Предельно допустимый ток на провода и кабели

Расчёт площади сечения и длительно допустимого тока кабеля

При протекании электрического тока по проводам часть этой энергии тратится на всевозможные паразитные процессы, к которым можно отнести нагревание, создание электромагнитных полей и т. д. Так, нагрев проводника зависит от сопротивления металла, из которого он сделан. Чем выше сопротивление, тем больше потери, и наоборот.

Распространённые проводники

При современном развитии технологий и повышения уровня достатка в домах, стало появляться всё больше электроприборов, потребляющих значительное количество электроэнергии. В связи с этим устаревшая электропроводка перестала справляться с возложенными на неё задачами. Исходя из этого приходится производить монтаж электропроводки применяя строгий расчёт по мощности, принимая во внимание всю электротехнику в доме и потребляемую ей нагрузку.

В домах старой постройки, под штукатуркой, часто можно встретить провода, выполненные из алюминия. Это себя оправдывало, так как мощных потребителей электроэнергии в частном секторе практически не было, и проводники спокойно выдерживали нагрузку. Самое большое распространение получили проводники:

  • Медь. В современной электроэнергетике большую популярность получили проводники, выполненные из меди, по причине того, что её сопротивление относительно невысоко, и выпуск проводов различной марки из неё является конкурентноспособным.
  • Алюминий. Вторым по распространению является алюминий, который по проводимости уступает меди. Но его производство гораздо дешевле, в связи с его распространённостью в земной коре. К минусу этого материала можно отнести его ломкость и деформацию, а также высокую степень коррозии под влиянием внешних факторов в процессе эксплуатации.

Существуют проводники и из других металлов и их сплавов, но они являются очень редкими и используются преимущественно в специализированных отраслях. При этом из стоимость является существенно дороже рассматриваемых, что делает их повседневное использование экономически невыгодным.

Причина выхода из строя электропроводки

Так как практически любой проводник, используемый в быту, имеет своё сопротивление и пропускную способность по току, при перегрузке возникает его нагрев. При нагреве металл начинает ускоренно окислятся и терять свои проводящие способности, что лавинообразно приводит к выходу электропроводки из строя. Помимо прочего, при температуре свыше 65 градусов по Цельсию, изоляция начинает плавиться. Хотя и существуют проводники с изоляцией способной выдерживать большую температуру, они являются специализированными и в прямой продаже не встречаются.

Если проводка выбрана с очень большим запасом по току, большим сечением, это приводит к заметному удорожанию и к сложности электромонтажа. Что опять несёт в себе неоправданные финансовые и трудовые затраты. Для того чтобы избежать этого и производят расчёт по допустимому току и сечение проводов выбирают согласно полученным данным.

Площадь сечения электропроводника

В современной промышленности для провода, используемого в быту принято выполнение в форме круга. Шины, расположенные в электрошкафу преимущественно, производят в прямоугольной форме или квадрата. Для определения поперечного сечения используют формулы: S = πd 2 / 4 (для круглого сечения); S = a 2 (для квадрата); S = a * b (для прямоугольника). Где число π принимаем = 3,14; d — это диаметр; b, a — являются шириной и длинной сечения. На сегодня приняты стандартные размеры токопроводящей жилы в кв. мм: 1,5; 2,5; 4; 6; 10; 16; 25; 35; 50; 70; 95; 120.

Расчёт мощности для электропроводки

Мощность определяется по стандартной формуле: P = In 2 Rn, где In — ток нагрузки, (А); R — сопротивление, (Ом); n — реальное количество проводников.

Эта формула подходит когда производиться расчёт для одной нагрузки. В том случае, когда их подключено несколько, расчёт производится отдельно для каждого, а затем полученные результаты суммируются.

Отличие провода от кабеля

Когда заходит речь о проводниках электрического тока, такие слова, как «провод» и «кабель» встречаются довольно часто. Чем провод отличается от кабеля? На первый взгляд, может показаться, что это одно и то же, но разница всё же присутствует. Под проводом следует понимать одножильный или многожильный проводник, с использованием изоляции или вовсе без неё. А к кабелям относят систему проводников, покрытых изоляцией, которые часто, для удобства монтажа, и защиты от агрессивной окружающей среды часто объединены дополнительной изоляцией в единую конструкцию.

Получается, что провод представляет собой один проводник, кабель — две и более жилы покрытые изоляцией и объединённые защитной оболочкой. Необходимо отметить, что при монтаже требуется проводить маркировку кабеля бирками согласно пуэ.

Предельно допустимые токи

Предельно допустимые токи проводов и кабелей с изоляцией из пластмассы и резиновой изоляцией принимаются исходя из расчёта нагрева их жил до температуры 65 °С и температуры окружающей среды и земли соответственно 25 °С и 15 °C. При этом регламентируется согласно пуэ допустимый длительный ток для кабелей с пластмассовой и резиновой изоляцией.

В таблице приведены длительно допустимые токи кабеля для проводов и кабелей, выполненных из алюминия и меди.

Исходя из табличных данных следует на сколько ампер можно максимально длительно подавать токовую нагрузку для кабельных линий.

Для того чтобы избежать перегрева электрического проводника, происходящего при чрезмерной длительной нагрузке, и выхода его из строя, следует:

  • Выбрать из какого металла будет использоваться электрический проводник.
  • Правильно рассчитать сечение жил, принимая во внимание все нюансы.

Следует помнить, что пренебрежение этими простыми правилами может привести не только к материальным потерям, но и в случае выхода из строя проводника к поражению электрическим током или массовому возгоранию. Очень часто причиной пожара как раз и является старая электропроводка, не рассчитанная на те нагрузки, которые появились в процессе эксплуатации.

Кабели и длительно допустимые токи для них

Одним из основных этапов процесса проектирования электрической проводки относится определение необходимого типа кабеля и сечения проводов. От того, насколько грамотным будет этот выбор, напрямую зависит уровень безопасности в помещении.

В своде правил устройства электроустановок или, сокращенно, ПУЭ, изложены все требования, предъявляемые к монтажу электрической части и освещения:

  • всех типов строительных объектов как жилых, так и производственных;
  • улиц;
  • открытых пространств;
  • и не менее важное, устройства освещения рекламного характера;

В списке требований уделено внимание электрооборудованию общественных мест, спортивных сооружений и комплексов.

Немного теории

До потребителя электромагнитной энергии доходит не весь ее объем – в процессе движения часть энергии расходуется на нагревание провода. Величина потерь зависит от следующих факторов:

  • величины протекающего тока
  • сопротивления провода

Чем больше толщина (то есть, его поперечное сечение), тем меньше величина его сопротивления и потери допустимой энергии на нагревание.

Таким образом, при движении длительно допустимого тока или, другими словами, тока большого напряжения по проводу с небольшим сечением он будет серьезно нагреваться и оказывать тепловое воздействие на изоляционный материал. Если допустимый длительный ток для кабелей постоянно будет превышать нужные показатели в несколько раз , то изоляция полностью потеряет все свои защитные свойства и придет в негодность, а в системе произойдет сбой функционирования токопроводящих жил. Иными словами, случится короткое замыкание.

Правильно составленный проект электрической проводки для длительно допустимого тока поможет сократить потери энергии на нагрев проводов. Это ощутимо поможет сэкономить немалое количество денежных средств, которые идут на оплату коммунальных платежей.

Чем провод отличается от кабеля

Довольно часто эти понятия подменяются один другим. И это неудивительно. Зачастую непрофессионалу очень трудно отличить эти два изделия, из-за из внешнего сходства. Однако провод представляет собой систему, состоящую из следующих элементов:

  • одной неизолированной жилы
  • одной или более жил, покрытых изоляционным материалом

Поверх всех жил исходя из условий прокладки и использования провода создается неметаллическая оболочка, оплетка посредством волокнистых материалов, обмотка или слой проволоки. Все существующие в настоящее время на рынке провода бывают двух видов – голые и изолированные.

Голые провода – элементы, токопроводящие жилы которых не обладают защитным и изолирующим покрытием. Основная область применения данных проводов – воздушные линии электропередач.

Изолированные провода представляют собой элементы с покрытыми изоляцией токопроводящими жилами. В качестве изоляционного материала в подавляющем большинстве случаев используется либо резина, либо пластмасса.

Сверху изоляции у таких проводов находится оплетка, выполненная, из хлопчатобумажного материла или же оболочка из пластмассы либо резины.

Классификация проводов

Изолированные провода, в свою очередь, можно классифицировать на две группы – защищенные и незащищенные.

Защищенные получили свое название вследствие наличия у них сверху изоляционного материала оболочки. Ее основная функция – герметизация и обеспечение надежной защиты провода от разнообразных внешних факторов. К защищенным относятся изделия с маркировкой АПРН, ПРВД и АПРФ.

Незащищенный провод с изоляцией представляет собой систему, в которой отсутствует оболочка над изоляционным материалом. Такими проводами являются элементы АПРТО, ПРД, АППВ, ППВ, АППР и др.

Смотрите так же:  220 вольт адреса в лен обл

Кабель представляет собой одну или несколько изолированных токопроводящих жил, которые скручены между собой. Как правило, они размещаются в специальной оболочке – из резины, пластмассы или металла. Главное предназначение оболочки – выдерживать допустимый длительный ток для кабелей и обеспечение надежной защиты изоляционного материала токопроводящих жил от внешнего воздействия. Это могут быть солнечные лучи, влага, химические соединения и механические повреждения.

Маркировка кабелей согласно требованиям ПУЭ

Каждой кабельной линии важно присвоить свое собственное название и номер. Если система содержит несколько элементов, то все из них должны находиться под номером кабельной линии с добавлением одной из букв, например, А или Б.

При открытой прокладке кабели и кабельные муфты требуется оснастить бирками с информацией о марке кабеля, уровне его напряжения, сечения и присвоенного номера.

Определение необходимой мощности, тока и сечения проводов и кабелей

Для установления требуемой величины сечения кабелей и проводов применяется такой показатель, как предельно допустимая величина потребляемого тока. При расчете необходимо учитывать то, что он зависит от общей мощности всех потребителей системы. Она, в свою очередь, определяется сложением электроэнергии, которую потребляет каждый элемент группы.

Определить допустимый длительный ток для кабелей и его значение можно без труда. Для этого разработана специальная формула: I=P/220. Сведения о мощности допустимой длительности тока можно найти в техническом паспорте изделия.

После того как будут проведены все расчеты и получена информация о суммарном токе всех потребителей электрической энергии, приступайте к расчету сечение кабеля. При этом необходимо учитывать показатель предельно допустимой токовой нагрузки:

  1. Для элементов из меди – 10 ампер на один квадратный миллиметр.
  2. Для элементов из алюминия – 8 ампер на один квадратный миллиметр.

Если планируется выполнение скрытой силовой проводки (например, в трубе или стене), то вышеуказанные значения необходимо скорректировать в сторону уменьшения путем умножения на поправочный коэффициент – 0,8.

При проведении подобной работы необходимо помнить, что оптимальное сечение кабеля – не менее 4 квадратных миллиметров. Именно эта величина является достаточной для обеспечения должного уровня механической прочности. Перечисленные выше значения запоминаются без труда и помогают использовать кабели с высокой точностью.

Основные правила монтажа

Говоря о правилах монтажа электрооборудования и различных осветительных приборов, следуйте советам и специалистов. Ниже приведены рекомендации по установке проводов и кабелей питания для 12-вольтного электронного оборудования (видеокамеры, датчики и другие электронные приборы):

  1. Предельно допустимое падение длительного допустимого тока, или другими словами, напряжения на любом из участков системы от блока питания до каждого элемента не должно составляет 1В.
  2. Если блок питания требуется подключить непосредственно к клеммам устройств, то лучше всего использовать провод, сечение которого не превышает отметки в 1,5 миллиметра.
  3. Если элементы размещены по длине провода равномерно, то величина его сечения может быть снижена в 2 раза.
  4. Если монтаж цепей питания предполагает использование провода с сечением, превышающим отметку в 1,5 квадратных миллиметров, то во избежание длительного перенапряжения необходимо равномерно распределить общую нагрузку. Выполнять данную работу требуется таким образом, чтобы имелась возможность к любой из групп системы подвести питание посредством отдельного луча. Величина сечения провода не должна быть больше 1,5 квадратных миллиметров.

Правильное определение сечения проводов складывается из нескольких показателей. Дело в том что все зависит от того какой именно источник тока планируется использовать в качестве питания сети. Это может быть и электронный, и индукционный. Оптимальная длина проводки электроблоков вторичной цепи ни в коем случае не должна быть более 2 метров. Однако бывают исключения в случаях с трансформаторами большей мощностью допустимого тока. Длина составит 3 метра. В таком случае нужно обратиться к документации для трансформатора.

Основные ПУЭ

Главными правилами ПУЭ, которые требуется соблюдать для обеспечения длительной безопасности при работе с электроустановками любого типа, являются:

  1. Соблюдение определенного расстояния до опасных элементов.
  2. Использование блокировочных и ограждающих устройств в целях предотвращения возникновения ошибок в процессе работы и доступа к элементам под высоким напряжением.
  3. Применение сигнализационных устройств, специальных надписей и плакатов.
  4. Установка устройств, которые обладают способностью уменьшать уровень допустимого электрического и магнитного напряжения до безопасных значений.
  5. Применение средств защиты от электрического и магнитного воздействия при превышении безопасных величин длительно допустимого тока.

В заключение нужно еще раз отметить, что допустимый длительный ток для кабелей, это величина, напрямую зависящая от исходного материала, из которого выполнен кабель или провод, а также от условий окружающей среды. Категорически запрещено длительное воздействие высоких температур, химических соединений. А также нужно учитывать температуру воздуха и избегать механических повреждений.

И помните, лучше всего обратиться за помощью к высококвалифицированному специалисту, который составит грамотный проект будущей проводки в здании любого типа допустимый по всем показателям ПУЭ.

Предельно допустимый ток, выбора кабеля, компенсация

Во время протекания тока по проводнику возникают значительные энергетические потери, которые почти полностью проявляются в виде нагрева провода. Этот вид потерь обусловлен сопротивлением материала течению электронов. Для компенсации потерь на нагрев приходится увеличивать мощность, поскольку конечному потребителю дойдёт меньшее количество энергии, чем было на входе в линию электропередачи. При этом важным компонентом, позволяющим снизить данные потери является правильный выбор материала провода, а также его сечения.

Металлом, обладающим наименьшим электрическим сопротивлением при нормальных условиях, является серебро, которое из-за высокой стоимости не может применяться в промышленных масштабах для целей электропередач. Несколько более высоким электросопротивлением характеризуется медь, далее — алюминий. Два последних металла максимально высокой степени чистоты и используются в настоящее время в качестве основных проводников тока во всём мире.

Второй важный фактор при выборе провода — правильное его сечение, которое должно обеспечивать допустимый нагрев, и в то же время не имеет смысла переплачивать за слишком толстый кабель. Выбор сечения определяется температурой нагрева провода длительными токовыми нагрузками. Пример: медный проводник диаметром 1,16 мм расплавится при силе тока 10 ампер. При этом, следует помнить, что пластиковая изоляция значительно менее устойчивая к высоким температурам, и для неё чаще всего опасной является температура уже в 65°C.

Площадь сечения жилы рассчитывается по стандартным формулам в зависимости от типа проводника (круглая жила, треугольная, квадратная, прямоугольная). Формула для расчёта тепловыделения тоже стандартная. Выделяемая тепловая мощность прямо пропорциональная квадрату силы тока, при этом она не зависит от напряжения, именно поэтому там, где необходимо передавать большое количество энергии, стараются максимально возможно увеличить напряжение. Также необходимо учитывать тот факт, что если рядом проходит несколько проводов, то они греют друг друга.

Безопасным считается такой ток, который при температуре земли + 15°С, температуре воздуха или окружающей среды + 25°С нагревает кабель не более чем до +65°С. При выборе провода для любых целей рекомендуется пользоваться специальными таблицами, в которых приводятся минимальные допустимые сечения провода для предполагаемой нагрузки (определяется мощностью нагрузки). В продаже можно найти как стандартные провода с маркировкой по ГОСТ или ТУ с известными характеристиками, так и большое количество других типов кабелей.

ДОПУСТИМЫЕ НАГРУЗКИ НА КАБЕЛИ И ПРОВОДА

Величина допустимого тока нагрузки зависит от среды, окру­жающей кабель (воздух, земля и вода), воздействия тепловых лу­чей от внешнего источника тепла и др. Охлаждение кабеля в воз­духе зависит от скорости и направления движения воздуха, нали­чия влаги в нем и т. п. Обыкновенно за температуру воздуха при­нимают его среднюю суточную температуру. При прокладке не­скольких кабелей учитывают возможное влияние других, рядом рас­положенных кабелей. Кабель, прокладываемый в воде, находится в наилучших условиях, так как вода обеспечивает хороший отвод тепла с наружной поверхности кабеля. В этом случае не учитывают влияния соседних кабелей.

Кабель, прокладываемый в земле, размещают на дне траншеи и засыпают мягкой землей с последующей тщательной ее утрамбов­кой. В одной траншее могут быть уложены несколько кабелей с рас­стоянием между ними не менее одного диаметра кабеля. Разновид­ностью подземной прокладки кабелей является размещение их в бе­тонных блоках или асбошиферных трубах, зарытых в землю. При прокладке в блоках и трубах тепловой поток, выходящий из кабеля, преодолевает тепловое сопротивление тонкого слоя воздуха.

Допустимая нагрузка на кабель

где п — количество жил в кабеле; R—электрическое сопротивление 1 см токопроводящей жилы при 20°С, ом; t = t макс — 20° С;

Максимальные длительно допустимые ра­бочие температуры на жилах кабелей и проводов с изоляцией из применяемых в кабельной промышленности материалов приведены в табл. 2–8. Допустимый ток нагрузки на кабель, проложенный в воздухе, приблизительно равен 0,85 тока нагрузки в кабеле, про­ложенном в земле.

Предельно допустимые температуры нагрева кабельной изоляции

При определении допустимого тока нагрузки кабелей, проло­женных в бетонной канализации и асбошиферных или гончарных трубах, находящихся в земле, учитывают нагрев кабеля относи­тельно воздуха в блоке и нагрев самого блока относительно окру­жающего его слоя земли. Ток нагрузки кабеля в блоке зависит от формы блока, числа каналов в нем и взаимного расположения ка­налов и кабелей. При расположении кабелей в два ряда все кабели в блоке охлаждаются одинаково хорошо, а при расположении их квадратом хорошо будут охлаждаться только кабели, лежащие на периферии. Кроме того, внутренние кабели будут подогревать на­ружные.

Смотрите так же:  Электропроводка в кухне чертеж

При определении пиковой нагрузки кабеля тепловую постоян­ную умножают на отношение средних суточных потерь к максималь­ной величине потерь, обычно равной для линейных кабелей 0,5—0,65, а для генераторных кабелей 0,8—0,9.

Ток перегрузки (приближенная формула)

где m = Iнач/ Iдоп; Iнач и Iдоп — начальный и длительно допустимый ток в кабеле, а.

Установившаяся температура от тока перегрузки Iпep

где tдоп — допустимая температура жилы кабеля, °С.

Установившаяся температура от начального тока нагрузки

Допустимый ток перегрузки для заданного времени

Зарядный ток трехжильных кабелей с поясной изоляцией

Нагревание проводов и кабелей

Потери активной мощности при протекании электрического тока по проводнику вызваны расходом энергии на нагрев проводов и кабелей. Выделяемая тепловая энергия нагревает проводник постепенно, повышая его температуру V. Как только температура превысит температуру окружающей среды V0, то теплота начнет отдаваться в окружающую среду. Через некоторое время наступает тепловое равновесие, при котором за любой промежуток времени количество теплоты, выделенной в проводнике, становится равным количеству теплоты, отданной проводником в окружающую среду.

Передача теплоты от нагретого проводника в окружающую среду может осуществляться тремя способами: теплопроводностью, излучением и конвекцией.

Для проводов ВЛЭП основную роль играет конвекция, т.е. охлаждение нагретого проводника движущимися потоками воздуха. Излучение не играет значительную роль в охлаждении проводов ВЛЭП, т. к. при нормальной эксплуатации температура проводов не превышает 70ºС. А теплопроводность мала из-за плохой теплопроводности воздуха.

Теплота, выделяемая в жилах кабеля, отводится к его поверхности за счет теплопроводности изоляции. А теплота с поверхности отводится в окружающую среду за счет теплопроводности почвы ( для кабелей проложенных в земле ).

Для изолированных проводов и кабелей проложенных на открытом воздухе условия охлаждения другие, т.к. тепловому потоку приходится преодолевать сопротивление изоляции.

Количество теплоты, отдаваемое проводником в окружающую среду:

где К – коэффициент теплоотдачи;

F – площадь охлаждаемой поверхности проводника;

V1,V2 – температуры окружающей среды и проводника.

Также количество теплоты, выделяемое в проводнике при прохождении электрического тока, может быть найдено:

где І – сила тока, протекающая по проводнику;

R – сопротивление проводника при температуре окружающей среды V1.

Приравнивая правые части уравнений:

Практика эксплуатации и специальные исследования установили предельные значения температуры нагрева проводов и жил кабелей. Для проводов ВЛ предельная температура нагрева выбрана исходя из условий нормальной работы проводников в местах их соединения и присоединения к оборудованию. Нагрев соединительных контактов выше допустимой температуры вызывает интенсивную коррозию и возрастание переходных сопротивлений. Для изолированных проводов и кабелей, прокладываемых внутри помещений, предельная температура, кроме указанных факторов определяется еще и требованиями пожарной безопасности и гигиеническими требованиями. При температуре более 70ºС частицы пыли, находящиеся в воздухе, при попадании на нагретую поверхность подвергаются сухой перегонке, при которой выделяются газообразные вещества, вызывающие раздражение слизистой оболочки человека. Для кабелей предельная температура зависит от типа изоляции и используемого рабочего напряжения. Для изолированных проводов с резиновой или ПВХ изоляцией предельная температура определяется сохранностью этой изоляции.

Значение предельной допустимой температуры при к.з. в линиях значительно больше, чем при нормальном режиме из-за кратковременности аварийных режимов.

При протекании тока по проводнику при условии, что проводник охлаждается, превышение температуры проводника над температурой окружающей среды будет подчинятся экспоненциальному закону:

где t — время, в течение которого выделяется теплота;

Т – постоянная времени нагрева ( время, в течение которого проводник достиг бы температуры Vmax, если бы не отдавал тепло в окружающую среду).

При условии, если проводник не охлаждается, превышение температуры проводника над температурой окружающей среды будет изменятся в виде прямой.

В случае, если проводник охлаждается, изменение будет происходить под кривой 2.

Как видно из графика кривой 2 температура асимптотически стремится предельному значению температуры Vmax. По истечению времени t = (3…4)T температура проводника достигнет (0,95-0,98)Vmax=V. Практически в этот момент времени наступает тепловое равновесие между проводником и окружающей средой.

Закон охлаждения проводника при достижении температуры Vmax и после отключения тока записывается следующим уравнением:

и графически представляется кривой 3.

Некоторые электроприемники работают в повторнократковременном режиме. Они включаются на время tр. Отключаются на время tп, за которое проводник не успевает охладиться до температуры окружающей среды.

Время цикла:

Такие циклы могут повторяться периодически. Характеристикой повторнократковременного режима является величина, которая называется продолжительностью включения:

, [о.е., %].

При заданной предельно допустимой температуре проводника в соответствии с уравнением теплового равновесия может быть найден предельно-допустимый ток, который может протекать по проводнику:

На практике предельно-допустимые значения токов по нагреву определяются по таблице ПУЭ. Табличные значения допустимых токов соответствуют максимально-допустимой температуре для данного типа проводника. Таблицы составлены для стандартных значений температур окружающей среды ( температура воздуха +25ºС, температура земли +15ºС). Если температура окружающей среды отличается от стандартной, вводится поправочный коэффициент:

где V0 – стандартная температура окружающей среды;

— фактическая температура окружающей среды;

Vmax – максимально допустимая температура проводника.

где — длительный допустимый ток для стандартных условий.

Теплоотдача кабелей проложенных в одной траншеи зависит от их количества и расстояния между ними. Это учитывается прокладочным коэффициентом Кп, который определяется по таблице ПУЭ.

При кратковременном режиме работы для медных проводников сечением больше 10 мм ² и для алюминиевых больше 16 мм² длительно-допустимый ток находится по формуле:

Все проводники в электрических сетях напряжением до 1 кВ выбираются по условию нагрева:

,

где Іраб.max – ток, который будет наибольшим для рабочего режима.

В сетях напряжением выше 1 кВ сечение проводов и кабелей выбирается по экономической плотности тока ( также из таблиц ПУЭ).

Дата добавления: 2015-08-05 ; просмотров: 686 | Нарушение авторских прав

Предельно допустимый ток на провода и кабели

Калькулятор

Сервис бесплатной оценки стоимости работы

  1. Заполните заявку. Специалисты рассчитают стоимость вашей работы
  2. Расчет стоимости придет на почту и по СМС

Номер вашей заявки

Прямо сейчас на почту придет автоматическое письмо-подтверждение с информацией о заявке.

Все виды строительных работ любой сложности. Строительство домов под ключ. В Москве и Московской области.

Длительно допустимый ток кабеля и его значение при выборе кабельной продукции

Во время обустройства систем электропитания внутри помещений промышленного и бытового назначения, в жилых домах и других постройках всегда рассчитывают примерную нагрузку электрической сети. Для чего это необходимо? Чтобы можно было рассчитать длительно допустимый ток кабеля и выбрать по данному параметру наиболее подходящий провод. Допустимые токи кабелей – одна из важнейших характеристик, которую используют электрики для прокладки медного провода.

Что такое предельный ток кабеля

Допустимая токовая нагрузка на проводники кабеля имеет два значения. То есть она может быть длительной или кратковременной. Электрический ток, проходя по жилам, нагревает их. Степень нагрева зависит от сечения жил, проходящего по ним тока, а также металла, который использовался для их изготовления. Материал изоляции, количество жил и то, каким образом проложен провод – эти факторы также влияют на предельно допустимые, переменные и постоянные, токи для проводов и кабелей.

Что случится, если токовые нагрузки на кабели превысят максимальные в течение длительного времени? Сильный нагрев проводников приведёт к тому, что изоляция начнёт плавиться, не выдержав такой температуры. Как результат – угроза пожара и короткое замыкание. Предельные значения токов зависят от изолирующего материала – есть такие, которые начинают плавиться уже при достижении температуры 65°С.

Как правило, допустимый длительный ток для кабелей меньше, чем во время кратковременной перегрузки. Два основных металла, которые применяют для изготовления силовых кабелей, – это алюминий и медь. Оба они широко доступны и имеют оптимальную, относительно недорогую, стоимость. Раньше эти материалы применяли в жилищном строительстве. Сегодня для проведения электромонтажных работ внутри капитальных построек допускаются к использованию только медные провода. Это отражено в Правилах устройства электроустановок (ПУЭ). Такой подход связан с тем, что электропроводность меди гораздо лучше алюминия.

Другими словами, пропускная способность кабеля из меди выше, чем алюминиевого. Чтобы пропустить один и тот же ток, потребуется алюминиевый проводник большего сечения, чем медный. Соответственно, максимально допустимый ток для медных проводов больше, чем для алюминиевых такого же сечения. Алюминий имеет только одно преимущество – он более дешёвый. Но он не такой гибкий, как медный провод, и подвергается деформации в точках соединения.

Из таблицы 1 видно, насколько допустимые токовые нагрузки кабелей с медными жилами выше, чем у алюминиевых (первая буква «А» в маркировке). Кабели из 5 жил применяются для электропроводки трёхфазной сети, имеющей современную заземляющую систему TN-S. Содержат 3 фазных проводника, один нулевой и один заземляющий провод.

Как определяется площадь сечения

Большинство кабелей имеет круглую форму проводников. Выпускается также продукция с прямоугольным, треугольным и квадратным сечением жил. Эти шаги были предприняты для создания большего удобства прокладки. Например, для распределительных шкафов производят квадратные или прямоугольные шины, как самые удобные. Обычно кабель содержит маркировку, которая указывает количество жил и их сечение. Можно также вычислить это значение самостоятельно, чтобы определить допустимый длительный ток для кабелей той или иной марки.

Площадь круглого сечения определяется по формуле S = πd2/4, где S означает площадь, π – это знак «пи», равный приблизительно 3.14, d – диаметр жилы, который можно замерить точно штангенциркулем. Для квадрата способ расчёта очень прост – S = A2, где А – длина одной из сторон квадрата. Площадь прямоугольного сечения вычисляется так: S = A*B, обозначения А и В – длинная и короткая стороны прямоугольника. Если речь идёт о треугольной форме, имеющей форму сектора круга, то формула расчёта такая: S = πr2/3, где r – радиус.

Смотрите так же:  Схема соединения кабеля vga

Вычислив сечение жилы, зная марку, материал проводника и изоляции, можно определить по таблицам 1 или 2 допустимый длительный ток для кабелей. Сечение многожильных проводников посчитать труднее, но вполне возможно. Для этого нужно распушить кабельный конец, отделить один из проводников и замерить штангенциркулем его диаметр. После расчёта по вышеприведённой формуле для круглых жил результат умножается на их количество.

Если под рукой нет соответствующих таблиц, можно грубо определить, какой длительно допустимый ток для их медных проводов. Если, к примеру, сечение жилы из меди равно 1 мм2, она сможет без перегрева обеспечить прохождение тока величиной 10 А. 2 мм2 – 20 А и так далее. Но лучше длительно допустимый ток кабеля определять по соответствующими таблицам, особенно если дело касается многожильных проводников. Пропуская ток, они не только греются сами, но также греют друг друга. Поэтому предельную нагрузку уменьшают с соответствующими поправками.

Чаще всего используется открытая проводка. Это означает, что выполняется прокладка кабеля по воздуху, по различным поверхностям, внутри труб или специальных колодцев, каналов. Если же провод проложен под штукатуркой, в воде, а также под землёй или внутри других конструктивных элементов, не дающих доступа воздуху, он нагревается сильнее.

Для того чтобы откорректировать максимальные значения по току, были вычислены поправки:

  • если провод с одной жилой протянут внутри трубы длиннее 10 м – Iнагрузки = Iпредельный * 0,94;
  • для трёх одножильных проводов, проложенных в одной трубе – Iнагрузки = Iпредельный * 0,9;
  • если кабель с защитным покрытием проложен под водой, Iнагрузки = Iпредельный * 1,3 – то есть вода хорошо охлаждает;
  • для 4-жильного кабеля с проводниками одинакового сечения – Iнагрузки = Iпредельный * 0,93.

Такие коэффициенты поправок справедливы как для жил из меди, так и для алюминиевых проводников. Пропуская через себя ток, проводник нагревается. Одновременно он отдаёт тепло окружающей среде при любом виде прокладки. Наступает момент, когда происходит баланс между нагревом и рассеиванием тепла. То есть температура проводника становится стабильной. Для того чтобы потери на нагрев были меньше, следует правильно подбирать сечение жил.

Для большинства жилых помещений выбирать поперечную площадь проводников не приходится. Как правило, для осветительных приборов достаточно 1,5 мм2, а для розеточных устройств – 2,5 мм2. Если же в квартире будет работать духовой шкаф, электроплита, бойлер, стиральная машина и другие мощные потребители энергии, к ним прокладывается провод отдельно. Для него выбираются жилы, исходя из потребляемой мощности. Устанавливаются также мощные розетки.

Как выбирается вводный кабель

Выбор вводного провода зависит от общей суммарной мощности электрооборудования, которое может быть подключено в квартире. При этом лучше учитывать определённый запас по мощности на будущее. Технический прогресс движется такими бурными темпами, что электроприборов различного назначения становится всё больше. Например, уже сейчас есть смысл оборудовать заправку в частном доме для электромобилей. Они приобретают сегодня огромную популярность, поскольку намного экономичнее своих бензиновых собратьев.

Зная мощность потребления, можно вычислить силу потребляемого тока, который должны выдерживать провода и кабели. На каждый прибор токовую нагрузку можно определить по формуле: I = P*Kодн/U. Коэффициент Кодн равен 0,75 и означает, что одновременно все приборы подключены быть не могут. По статистике, в любой момент времени будет потребляться максимум 3/4 от суммарной мощности всех приборов. Ниже, в таблице 4, приведены усреднённые значения мощности для популярных бытовых приборов.

Если посчитать, какова предельная длительная нагрузка на вводные провода и кабели, согласно таблице 4, получается 81 А = 0,75*23780 Вт/220 В. Таким образом, если определить поперечную площадь жилы, то она составит приблизительно 10 мм2, это довольно приличная величина. Причём эта величина справедлива только для одножильного провода. Для трёх проводников надо было бы выбирать 16 мм2 сечения.

Вполне вероятно, что невозможно будет обеспечить такой ток для квартиры, даже если использовать медные провода и шины большого сечения. Счётчик электроэнергии просто не потянет такую нагрузку. Кроме того, электроэнергия очень дорого обойдётся хозяевам из-за превышающих коэффициентов.

Популярная кабельная продукция

Среди проводов российского производства есть марки, наилучшим образом отвечающие современным требованиям к электропроводке. Широкая номенклатура позволяет подобрать определённую марку по допустимым токовым нагрузкам на жилы.

Провода этой марки производятся как в Европейском союзе, так и на территории РФ. К примеру, один из производителей – компания «Севкабель». Эта марка имеет очень неплохие характеристики, популярна из-за своей отличной гибкости, хорошего качества медных жил, а также изолирующих материалов. Полностью соответствует немецкому стандарту VDE 0250-204 Isolierte Starkstromleitungen – PVC-Installationsleitung NYM. Обычно на оболочках таких проводов печатают аббревиатуру , означающую соответствие друг другу разных стандартов. Это относится также к российским ТУ, совместимым с VDE. По ним как раз изготавливают NYM.

Кабельный провод производится с количеством жил от 1 до 7. Одножильный имеет профиль жилы площадью от 1,5 до 16 мм2. Если количество проводников – от 2 до 5, предлагаются варианты с сечением от 1,5 до 35 мм2. Для российских построек самые популярные – 3 и 5-жильные провода. Если в оболочке 7 жил, то может быть только два варианта – 1,5 или 2,5 мм2.

Жилы изготовлены из меди, изолированы разноцветным полихлорвинилом. В многожильном исполнении присутствуют синий (нулевой проводник), а также жёлто-зелёный цвет (земля). Средний слой изоляции производится из полиальфаолефинов или из вулканизированной резины. Наружную оболочку делают из негорючего материала – пластиката ПВХ. Максимально допустимый ток для медных проводов можно посчитать по таблице 2. Примечательно, что минимальный радиус изгиба может равняться всего 4 диаметрам провода.

ВВГ, ВВГнг, ВВГнг-LS

Отечественный продукт, подходящий для электропроводки в современных квартирах. Он не так гибок, как NYM, это – его главный недостаток. Минимальный радиус изгиба одножильного провода – 7,5 диаметров. Для многожильных вариантов этот показатель равен 10. Количество проводников – от 1 до 5. Выпускается с медными и алюминиевыми жилами (к маркировке добавляется первая буква «А»).

Какую предельную нагрузку на жилы по току выдерживает кабель ВВГ? Допустимый длительный ток для кабелей с разным количеством жил представлен в таблице 5. Информация по 5-жильным проводам ВВГ есть также в таблице 1.

Производятся негорючие варианты ВВГнг и ограничивающие выделение дыма при возгорании – ВВГнг-LS. Изоляция проводников, а также наружная оболочка, изготовлены из поливинилхлорида. Негорючие варианты покрывают изоляционными ПВХ-пластикатами, не имеющими в своём составе галогенов.

Проводники также окрашены в разные цвета. Обязательными являются синий для нулевого проводника, а также – зелено-жёлтый для заземляющей жилы. Фазовые проводники могут окрашиваться разными цветами по усмотрению производителя. Одним из основных преимуществ этой марки является её невысокая цена.

ВБбШв, ВБбШвнг, ВБбШвнг-LS

Это – отечественный кабельный провод, снабжённый бронёй из двухслойной стальной ленты. Она намотана таким образом, что верхний слой перекрывает стыки нижнего. Проводники имеют одну жилу, также выпускаются в многожильном варианте. Количество медных проводников – от 1 до 5. Провод жёсткий, с одножильными проводниками, версия «нг» и «нг-LS» имеет минимальный радиус изгиба 15 диаметров. Простой ВБбШв, проводники которого состоят из 1 жилы, можно согнуть с радиусом от 10 диаметров.

Кабель имеет преимущество – его можно прокладывать в земле. Другие марки требуют защитных средств – например, труб. Максимальные токи для проводов и кабелей этой марки можно посмотреть в таблице 1. Проводники могут быть круглыми или иметь форму секторов.

Похожие статьи:

  • Как соединить провода интернета обжать Как обжать витую пару В сегодняшней статье я расскажу о том, как правильно обжать сетевой кабель “витая пара” и какие инструменты и аксессуары для этого понадобятся. Конечно, до сих пор встречаются умельцы, которые могут это сделать с […]
  • Высоковольтные провода на лачетти 14 Высоковольтные провода Chevrolet Lacetti 1.6 (оригинал, GM) , Днепропетровск Оплата и доставка График работы +38 (068) 850-43-22 Перезвоните мне ж/м Левобережный-3 , Днепропетровск Отзывы Комплект высоковольтных проводов […]
  • Обрыв телефонного кабеля куда звонить Не работает стационарный телефон Ростелеком, что делать? Городской телефон, хоть давно и пережил себя, но все равно остается на дежурстве у многих абонентов. А вот проблемы, связанные с отсутствием связи или качеством работы городской […]
  • Какого цвета нулевой провод в электропроводке Маркировка проводов (N, PE, L) Маркировка провода домашней электросети Библия электрика ПУЭ (Правила устройства электроустановок) гласит: электропроводка по всей длине должна обеспечить возможность легко распознавать изоляцию по ее […]
  • Схема подключения выключатель legrand Схема для подключения двухклавишного проходного выключателя legrand Когда человек оказывается в помещении, в котором уровень освещенности доставляет дискомфорт, он пытается включить свет. Для этого существует специальное устройство, […]
  • Защита от перенапряжения на стабилитроне Защита от перенапряжения: что выбрать? Защита от коммутационных выбросов напряжения схем на основе тиристоров или транзисторов с полевым управлением – рядовая задача в проектировании практически любого преобразователя. Для выполнения […]