Предел регулирования тока теплового реле

Тепловое реле. Устройство, принцип действия, схема включения теплового реле.

Чтобы правильно защитить электродвигатели от аварийных режимов, необходимо знать основные причины их отказов. Основные аварийные режимы возникают из-за:

• обрыва фазы (ОФ) — 40-50 %;

• заторможения ротора (ЗР) — 20-25 %;

• технологических перегрузок (ТП) — 8-10 %;

• понижения сопротивления изоляции (ПСИ) — 10-15 %;

• нарушения охлаждения (НО) — 8-10 %.

Вероятность срабатывания некоторых устройств защиты, применяемых в сельском хозяйстве, от основных аварийных режимов электродвигателей приведена в таблице 1.1.

Как видно из таблицы 1.1, для защиты электродвигателей от технологических перегрузок, а также от обрыва фазы и заторможения ротора с успехом могут быть использованы тепловые реле, которые работают в сочетании с магнитным пускателем.

Для защиты электрооборудования от перегрузки по току широкое применение нашли тепловые реле типов РТ, ТРН, ТРП, РТЭ, РТТ, РТЛ, РТЛ.У.

Тепловые реле типа ТРН сняты с производства, одно еще достаточное количество их эксплуатируется в сельском хозяйстве.

Тепловое реле состоит из биметаллической пластинки, нагревательного элемента, контактов с пружиной и защелкой (рис. 1.1).

Автоматические выключатели АП-50

Устройства встроенной тепловой защиты (УВТЗ-5)

Устройства защитного отключения по току утечки (УЗО)

Биметаллическая пластина состоит из двух металлов, прочно сваренных между собой по всей поверхности и имеющих различные температурные коэффициенты линейного расширения а. Один металл (инвар) имеет малый коэффициент линейного расширения и называется пассивным. Другой (хромоникелевая сталь) имеет большой коэффициент а и называется активным. При нагревании активный слой стремится удлиниться на большую величину, чем пассивный и, как следствие этого, возникает изгибающий момент.

Рис. 1.1. Конструктивная схема теплового реле типа ТРП: 1 — биметаллическая пластина; 2 — нагревательный элемент; ограничивающие выступы; 4 — пружина; 5 — неподвижный контакт; 6 — прыгающий контакт

Рис. 1.2. Тепловое реле ТРП: 1 — биметаллическая пластинка; 2 — упор самовозврата; 3 — держатель подвижного контакта; 4 — пружина; 5 — подвижный контакт; 6 — неподвижный контакт; 7 — сменный нагреватель; 8 — регулятор тока уставки; 9 — кнопка ручного возврата

Реле серии ТРП на токи 1-600 А в основном используется в магнитных пускателях серии ПА и имеет комбинированную систему нагрева. Исключение — реле ТРП-600 (рис. 1.2).

Биметаллическая пластина 1 нагревается как за счет прохождения через нее тока, так и за счет нагревателя 7. При прогибе конец биметаллической пластины воздействует на прыгающий подвижный контакт 5. Реле допускает плавную ручную регулировку тока срабатывания в пределах ± 25 % номинального тока уставки. Эта регулировка осуществляется ручкой 8, меняющей первоначальную деформацию биметаллической пластины. Возврат реле в исходное положение после срабатывания производится кнопкой 9. Возможно исполнение и с самовозвратом после остывания биметалла. Высокая температура срабатывания (выше 200 °С) уменьшает зависимость работы реле от температуры окружающей среды.

Реле серии РТ являются аппаратами открытого исполнения с косвенной системой нагрева. Регулирование тока срабатывания реле РТ в небольших пределах осуществляется с помощью рычага, перемещение которого изменяет ход конца биметаллической пластины при нагревании до освобождения защелки. Более широкое регулирование тока срабатывания осуществляется заменой нагревательных элементов. Имеется 56 номеров нагревательных элементов на 0,64-40 А.

Реле ТРВ служит для защиты двигателей с легкими условиями пуска, выпускается 20-ти исполнений на токи до 200 А.

Реле серии ТРН выпускаются на токи 0,5-40 А с термокомпенсацией. Используются в основном в магнитных пускателях серии ПМЕ и ПА, имеют косвенный нагрев с помощью пластинчатых ни- хромовых нагревателей.

На рисунке 1.3 приведена конструктивная схема теплового реле ТРН, предназначенного для магнитных пускателей типов ПМЕ и ПМА (табл. 1.2). Биметаллическая пластина 2 при прохождении тока, превышающего заданный, изгибается и перемещает вправо пластмассовый толкатель 11, связанный жестко с биметаллической пластиной 3, выполняющей роль температурного компенсатора. Отклоняясь вправо, пластина 3 нажимает на защелку 8 и выводит ее из зацепления с пластмассовым движком 5 уставок, в результате чего под действием пружины 10 пластмассовая штанга 7 расцепителя отходит кверху (показана пунктиром) и размыкает контакты 9 в цепи управления магнитным пускателем. Движок уставок можно перемещать, поворачивая эксцентрик 4 и изменяя расстояние между концами пластины 3 и защелкой 8, а значит, и ток срабатывания реле.

Температурная компенсация заключается в том, что изгибанию биметаллической пластины 2 при изменении окружающей среды соответствует противоположное по направлению изгибание пластины компенсатора 3. Таким образом достигается независимость тока уставки от окружающей температуры. Ток уставки можно менять в пределах от 0,75 до 1,3 номинального тока нагревательного элемента.

Рис. 1.3. Конструктивная схема теплового реле типа ТРН: 1 — нагревательный элемент; 2 — биметаллическая пластина; 3 — биметаллическая пластина температурного компенсатора; 4 — эксцентрик; 5 — движок уставки; 6 — кнопка «Возврат»; 7 — штанга расцепителя (тяга); 8 — защелка; 9 — контакты; 10 — пружина; 11 — толкатель

Предел регулирования тока теплового реле

Выбор сечений проводов по потере напряжения

Длительный ток в линии, А

Удельное активное сопротивление провода, Ом/км

Длительно допустимый ток провода, А

Калькулятор

Сервис бесплатной оценки стоимости работы

  1. Заполните заявку. Специалисты рассчитают стоимость вашей работы
  2. Расчет стоимости придет на почту и по СМС

Номер вашей заявки

Прямо сейчас на почту придет автоматическое письмо-подтверждение с информацией о заявке.

Выбор тепловых реле;

Выбор магнитных пускателей

Магнитный пускатель – это электрический аппарат, предназначенный для пуска, остановки, реверсирования и защиты асинхронных электродвигателей. Его практически единственное отличие от контакторов – наличие защиты от токовых перегрузок (тепловые реле). Выбор магнитных пускателей осуществляется исходя из следующих условий:

— Выбор теплового реле.

В указанных выше соотношениях представлены следующие обозначения: Uном – номинальное напряжение, на которое рассчитан магнитный пускатель; Uном.сети – номинальное напряжение сети; Iном –номинальный ток магнитного пускателя; Iпрод.расч – расчетный ток продолжительного режима (в нашем случае это номинальный ток двигателя Iном.дв); Iпред – предельный включаемый и отключаемый ток.

Технические данные некоторых серий магнитных пускателей приведены в табл. 2.10.

Технические данные магнитных пускателей

Магнитные пускатели серии ПМЕ – это пускатели с прямоходовой магнитной системой и управлением на переменном токе. Напряжение от 36 до 500 В. Используются для управления асинхронными двигателями с короткозамкнутым ротором. Выпускаются в открытом, защищенном и пылебрызгонепроницаемом исполнениях, с тепловыми реле и без них, бывают реверсивными и нереверсивными.

Магнитные пускатели серии ПАЕ – это пускатели с управлением на переменном токе. Применяются преимущественно в станкостроении.

Выпускаются в открытом, защищенном исполнении, бывают реверсивными, нереверсивными, с тепловой защитой и без нее.

Тепловые реле служат для защиты электроустановок от токовых перегрузок недопустимой продолжительности. Такая защита имеет огромное значение, т.к. тепловые перегрузки вызывают, в первую очередь, ускоренные старение и разрушение изоляции двигателя, что может привести к коротким замыканиям, т.е. к серьезной аварии и преждевременному выходу электрооборудования из строя.

Смотрите так же:  Вв провода нулевого сопротивления

Основой конструкции теплового реле является биметаллический элемент, который при нагреве изгибается, воздействуя на механизм переключения контактов.

Реле срабатывает, если ток перегрузки равен току уставки реле или больше него. Следует отметить, что тепловой процесс инерционен по своей природе, поэтому срабатывание реле происходит с некоторой выдержкой времени, которая тем меньше, чем больше величина перегрузок; при очень больших перегрузках реле срабатывает почти мгновенно. Однако, вследствие инерционности теплового процесса, реле не может обеспечить защиту от режима КЗ, и должно быть само защищено от него. Если этого не сделать, то реле будет нагреваться без отдачи тепла в окружающую среду и выйдет из строя до того, как успеет воздействовать на контактную систему.

При выборе тепловых реле следует ориентироваться на следующие номинальные данные:

· номинальное напряжение реле Uном.р – наибольшее из номинальных напряжений сетей, в которых допускается применение данного типа реле;

· номинальный ток реле Iном.р – наибольший ток, длительное протекание которого не вызывает срабатывания реле;

· номинальный ток нагревателя Iном.нагр – номинальный ток, при длительном протекании которого через реле с данным нагревателем оно не срабатывает;

· номинальный ток уставки реле Iном.уст – наибольший длительный ток, на который должно быть настроено реле, не вызывающий его срабатывание.

Iном.уст.мин = (0,75 ÷ 0,85) Iном.нагр.

Iном.уст.макс = (1,15 ÷ 1,25) Iном.нагр.

Тепловое реле может надежно защищать электродвигатель только в том случае, если законы нагревания и охлаждения теплового элемента реле и защищаемого двигателя подобны. А это возможно лишь в длительном режиме работы при спокойном характере нагрузки. Кроме того, при выборе тепловых реле дополнительную трудность представляет влияние на работу реле температуры окружающей среды, которую необходимо учитывать.

Можно рекомендовать следующий порядок выбора тепловых реле (считаем, что работа ведется в длительном режиме, номинальная температура окружающего воздуха tокр.н., как правило, принимается равной 40°С):

1. Выбираем предварительно, что

Iном.р ≥ Iном.нагр≈ Iном.дв.

2. Приводим Iном.нагр к действительной температуре окружающей среды, т.е. к tокр.

, (2.1)

где δ –изменение Iном.нагр на каждые 10°С разницы величины tокр по сравнению с tокр.н. Берется из паспорта реле.

Принимаем δ в зависимости от серии реле, %:

· реле серии РТ – 6%;

· реле серии ТРП – 5%;

· реле серии ТРТ – 4%;

· реле серии ТРН – 2%.

3. Выбираем номинальное значение тока уставки Iном.уст:

Iном.уст. = Iном.дв, если t = tокр;

Iном.уст. = Iном.дв/α, если t ≠ tокр.

4. Окончательно выбираем номинальный ток нагревателя Iном.нагр:

.

Выбранные таким образом тепловые реле при тщательной нагрузке будут вполне надежно защищать двигатель от нежелательных длительных перегрузок свыше 15–20%.

В настоящее время промышленностью широко выпускаются реле серий РТЛ, ТРН, ТРП, ТРТ и некоторые другие.

Технические данные реле серии РТЛ представлены в табл. 2.11, серии ТРН – в табл. 2.12, серии ТРТ – в табл. 2.13, серии ТРП – в табл. 2.14.

Основные технические данные тепловых реле серии РТЛ

Предел регулирования тока теплового реле

Рис.7,8,9. Время-токовая характеристика предохранителей ППН

3.2 Выбор электрического шкафа ветроустановки

Шкафы вводно-распределительные ШВР предназначены для приема и распределения электроэнергии напряжением 380В переменного тока частотой 50Гц и защиты электрических установок при перегрузках, токах короткого замыкания и сверхтоков. Конструктивно шкафы ШВР изготавливаются с автоматическими выключателями или рубильниками на вводе. В шкафах с автоматическим выключателем ввода управление последним может производиться как непосредственно флажком выключателя, так и ручным дистанционным приводом, выведенным на дверь шкафа. В исполнении с рубильником на вводе управление может осуществляться как внутри шкафа, так и снаружи.

Шкафы изготавливаются на номинальные токи 100, 160, 250, 400 и 630А, напряжением до 660В переменного тока и до 440В постоянного. Ввод и вывод провода предусматривается как сверху, так и снизу.

Рассчитаем ток распределительного шкафа:

Выбирается распределительный шкаф ШРС1-28У3 630А. Данное оборудование целесообразнее заказать по индивидуальному проекту.

3.3. Выбор магнитных пускателей

Выбор магнитных пускателей производим по номинальному току линий, в которой он установлен, к тому же номинальный ток увеличенный на 10 — 15 % должен попадать в пределы регулирования тока несрабатывания теплового реле магнитного пускателя.

по току магнитного пускателя

по току теплового реле

где= 1,1 коэффициент запаса.

Выбор магнитного пускателя для лини жилого сектора 1

1,1А

Выбирается номинальный ток теплового реле 50А, тип теплового реле РТЛ 2059 с магнитным пускателем ПМл 4220 (Iном=63 А)и пределами регулирования тока несрабатывания 43-64 А. Полученный ток попадает в эти пределы.

Дальнейший выбор магнитных пускателей производится аналогично и сведен в таблицу 13

Выбор магнитных пускателей

Калькулятор

Сервис бесплатной оценки стоимости работы

  1. Заполните заявку. Специалисты рассчитают стоимость вашей работы
  2. Расчет стоимости придет на почту и по СМС

Номер вашей заявки

Прямо сейчас на почту придет автоматическое письмо-подтверждение с информацией о заявке.

РЕЛЕ ТЕПЛОВЫЕ

Назначение:
Реле тепловые РТТ предназначены для защиты управляемых трехфазных асинхронных электродвигателей от перегрузок недопустимой продолжительности, в том числе при обрыве одной из фаз.

Реле имеют исполнение для установки на металлических и изоляционных панелях, рейках комплектного устройства и специальное исполнение для установки с магнитными пускателями. Трехполюсное исполнение реле, применение несменных нагревательных элементов и ускоренное срабатывание при обрыве фазы повышают надежность защиты электродвигателей по сравнению с однополюсным и двухполюсным исполнениями реле.

Реле РТТ 111 и РТТ 141 конструктивно совместимы с пускателями ПМЕ 200. Монтаж осуществляется зажимом втычных контактов реле под контакты пускателя, электрические связи проводятся гибкими проводниками.
Реле РТТ-1 могут устанавливаться на пускатели типа ПМ12-025, ПМ12-040, ПМЕ-200, ПМА-3000, а также индивидуально с помощью винтов.
Реле РТТ-2 могут устанавливаться на пускатели типа ПМ12-063, ПМА-3000 втычным способом, а также индивидуально с помощью винтов.

Номинальное напряжение: 660 В, 50 Гц.
Габаритные размеры (LхBхH): 66 х 72 х 37 мм.

Изготовитель: ОАО “Кашинский завод электроаппаратуры”.

Технические характеристики:

Номинальный ток — 25А (РТТ-111)
Номинальный ток — 80А (РТТ-211)
Номинальный ток — 160А (РТТ-321)
Несменные нагревательные элементы.
Температурный компенсатор.
Регулятор тока несрабатывания.
Кнопка ручного возврата.
Количество контактов — 1 замыкающий.

Аппараты защиты

К аппаратам защиты относятся тепловые реле, предохранители, реакторы, разрядники.


Рис. 65. Тепловое реле ТРП:
1 — контактное коромысло; 2 — контактная пружина; 3 — свободный конец биметаллического элемента; 4 — кнопка возврата контактов: 5 указатель регулятора уставок, 6 — наружный нагреватель; 7 — контактный зажим главной цепи; 8 — контактный зажим цепи управления; 9 — механизм регулирования уставки; 10 — контакты; 11 — шкала уставок.

Тепловые реле (рис. 65) служат для защиты электроприемников от перегрузок. Основой их конструкции является биметаллический элемент, нагреваемый пропорционально контролируемому току. Элемент представляет собой две сваренных между собой пластины из разных металлов с резко отличающимися температурными коэффициентами расширения. При одинаковой температуре нагрева пластины удлиняются различно, что приводит к изгибу элемента в сторону пластины с меньшим коэффициентом расширения. Реле срабатывает, если ток перегрузки равен току уставки реле (или больше него).

Смотрите так же:  Кнопка test на узо

При нагреве V-образного биметаллического элемента его свободный конец 3, перемещаясь, уменьшает наклон пружины 2, которая удерживает в равновесии контактное коромысло 1. Когда пружина отклонится в противоположную сторону, равновесие коромысла нарушится. Оно резко повернется по часовой стрелке и разомкнет контакты. Реле имеет устройство плавной регулировки тока срабатывания в пределах ± 25 % от номинального значения. Устройство действует путем изменения исходного положения биметаллического элемента посредством регулятора 5 уставок тока. Пределы регулирования тока срабатывания указаны на шкале уставок тока, расположенной -в верхней части реле. Нагреватель 6 является сменной деталью и подбирается по номинальному току защищаемого электродвигателя.

Тепловое реле не защищает цепь от короткого замыкания и само должно быть защищено от него. При коротком замыкании элемент нагревается без отдачи теплоты в окружающую среду. Во многих случаях это может привести к тому, что он будет поврежден до того, как успеет воздействовать на контактную систему.

Промышленностью выпускаются однофазные реле ТРП и двухфазные реле ТРИ. Оба типа реле широко используются комплектно с пускателями и контакторами.

Предохранители служат для защиты электрических сетей от токов короткого замыкания и перегрузок. Защитным элементом предохранителя является плавкая вставка, которая перегорает при прохождении через нее токов короткого замыкания или перегрузки, разрывая электрическую цепь. В патроне предохранителя могут устанавливаться плавкие вставки на разные номинальные токи, но не более номинального тока патрона предохранителя. Наиболее широко распространены предохранители типов ПР-2 и ПН-2 с закрытыми патронами (рис. 66).


Рис. 66. Предохранители ПР-2 (а) и ПН-2 (б), патроны ПР-2 на 15-60 и 100-1000 А (в) и конструкция плавких вставок ПР-2 (г):
1 — фарфоровая трубка; 2, 5 — плавкие вставки; 3 — контактный нож; 4 — фибровая трубка; 6 — латунная втулка; 7 — латунные колпачки; 8 — фиксирующая шайба; 9 — контактный медный нож.

Предохранитель ПР-2 состоит из фибровой трубки 4 с латунными колпачками 7 и контактного ножа 9. Внутри патрона размещаются одна или две цинковые плавкие вставки 5 в зависимости от тока в защищаемой цепи (рис. 66, в).

Предохранители ПР выпускают на напряжения до 250 и до 500 В и номинальные токи 15, 60, 100, 200. 350, 600 и 1000 А. Плавкие вставки имеют стандартные номинальные токи 15, 20. 25, 35, 60, 80, 100, 125, 160, 200 А.

Наиболее распространенный предохранитель ПН-2 состоит из квадратного фарфорового корпуса с отверстием 1, в которое устанавливается плавкая вставка 2, приваренная к шайбам контактных ножей 3. Патрон заполняют кварцевым песком, который способствует быстрому гашению электрической дуги, возникающей при расплавлении плавкой вставки в предохранителе (рис. 66, д). Плавкая вставка изготавливается из медных пластин толщиной 0,15 — 0,35 мм и шириной до 4 мм.

Для исключения перегрева предохранителей при малых перегрузках на плавких вставках напаяны шарики диаметром от 1,5 до 2 мм из легкоплавкого сплава. При нагреве вставки шарик, обладающий более низкой температурой плавления, расплавляется раньше, чем плавкая вставка. Проникая в металл вставки, расплавленный материал шарика вследствие «металлургического эффекта» снижает температуру плавления вставки в месте, где напаян шарик, благодаря чему предохранитель не перегревается. Предохранители ПН-2 выпускаются на номинальные токи 100, 150, 250, 400, 600 А.


Рис. 67. Предохранитель ПК-6:
а — общий вид; б — патрон предохранителя на керамическом стержне: в — без стержня
1 — плита; 2 — контакт с замком; 3 — патрон; 4 — контактный колпачок; 5 — контакт; 6 — изолятор; 7 — фарфоровый корпус; 8 — керамический каркас; 9 — плавкая вставка; 10 — проволока; 11 — указатель срабатывания; 12 — легкоплавкие шарики.

В электроустановках напряжением 6 и 10 кВ применяют предохранители серии ПК. Предохранитель ПК (рис. 67) состоит из фарфорового патрона 3, в который помещена медная плавкая вставка 9, латунных контактных колпачков 4, закрытых сверху крышкой и снизу указателем срабатывания П. Патрон заполняется чистым и сухим мелкозернистым кварцевым песком для обеспечения быстрой деионизации электрической дуги и проникновения паров металла вставки в песок при ее перегорании. Патрон с колпачками 4 вставляется в контакт с замком 2. Подсоединение предохранителя к шинам производят через хвостовик контакта 5. Токоведущие части ПК изолированы от металлической плиты 1 опорными изоляторами 6.

Плавкая вставка для номинальных токов до 7,5 А состоит из медных посеребренных проволочек, намотанных на керамический каркас 8 (рис. 67, б). Для токов выше 7,5 А медные проволоки делают в виде спиралей и помещают непосредственно в фарфоровый корпус 7. На проволоки напаивают легкоплавкие шарики 12 для снижения на этом участке температуры плавления вставки предохранителя. Указатель срабатывания 11 состоит из втулки, пружины, головки и удерживающей проволоки 10. При перегорании удерживающей проволоки срабатывает пружина и вставка перегорает. Предохранители ПК выпускаются на номинальные токи от 2 до 300 А.

При больших токах предохранители в каждой фазе спаривают или счетверяют, устанавливая их в цепь тока параллельно в специальных контактных стойках.

Реакторы представляют собой соленоид (катушку без сердечника), обладающий значительным индуктивным и малым активным сопротивлениями, и служат для ограничения тока короткого замыкания. Обычно реакторы устанавливают на отходящих кабельных линиях и в цепях понижающих трансформаторов мощных подстанций.


Рис. 68. Бетонный реактор РБ-10 напряжением 10 кВ:
а — общий вид; б — фаза реактора; в — схема включения обмоток.

Широкое распространение получили бетонные реакторы РБ (рис. 68) с воздушным охлаждением, которые состоят из обмотки 1 и десяти вертикальных радиально расположенных колонок 2, в которых заармировано по два сквозных стержня 4 с резьбой на концах. На нижние их концы навернуты головки опорных изоляторов 3. К верхним концам стержней крепят фланцы изоляторов реакторов, расположенных сверху. В бетонных колонках закреплена обмотка из гибкого многожильного провода с концентрическими витками. Начало и конец обмотки присоединены к контактным зажимам 5.

Реакторы характеризуются индуктивным сопротивлением, номинальным напряжением на фазу, номинальной проходной мощностью, динамической и термической устойчивостью.

Фазы реактора маркируются по их расположению: В — верхняя, С — средняя и Н — нижняя, а подсоединения шин обозначаются А1, В1, С1 — входные и А2, В2, С2 — выходные зажимы.

Направления витков обмотки средней фазы по отношению к верхней и нижней обмоткам должны быть противоположными для уравновешивания электродинамических усилий (рис. 68, в).

Разрядником называется аппарат, обеспечивающий защиту электроустановок от перенапряжений, которые способны серьезно повредить изоляцию электрооборудования. Различают внешние (атмосферные) и внутренние (коммутационные) перенапряжения. Причинами внутренних перенапряжений являются переходные процессы, возникающие при резких изменениях режима работы электроустановки, содержащей нагрузки индуктивного и емкостного характера. Например, при отключении индуктивного тока короткого замыкания возникает коммутационное перенапряжение вследствие явления самоиндукции.

Внешние перенапряжения вызываются атмосферными электрическими разрядами. Вблизи электроустановок эти разряды индуцируют в проводящих контурах электрооборудования перенапряжения. Наибольшую опасность представляют импульсные перенапряжения, возникающие при грозах в результате атмосферных разрядов непосредственно на провода ЛЭП. Перенапряжения при этом превосходят номинальные напряжения в десятки раз.

Для снижения перенапряжения до неопасных для изоляции оборудования значений устанавливают разрядник, который присоединяется с одной стороны к токопроводящей (потенциальной) части установки, а с другой — к заземляющему устройству. В настоящее время для защиты изоляции электрооборудования применяют трубчатые и вентильные разрядники.

Смотрите так же:  Как рассчитать мощность узо

Трубчатые разрядники имеют крутопадающую вольт-секундную характеристику, хорошо работают при неравномерных электрических полях, поэтому их применяют для защиты воздушных линий.

При пробое разрядного промежутка трубчатого разрядника между электродами 4 и 3 возникает электрическая дуга. Под воздействием дуги материал патрона 5 генерирует газы, создающие продольное дутье, которое обеспечивает ее надежное гашение. Разряд в трубчатом разряднике сопровождается выбросом ионизированных газов. При этом указатель срабатывания 1 выбрасывается из наконечника 2 и распрямляется, становясь хорошо видимым.

Вентильные разрядники РВС (рис. 69, а) состоят из колонки последовательно включенных искровых промежутков 5 и нелинейных разрядных резисторов 7, выполненных из специальных материалов вилита или тервита.


Рис. 69. Устройство стационарного вентильного разрядника РВС (а), комплект искровых промежутков разрядника РВС (б) и устройство подстанционного разрядника РВП (в):
1 — стальные пластины; 2 — прокладки; 3 — фланцы; 4 — фарфоровый корпус; 5 — комплект искровых промежутков; 6 — нелинейные резисторы; 7 — нелинейные разрядные резисторы; 8 — гетинаксовая прокладка; 9 — фигурная шайба; 10 — воздушный зазор; 11 — герметик; 12 — пружина; 13 — хомут.

Сопротивление разрядных резисторов зависит от напряжения, приложенного к ним, обратно пропорционально ему и нелинейно. При перенапряжениях происходит пробой искровых промежутков. Оказавшись под большим перенапряжением, разрядные резисторы резко уменьшают собственное сопротивление. Однако при восстановлении рабочего напряжения, сравнительно малого по значению, разрядные резисторы резко увеличивают свое сопротивление, чем ограничивают ток и способствуют интенсивному гашению дуги в искровых промежутках.

Сразу после гашения дуги импульсного высокочастотного тока разряда рабочее напряжение восстанавливается. Под его воздействием в искровых промежутках разрядника вновь образуется дуга так называемого сопровождающего тока. Для облегчения гашения дуги применяют нелинейные резисторы 6, шунтирующие искровые промежутки.

Искровые промежутки (рис. 69, б) 5 состоят из ряда последовательно соединенных воздушных зазоров 10, образованных гетинаксовыми прокладками 8 и металлическими фигурными шайбами 9. Комплект промежутков заключен в фарфоровый цилиндр — корпус, охваченный вилитовым подковообразным шунтирующим резистором 6. Комплекты искровых промежутков и диски разрядных резисторов сжаты пружиной 12 между стальными пластинами 1. Корпус разрядника 4 армирован фланцами 3 и герметизирован прокладками 2 из азоностойкой резины, так как вилитовые диски гигроскопичны.

Разрядник РВП (рис. 69, в) имеет аналогичную несколько упрощенную конструкцию. Уплотнение корпуса выполнено с помощью герметика 11. Установку разрядника осуществляют хомутом 13. Дополнительно цилиндрические поверхности дисков покрывают влагостойкой обмазкой, а торцовые поверхности металлизируют.

В настоящее время промышленность выпускает вентильные разрядники серий РВП, РВС; магнитно-вентильные — РВТ, РВМ, РВМГ, РВМК (комбинированные для защиты от атмосферных и внутренних перенапряжений) для номинальных напряжений от 3 до 750 кВ.

Тепловое реле РТЛ

Тепловое реле РТЛ. Технические характеристики

Область применения

Производитель

Выпускаются электротепловые реле с диапазоном тока от 0.1 до 86 А. Реле РТЛ могут устанавливаться как непосредственно на пускатели ПМЛ, так и отдельно от пускателей (в последнем случае они должны быть снабжены клеммниками КРЛ). Разработаны и выпускаются реле РТЛ и клеммники КРЛ которые имеют степень защиты І Р20 и могут устанавливаться на стандартную рейку. Номинальный ток контактов равен 10 А.

Номинальный ток пускателя, А

Пределы регулирования тока несрабатывания, А

Номи нальное напряже

Мощность, потребляемая одним полюсом, Вт

Мощность электродвигателя, кВт, при напряжении, В, 50 Гц, 60 Гц

Реле тепловые РТЛ 1010

Реле электротепловые токовые серии РТЛ

Назначение: для защиты управляемых трехфазных асинхронных двигателей от перегрузок недопустимой продолжительности, в том числе при обрыве одной из фаз. Реле РТЛ 1000 конструктивно совместимы с пускателями ПМЛ 1000 и ПМЛ 2000, реле РТЛ 2000 — пускателями ПМЛ 3000 и ПМЛ 4000. Реле РТЛ классифицируется по номинальному току несрабатывания на средней установке. При перегрузке электродвигателя на 20% реле отключает его через 20 мин., если оно было нагрето номинальным током до установившегося теплового состояния.

Монтаж осуществляется зажимом втычных контактов реле под контакты пускателя, электрические связи проводятся гибкими проводниками. По заказу реле комплектуются колодками для автономного монтажа на панели щитов. Реле имеют размыкающий и замыкающий контакты, которые механически связаны с тепловыми элементами. Замыкающий контакт можно использовать в схемах сигнализации. На корпусе реле имеется кнопка «Возврат», при помощи которой реле после срабатывания можно вручную вернуть в исходное положение ранее полного остывания теплового элемента. Время автоматического возврата зависит от величины тока перегрузки, вызвавшего срабатывание теплового реле и от температуры окружающей среды.

Реле применяются в схемах управления электроприводами в цепях переменного напряжения до 660 В частоты 50 или 60 Гц, в цепях постоянного напряжения до 440 В.
Реле пригодны для работы в системах управления с применением микропроцессорной техники. Реле типов РТЛ-1000 и РТЛ-2000 могут крепиться непосредственно к пускателям серии ПМЛ или устанавливаться индивидуально с помощью клеммников КРЛ-104 (реле типа РТЛ-1000) и КРЛ-204 (реле типа РТЛ-2000).

Время срабатывания реле при трехполюсной работе и нагреве с холодного состояния 6-кратным номинальным током несрабатывания при любом положении регулятора уставки и температуре окружающего воздуха 20°С находится в пределах 4,5. 9 с. для реле РТЛ-1000 и 4,5. 12 с. для реле РТЛ-2000.
Номинальный ток контактов — 10А.
Реле имеют:
· три полюса;
· температурный компенсатор;
· регулятор тока несрабатывания;
· 1 замыкающий и 1 размыкающий контакты;
· ручной возврат;
· переднее присоединение внешних проводников;
· несменные нагревательные элементы;
· ускоренное срабатывание при обрыве фазы.

Тип реле

Диапазон регулирования номинального тока несрабатывания, А

Похожие статьи:

  • Компрессор 220 вольт москва Компрессоры Коаксиальные FIAC Компрессоры Fiac с прямым приводом Общая схема конструкции коаксиального поршневого компрессора с прямой передачей напоминает конструкцию обычного велосипедного насоса. Тот же поршень, привод и цилиндр, […]
  • Пруток на заземление Пруток на заземление (863) 295-68-98, 221-57-09 г. Ростов-на-Дону, пр-кт. Космонавтов 2/3 Круглый токоотвод (пруток) из оцинкованной стали предназначен для токоотводов и монтажа молниеприемной сетки в системах внешней молниезащиты […]
  • Узо 1211 АСТРО-УЗО Ф-1211 В16 кто сталкивался? Форумчане! АСТРО-УЗО Ф-1211 В16- ваше мнение об этом девайсе. radist написал : Форумчане! АСТРО-УЗО Ф-1211 В16- ваше мнение об этом девайсе. УЗО со встроенной защитой от свехтока, тип АС. In=16A, […]
  • Заземление тв антенн Help! Заземление антенны на даче Помогите пожалуйста, нужна консультация по поводу заземления антенны (как я понял нужно заземлять мачту и делается это с целью снятия статики во время грозы, чтобы молнии было пофигу куда шибать) Буду […]
  • Как сделать контур заземление дома Заземление в частном доме Для того чтобы создать все условия электробезопасности в частном доме необходимо при монтаже новой электропроводки или реконструкции старой в общий план работ включить такие работы как монтаж заземления. Монтаж […]
  • Можно ли заземление делать под домом Заземление дома. Заземление дома - это соединение объекта с землёй в электрике, которое осуществляется из проводящего материала. Заземление включает заземлитель (проводящую часть, также группу проводящих частей, соединённых между собой, и […]