 А разделить на число делений на шкале. Для данного амперметра получается 0,5/100=0,005 А. Стрелка отклонилась на 50 делений. Значит нужно теперь 0,005×50=0,25 А.

Как видите, со стрелочных приборов снимать показания величины тока неудобно и можно легко допустить ошибку. Гораздо удобнее пользоваться цифровыми приборами, например мультиметром M890G.

На фотографии представлен универсальный мультиметр, включенный в режим измерения переменного тока на предел 10 А. Измеренный ток, потребляемый электроприбором составил 5,1 А при напряжении питания 220 В. Следовательно прибор потребляет мощность 1122 Вт.

У мультиметра предусмотрено два сектора для измерения тока, обозначенные буквами А– для постоянного тока и А

для измерения переменного. Поэтому перед началом измерений нужно определить вид тока, оценить его величину и установить указатель переключателя в соответствующее положение.

Розетка мультиметра с надписью COM является общей для всех видов измерений. Розетки, обозначенные mA и 10А предназначены только для подключения щупа при измерении силы тока. При измеряемом токе менее 200 мA штекер щупа вставляется в розетку mA, а при токе величиной до 10 А в розетку 10А.

Внимание, если производить измерение тока, многократно превышающего 200 мА при нахождении вилки щупа в розетке mA, то мультиметр можно вывести из строя.

Если величина измеряемого тока не известна, то измерения нужно начинать, установив предел измерения 10 А. Если ток будет менее 200 мА, то тогда уже переключить прибор в соответствующее положение. Переключение режимов измерения мультиметра допустимо делать только обесточив измеряемую цепь.

Рассчет мощности электроприбора по потребляемому току

Зная величину тока, можно определить потребляемую мощность любого потребителя электрической энергии, будь то лампочка в автомобиле или кондиционер в квартире. Достаточно воспользоваться простым законом физики, который установили одновременно два ученых физика, независимо друг от друга. В 1841 году Джеймс Джоуль, а в 1842 году Эмиль Ленц. Этот закон и назвали в их честь – Закон Джоуля – Ленца.

где P – мощность, измеряется в ваттах и обозначается Вт; U – напряжение, измеряется в вольтах и обозначается буквой В; I – сила ток, измеряется в амперах и обозначается буквой А.

Рассмотрим, как посчитать потребляемую мощность на примере:
Вы измеряли ток потребления лампочки фары автомобиля, который составил 5 А, напряжение бортовой сети составляет 12 В. Значит, чтобы найти потребляемую мощность лампочкой нужно напряжение умножить на ток. P=12 В×5 А=60 Вт. Потребляемая лампочкой мощность составила 60 Вт.

Измерение постоянного напряжения и силы электрического тока

Главная > Лабораторная работа >Промышленность, производство

Измерение постоянного напряжения и силы электрического тока.

Цель работы: ознакомиться с измерительными приборами, изучить методику измерений постоянных напряжений и токов, определения погрешностей и обработки результатов эксперимента.

Виды измерительных приборов

Измерительные приборы разнообразны по назначению, принципу действия, метрологическим и эксплуатационным характеристикам. По форме представления измерительной информации их подразделяют на аналоговые и цифровые.

Аналоговые приборы бывают электромеханическими и электронными. Электромеханический прибор состоит из измерительной цепи 1, измерительного механизма 2 и отсчетного устройства 3. Измерительная цепь 1 служит для преобразования измеряемой физической величины Х (напряжения, силы тока, мощности и т.п.) в некоторую промежуточную электрическую величину Х1 (ток или напряжение), функционально связанную с величиной Х и непосредственно воздействующую на измерительный механизм 2 (делитель напряжения, шунт). Отсчетное устройство 3 содержит шкалу с делениями и указатель (механический – стрелка или световой – пятно). Обобщенная структурная схема такого прибора показана на рис.1.

В целях повышения чувствительности прибора, расширения диапазона измерений величин в сторону малых значений измерительная цепь содержит электронные узлы. Такие приборы, в отличие от обычных аналоговых приборов прямого преобразования, называют электронными.

Цифровым называется прибор, у которого выходной сигнал является цифровым, т.е. содержит информацию о значении измеряемой величины, закодированную в цифровом коде. Структура цифрового прибора во входной части подобна структуре электронного аналогового прибора. Необходимым элементом каждого цифрового измерительного прибора является аналого-цифровой преобразователь (АЦП). АЦП – это измерительное устройство, которое осуществляет автоматическое преобразование размера выходной величины (преимущественно напряжения) входного преобразователя в её цифровое (численное) значение. На выходе цифрового прибора используется цифровое отсчетное устройство, с помощью которого через дешифратор результат измерения представляется в виде цифр и других знаков.

При измерении часто используются приборы, называемые мультиметрами, предназначенные для измерений в различных диапазонах нескольких электрических величин: постоянных и переменных тока и напряжения, электрического сопротивления и т.д.

Аналоговые вольтметры постоянного и переменного периодического напряжения строят на базе измерительных механизмов различных типов. Измерительный механизм (ИМ) имеет следующие характеристики: Rм – сопротивление механизма, Ім – ток полного отклонения механизма и следовательно, напряжение полного отклонения стрелки механизма.

Смотрите так же:  Монтаж рабочего заземление

.

Если измеряемое постоянное напряжение превышает Uм (Ux>Uм), то включают масштабный преобразователь (делитель) измеряемого напряжения (рис.2). Тогда конечное значение шкалы вольтметра будет Uк = Uм ∙Кмп.

Рис. 2. Электромеханический вольтметр постоянного напряжения

Недостатками вольтметра постоянного напряжения будут малое сопротивление между зажимами вольтметра Rv и недостаточная чувствительность.

Электронный аналоговый вольтметр имеет большее Rv и большую чувствительность за счёт включения электронного масштабного преобразователя с Кмп ≥ 1 (рис. 3).

Рис. 3. Электронный вольтметр постоянного напряжения

Электрический ток в цепи может быть измерен прямыми или косвенными методами. При прямом измерении постоянного тока используется измерительный механизм, имеющий ток полного отклонения Iм и сопротивление Rм. Расширение шкалы (рис.8). до значения Iх производится за счёт включения шунта, сопротивление которого выбирают из условия:

Рис. 5. Расширение шкалы амперметра

При косвенном методе измерения значение тока с помощью измерительного преобразователя преобразуют в другую физическую величину, значение которой измеряют. Так при преобразовании значения измеряемого тока в напряжение используют вольтметры, шкала которого градируется в единицах тока.

В зависимости от места и причины возникновения различают такие основные составляющие погрешности от:

несоответствия (неадекватности) модели измеряемого объекта его реальным свойствам и величине;

упрощения математических моделей измерительных преобразований;

взаимного влияния средств измерений и объекта;

несовершенство средств измерений;

влияния внешних факторов на объект и средства измерений;

несовершенства вычислительного алгоритма и обработки результата наблюдения.

2. Погрешности измерения напряжения и тока.

2.1. Измерение напряжения источника

Измерительный прибор (вольтметр) включают параллельно участку цепи, на котором измеряют напряжение Ri – внутреннее сопротивление источника.

При измерении напряжения вольтметром, имеющим входное сопротивление Rv, возникают методическая (систематическая) погрешность и инструментальная (случайная) погрешность.

Рис. 7 Схема включения вольтметра

методическая обусловлена влиянием измерительного прибора с сопротивлением Rv на значение измеряемого напряжения UИ;

инструментальная погрешность определяется классом точности прибора и выбранной шкалой.

Абсолютное значение погрешности будет:

.

Относительное значение методической погрешности:

,

.

Выполнив преобразования, для относительной методической погрешности получим выражение:

.

Из выражения видно, что чем больше входное сопротивление вольтметра Rv, тем меньше методическая погрешность.

Для определения инструментальной погрешности необходимо знать класс точности прибора КП, который определяется:

, для прибора с аддитивной погрешностью,

, для прибора с мультипликативной погрешностью.

, %, для прибора с мультипликативной погрешностью и нелинейной шкалой,

где UK – конечное значение выбранной шкалы прибора;

UИ – показание прибора на выбранной шкале;

a, b – коэффициенты для выбранной шкалы прибора (определяются по паспорту прибора).

Соответственно, инструментальная погрешность определяется для приборов с аддитивной погрешностью:

,

для приборов с мультипликативной погрешностью (цифра, обозначающая класс точности прибора указывается в кружочке):

,

для приборов с мультипликативной погрешностью и нелинейной шкалой с классом точности a / b: .

Действительное значение напряжения источника определится выражением:

,

где П – поправка на систематическую (методическую) погрешность, равная по значению и противоположная по знаку абсолютной методической погрешности.

В окончательном виде результат измерения напряжения с учетом методической и инструментальной погрешностей записывают в виде:

.

2.2. Измерение силы тока

В электрическую цепь (рис.8а) прибор для измерения тока (амперметр) включается последовательно с нагрузкой RH (рис. 8б). Как и при измерении напряжения, так и при измерении тока амперметром, имеющим сопротивление RA, возникают методическая и инструментальная погрешности.

Рис. 8 Схема включения амперметра.

До включения амперметра через RH протекал ток I, после включения амперметра, имеющего сопротивление RA, в цепи будет протекать измеряемый ток IИ (рис. 8в).

Относительное значение методической погрешности:

, где

, .

Выполнив преобразования, для относительной методической погрешности получим выражение:

.

Из выражения видно, что методическая погрешность является систематической и её значение тем меньше, чем меньше сопротивление амперметра RA.

Действительное значение тока с учетом поправки на методическую погрешность будет:

,

Преобразовав последнее выражение, для действительного значения тока, протекающего через RH (без включенного амперметра на рис. 11а), получим выражение:

.

Конечное значение результата измерения записывают в виде:

.

2.3. Измерение напряжения на участке цепи

Относительная методическая погрешность измерения в этом случае будет:

, где , , .

Рис. 9 Измерение напряжения на участке цепи.

После преобразований для относительной методической погрешности получим выражение:

.

Действительное значение напряжения на резисторе с сопротивлением R2 после введения поправки на методическую погрешность будет:

, где UИ – показание вольтметра.

Инструментальная погрешность определяется классом точности и шкалой прибора. Найденное значение напряжения на R2 будет:

.

3. Программа работы:

3.1. Измерение постоянного напряжения (приборами В7-26, Щ4313).

3.1.1. Измерить ЭДС источника питания прибором В7-26.

а) Подготовка вольтметра В7-26 к измерению напряжения.

Включить “Сеть” прибора. Переключатель рода работы установить в положение “+U” или “-U”. После прогрева (515 минут) закоротить (соединить проводником) входы «U» и «*» прибора (рис. 13). Переключатель поддиапазонов измерения напряжения поставить в положение 0,3(0,1)В. Регулировкой “Устан. «0»” добиться «0» по шкале «U». Рис. 13

Затем перевести переключатель поддиапазонов в положение 3(10)В. Снять закоротку.

б) Включить источник питания и установить необходимую величину Э.Д.С. E.

в) Подключить В7-26 к источнику питания (рис.14). Измерить ЭДС. Записать конечное значение шкалы вольтметра UK и его класс точности (указан на лицевой панели).

3.1.2. Измерить ЭДС источника питания прибором Щ4313.

а) Подготовка мультиметра Щ4313 к измерению напряжения. Включить «Сеть» прибора Щ4313, выбрать род работы «U», выставить “грубую” шкалу.

б) Подключить Щ4313 к источнику питания (рис.14), выбрать шкалу и измерить ЭДС. Записать измеренное значение и конечное значение шкалы вольтметра.

Для мультиметра Щ4313 класс точности рассчитать по формуле:

, a и b определить из таблицы (см. паспорт прибора).

.

3.2. Измерение силы электрического тока в цепи (прибором Щ4313)

Установить на источнике питания рекомендованное значение напряжения E ,

на магазине сопротивлений – величину нагрузки: RH1 (RH2). Не включая источник питания, собрать схему (рис.15). На Щ-4313 нажать клавиши «mA» и «500». Измерить ток в цепи, правильно выбрав шкалу прибора. Записать IA, IK. По паспорту прибора определить коэффициенты a и b (для расчёта КП). Рис. 15

4. Обработка результатов измерений

4.1.1. Результаты измерений выражаются числом, содержащим значащие цифры. Значащими считаются все цифры в числовом результате, в том числе и нуль, если он находится в середине или в конце числа.

Пример. Результаты измерения напряжений 121В и 0,00121В содержат три, а 126,05В и 12500В – пять значащих цифр.

В конечной записи результатов измерений следует соблюдать следующие правила округления.

4.1.2 В выражении погрешности удерживается не более двух значащих цифр, причём последняя округляется до нуля или пяти.

Пример. а) Погрешность измерения тока составляет 0,125А. Удерживая одну значащую цифру, значение погрешности округляется до ±0,1А

б) Погрешность измерения напряжения составляет 0,152В. Удерживая две значащие цифру, значение погрешности округляется до ±0,15В.

4.1.3 Числовое значение результата измерений должно оканчиваться цифрой или нулем того же десятичного знака, что и значение погрешности.

Пример. 125,832 ± 0,15 записывается 125,83 ± 0,15.

4.1.4 Если первая отбрасываемая цифра меньше пяти, то последняя удерживаемая цифра не изменяется.

Пример. (125,721 ± 0,2)В округляется до (125,7 ± 0,2)В.

4.1.5 Если первая отбрасываемая цифра больше пяти или равна пяти, то последняя удерживаемая цифра увеличивается на единицу.

Пример. 25,268 ± 0,4 округляется до 25,3 ± 0,4;

25,253 ± 0,3 округляется до 25,3 ± 0,3.

4.1.6 Если первая отбрасываемая цифра равна пяти и за ней не следует значащих цифр (или следуют только нули), то округление производится до ближайшего четного.

Пример. 10,650 ± 0,3 округляется до 10,6 ± 0,3;

10,550 ± 0,3 округляется до 10,6 ± 0,3.

4.2. Обработка результатов измерения напряжения

4.2.1. Вычислить инструментальную погрешность и записать результат измерений с её учетом: .

4.2.2. Найти методическую погрешность: , где Ri = 5 Ом,

RV B 7-26 = 30 МОм, =1МОм.

4.2.3. Определить поправку и погрешность поправки по формулам:

; .

4.2.4. Результат с учётом инструментальной и методической погрешности записывается в виде:

4.3. Обработка результатов измерения тока

4.3.1. Записать результат с учётом инструментальной погрешности.

.

4.3.2. Найти методическую погрешность:

.

4.3.3. Определить поправку и погрешность поправки:

; .

4.3.4. Результат с учётом инструментальной и методической погрешности записывается в виде:

.

Похожие статьи:

  • Отличие провода пунп от ввг Чем отличается ВВГ от ПУНП? Чем отличается ВВГ от ПУНП? Вроде сечение одинаковое, изоляция двойная. Можно ли проводку делать ПУНПом, если она заштукатуривается? Сырьём для ПВХ, методикой испытаний. Этот кабель выпускается по ГОСТ, а […]
  • Можно ли подключить узо без заземления Подключение УЗО без заземления Специальные устройства защитного отключения (УЗО) рекомендуют устанавливать там, где существует высокая вероятность поражения током. Задачей устройства является оперативное отключение всего электрического […]
  • Заземление гру Заземление гру п. 2.2.19 ПБ 12-529-03: 2.2.19. Надземные газопроводы при пересечении высоковольтных линий электропередачи, должны иметь защитные устройства, предотвращающее падение на газопровод электропроводов в случае их обрыва. […]
  • Как подсоединить провода к лампочке Как правильно подключить патрон для лампочки к проводам. Такая казалось бы простая и незамысловатая процедура, как подключение патрона для лампочки, имеет свои нюансы, не всегда знакомые для людей далеких от электричества. Да что […]
  • Заземление этажного щита Этажный щиток. Заземление. дом 9-ти этажный, 7-ми подъездный, 87 года выпуска (сделан из блок-комнат). 2 ввода. от ТП идет два кабеля 4-х жильного. щитки на этажах на 4-ре квартиры. к этажным щиткам идет 4 кабеля: 3 фазы, ноль. в этижном […]
  • Электро провода марки Как правильно выбрать электрический кабель или провода для электропроводки дома, гаража или квартиры. Любая замена или ремонт электропроводки начинается с покупки электрического кабеля! В своей практике Я столкнулся с тем, что люди при […]