Преобразователей частоты для асинхронных электродвигателей

Оглавление:

Частотный преобразователь для электродвигателя

Технические аспекты применения частотных преобразователей

В настоящее время, асинхронный электродвигатель стал основным устройством в большинстве электроприводов. Все чаще для управления им используется частотный преобразователь – инвертор с ШИМ регулированием. Такое управление дает массу преимуществ, но и создает некоторые проблемы выбора тех или иных технических решений. Попробуем разобраться в них более подробно.

Устройство частотных преобразователей

Разработка и производство широкой номенклатуры мощных высоковольтных транзисторных IGBT модулей предоставили возможность реализации многофазных силовых переключателей, управляемых непосредственно с помощью цифровых сигналов. Программируемые вычислительные средства позволили на входах коммутаторов сформировать числовые последовательности, обеспечивающие сигналы частотного управления асинхронными электродвигателями. Разработка и массовый выпуск однокристальных микроконтроллеров, обладающих большими вычислительными ресурсами, обусловили возможность перехода к следящим электроприводам с цифровыми регуляторами.

Силовые преобразователи частоты, как правило, реализуют по схеме, содержащей выпрямитель на мощных силовых диодах или транзисторах и инвертор (управляемый коммутатор) на IGBT транзисторах, шунтированных диодами (рис. 1).

Рис. 1. Схема частотного преобразователя

Входной каскад выпрямляет подаваемое синусоидальное напряжение сети, которое после сглаживания с помощью индуктивно-емкостного фильтра служит источником электропитания управляемого инвертора, вырабатывающего при действии команд цифрового управления сигнал с импульсной модуляцией, который формирует в обмотках статора токи синусоидальной формы с параметрами, обеспечивающими требуемый режим работы электродвигателя.

Цифровое управление силовым преобразователем осуществляется с помощью микропроцессорных аппаратных средств и соответствующим поставленным задачам программным обеспечением. Вычислительное устройство в режиме реального времени вырабатывает сигналы управления 52 модулями, а также производит обработку сигналов измерительных систем, контролирующих работу привода.

Силовые устройства и управляющие вычислительные средства объединены в составе конструктивно оформленного промышленного изделия, называемого частотным преобразователем.

В промышленном оборудовании применяются два основных вида частотных преобразователей:

фирменные преобразователи для конкретных типов оборудования.

универсальные преобразователи частоты предназначены для многоцелевого управления работой АД в задаваемых пользователем режимах.

Установку и контроль режимов работы частотного преобразователя можно производить с помощью пульта управления, оснащенного экраном для индикации введенной информации. В простом варианте скалярного регулирования частоты можно воспользоваться набором простых логических функций, имеющихся в заводских установках контроллера, и встроенным ПИД-регулятором.

Для осуществления более сложных режимов управления с использованием сигналов с датчиков обратных связей необходимо разработать структуру САУ и алгоритм, который следует запрограммировать с помощью подключаемого внешнего компьютера.

Большинство производителей выпускает целый ряд преобразователей частоты, отличающихся входными и выходными электрическими характеристиками, мощностью, конструктивным исполнением и другими параметрами. Для подключения к внешнему оборудованию (электросети, двигателю) могут быть использованы дополнительные внешние элементы: магнитные пускатели, трансформаторы, дроссели.

Необходимо делать различия между сигналами различных типов и для каждого из них использовать отдельный кабель. Различные типы сигналов могут оказывать влияние друг на друга. На практике такое разделение встречается часто, например кабель от датчика давления может быть подключен непосредственно к преобразователю частоты.

На рис. 2 приведен рекомендуемый вариант подключения преобразователя частоты при наличии различных цепей и сигналов управления.

Рис. 2. Пример подключения силовых цепей и цепей управления преобразователя частоты

Можно выделить следующие типы сигналов:

аналоговые — сигналы напряжения или тока (0. 10 В, 0/4. 20 мА), значение которых меняется медленно или редко, обычно это сигналы управления или измерения;

дискретные сигналы напряжения или тока (0. 10 В, 0/4. 20 мА), которые могут принимать только два редко изменяющихся значения (высокое или низкое);

цифровые (данные) — сигналы напряжения (0. 5 В, 0. 10 В), которые меняются быстро и с высокой частотой, обычно это сигналы портов RS232, RS485 и т.п.;

релейные — контакты реле (0. 220 В переменного тока) могут включать индуктивные токи в зависимости от подключенной нагрузки (внешние реле, лампы, клапаны, тормозные устройства и т.д.).

Выбор мощности частотного преобразователя

При выборе мощности частотного преобразователя необходимо основываться не только на мощности электродвигателя, но и на номинальных токах и напряжениях преобразователя и двигателя. Дело в том, что указанная мощность частотного преобразователя относится только к эксплуатации его со стандартным 4-х полюсным асинхронным электродвигателем в стандартном применении.

Реальные приводы имеют много аспектов, которые могут привести к росту токовой нагрузке привода, например, при пуске. В общем случае, применение частотного привода позволяет снизить токовые и механические нагрузки за счет плавного пуска. Например, пусковой ток снижается с 600% до 100-150% от номинального.

Работа привода на пониженной скорости

Необходимо помнить, что хотя частотный преобразователь легко обеспечивает регулирование по скорости 10:1, но при работе двигателя на низких оборотах мощности собственного вентилятора может не хватать. Необходимо следить за температурой двигателя и обеспечить принудительную вентиляцию.

Поскольку частотный преобразователь мощный источник высокочастотных гармоник, то для подключения двигателей нужно использовать экранированный кабель минимальной длины. Прокладку такого кабеля необходимо вести на расстоянии не менее 100 мм от других кабелей. Это минимизирует наводки. Если нужно пересечь кабели, то пересечение делается под углом 90 градусов.

Питание от аварийного генератора

Плавный пуск, который обеспечивает частотный преобразователь позволяет снизить необходимую мощность генератора. Так как при таком пуске ток снижается в 4-6 раз, то в аналогичное число раз можно снизить мощность генератора. Но все равно, между генератором и приводом должен быть установлен контактор, управляемый от релейного выхода частотного привода. Это защищает частотный преобразователь от опасных перенапряжений.

Питание трехфазного преобразователя от однофазной сети

Трехфазные частотные преобразователи могут быть запитаны от однофазной сети, но при этом их выходной ток не должен превышать 50% от номинального.

Экономия электроэнергии и денег

Экономия происходит по нескольким причинам. Во-первых, за счет роста косинуса фи до значений 0.98, т.е. максимум мощности используется для совершения полезной работы, минимум уходит в потери. Во-вторых, близкий к этому коэффициент получается на всех режимах работы двигателя.

Без частотного преобразователя, асинхронные двигатели на малых нагрузках имеют косинус фи 0.3-0.4. В-третьих, нет необходимости в дополнительных механических регулировках (заслонках, дросселях, вентилях, тормозах и т.д.), все делается электронным образом. При таком устройстве регулирования, экономия может достигать 50%.

Синхронизация нескольких устройств

За счет дополнительных входов управления частотного привода можно синхронизировать процессы на конвейере или задавать соотношения изменения одних величин, в зависимости от других. Например, поставить в зависимость скорость вращения шпинделя станка от скорости подачи резца. Процесс будет оптимизирован, т.к. при увеличении нагрузки на резец, подача будет уменьшена и наоборот.

Защита сети от высших гармоник

Для дополнительной защиты, кроме коротких экранированных кабелей, используются сетевые дроссели и шунтирующие конденсаторы. Дроссель, кроме того, ограничивает бросок тока при включении.

Правильный выбор класса защиты

Для безотказной работы частотного привода необходим надежный теплоотвод. Если использовать высокие классы защиты, например IP 54 и выше, то трудно или дорого добиться такого теплоотвода. Поэтому, можно использовать отдельный шкаф с высоким классом защиты, куда ставить модули с меньшим классом и осуществлять общую вентиляцию и охлаждение.

Параллельное подключение электродвигателей к одному частотному преобразователю

Смотрите так же:  Высоковольтные провода на w124

С целью снижения затрат, можно использовать один частотный преобразователь для управления несколькими электродвигателями. Его мощность нужно выбирать с запасом 10-15% от суммарной мощности всех электродвигателей. При этом нужно минимизировать длины моторных кабелей и очень желательно ставить моторный дроссель.

Большинство частотных преобразователей не допускают отключение или подключение двигателей с помощью контакторов во время работы частотного привода. Это производится только через команду стоп привода.

Задание функции регулирования

Для получения максимальных показателей работы электропривода, таких как: коэффициент мощности, коэффициент полезного действия, перегрузочная способность, плавность регулирования, долговечность, нужно правильно выбирать соотношение между изменением рабочей частоты и напряжения на выходе частотного преобразователя.

Функция изменения напряжения зависит от характера момента нагрузки. При постоянном моменте, напряжение на статоре электродвигателя должно регулироваться пропорционально частоте (скалярное регулирование U/F = const). Для вентилятора, например, другое соотношение – U/F*F = const. Если увеличиваем частоту в 2 раза, то напряжение нужно увеличить в 4 (векторное регулирование). Есть приводы и с более сложными функциями регулирования.

Преимущества использования регулируемого электропривода с частотным преобразователем

Кроме повышения КПД и энергосбережения такой электропривод позволяет получить новые качества управления. Это выражается в отказе от дополнительных механических устройств, создающих потери и снижающих надежность систем: тормозов, заслонок, дросселей, задвижек, регулирующих клапанов и т.д. Торможение, например, может быть осуществлено за счет обратного вращения электромагнитного поля в статоре электродвигателя. Меняя только функциональную зависимость между частотой и напряжением, мы получаем другой привод, не меняя ничего в механике.

Следует заметить, что хотя частотные преобразователи похожи друг на друга и освоив один, легко разобраться с другим, тем не менее, необходимо тщательно читать документацию. Некоторые производители накладывают ограничения на использование своей продукции, а при их нарушении снимают изделия с гарантии.

Назначение и принцип работы преобразователя частоты для асинхронных двигателей

Двигатель асинхронного типа используется повсеместно. Основное предназначение – преобразование электричества в механическую силу. Электродвигатель – своего рода противоположность генератора.

Учитывая особенность того, что рассматриваемый механизм работает от электричества, особые требования предъявляются к показателям электроэнергии. Часто можно встретить ситуацию, когда в цепи присутствует частотный преобразователь, который создан специально для асинхронного типа двигателя.

В системе питания, созданной для асинхронного двигателя, рассматриваемый аппарат служит для изменения тока с 1 или 3 фазами, который приходит от сети питания и имеет частоту 50 Гц, в трехфазный ток, показатель частоты от различных условий может быть от 1 до 800 Гц.

Кроме вышеприведенной информации, стоит уточнить следующее:

  1. Для оборудования, которое используется в промышленности, проводят выпуск частотного преобразователя, имеющий электроиндукционный тип. Они представляют собой в некотором роде асинхронный двигатель, который имеет фазный ротор. Определенный режим позволяет работать оборудованию в режиме генератора-преобразователя.
  2. Изменение частоты входного тока используются для изменения скорости вращения выходного вала двигателя. Совершенные механизмы регулирования представлены векторным типом, практически только подобные варианты исполнения присутствуют в продаже.

Приобрести также можно варианты исполнения для бытового использования.

Устройство и принцип работы

Рассматриваемое устройство состоит из следующих элементов:

  1. Мост постоянного тока выступает в качестве выпрямителя. Именно он проводит преобразование, к примеру, промышленного тока с генератора в постоянный.
  2. Инвертор проводит создание переменного тока. При этом, есть возможность контролировать частоту и амплитуду.
  3. Также, в конструкции есть тиристоры или транзисторы, которые обеспечивают подачу рабочего тока к электродвигателю. Они выступают в качестве электрических ключей.
  4. В управляющей части установлен микропроцессор, который проводит управление работой установленных ключей. Также, микропроцессор выполняет ряд других задач: проводит защиту системы, контролирует выходные параметры, диагностирует состояние подаваемого тока.

Многие построены на основе двойного преобразования.

Можно выделить 2 основных класса:

  1. С созданием промежуточного звена.
  2. С образованием непосредственной связи.

2 вышеприведенных класса имеют свои особенности, которые определяют возможность и целесообразность их использования тех или в иных условиях.

Непосредственная связь обуславливается тем, что преобразователь представлен выпрямителем управляемого типа. Используемая система управления проводит отпирание группы тиристоров и также проводит подвод напряжения к обмотке электродвигателя.

В данном случае, напряжение преобразуется путем вырезания синусоид из входного тока. Проведенные измерения показывают, что получаемая частота находится в приблизительном промежутке от 0 до 30 Гц. Использовать подобный вариант исполнения нельзя в регулируемых приводах.

При выходе синусоида с непосредственной связью, приводит к следующему:

  1. Появляется гармоник.
  2. Происходят потери в самом электродвигателе.
  3. Происходит перегрев электродвигателя.
  4. Значительно снижается показатель момента.
  5. Создаются сильные помехи.

Кроме этого, компенсаторы значительно повышают стоимость цепи, ее габариты и вес. Включение дополнительного элемента в цепь также приводит к уменьшению показателя КПД из-за возникающих потерь.

Современные цепи питания часто создаются при использовании преобразователя, который имеет промежуточное звено.

В данном случае, проводится процедура, предусматривающая двойное преобразование электрического тока:

  1. Изначально, входное напряжение синусоидального типа с неизменной частотой и амплитудой преобразуется при помощи выпрямителя.
  2. Используютсяспециальные фильтры, которые сглаживают показатели.
  3. Инвертор на выходе проводит преобразование энергии с изменяемым показателем амплитуды и частоты.

Как правило, процедура двойного преобразования приводит к значительному снижению показателя КПД, вследствие чего также ухудшаются показатели соотношения массы и габаритов.

К основным достоинствам преобразователей частоты, которые работают как тиристор, можно отнести следующее:

  1. Возможна работа в системе с большими показателями тока.
  2. Система может быть использована при высоких показателях напряжения.
  3. Есть устойчивость к длительному воздействию большой нагрузки и импульсного воздействия.
  4. Более высокий показатель КПД, который достигает 98%.

Данные особенности являются основными отличительными признаками работы двух типов преобразователей.

Технические характеристики

Использовать частотные преобразователи следует только с учетом эксплуатационных характеристик. К основным техническим характеристикам, на которые нужно обратить внимание, можно отнести:

  1. Диапазон напряжения подаваемого тока. Существуют различные варианты исполнения, которые могут работать при напряжении от 100 до 120 В, от 200 до 240 В. Этот показатель является определяющим при выборе наиболее подходящей модели.
  2. Номинальная мощность подключаемого в цепи электродвигателя. Как правило, показатель измеряется в кВт.
  3. Полная мощность электродвигателя.
  4. Номинальный выходной ток.
  5. Выходное напряжение зачастую не больше показателя напряжения от источника питания, но может быть и меньше.
  6. Диапазон выходной частоты.
  7. Показатель допустимой силы тока на входе.
  8. Частота электричества при входе.
  9. Максимальные отклонения от показателей, которые допустимы при тех или иных случаях.

Подобные параметры должны быть указаны в спецификации преобразователя частот. Если, к примеру, не учесть напряжение подаваемого тока, рассматриваемое устройство будет испорчено.

Подключение преобразователя частот – пошаговая инструкция

Провести подключение преобразователя частоты можно различными схемами. Все зависит от того, с какой целью рассматриваемый элемент включается в сеть, к примеру, для более легкого старта или регулировки частоты вращения.

Довольно простой схемой подключения частотника можно назвать размещение устройства автоматического выключения перед ним. Подобное устройство должно быть адоптировано для работы с током, величина его должна составлять величину номинального показателя потребляемого тока электродвигателя.

Стоит отметить, что многие модели частотников могут работать с трехфазной сетью, поэтому можно выбрать обычный трехфазный автомат. На момент возникновения короткого замыкания, одна из фаз проводит обесточивание других. Если же преобразователь частоты рассчитан на однофазную сеть, стоит выбрать выключатель, который рассчитан на утроенный ток одной фазы.

Частотники рассчитаны исключительно на прямое включение в сеть.

Дальнейшая работа по подключению заключается в присоединении фазных проводов к определенным клеммам электродвигателя. Также, проводится включение внешнего тормозного резистора в цепь. Кроме этого, в сеть можно включить вольтметр для измерения напряжения в цепи на выходе после преобразователя.

Выбор частотного преобразователя

Изначальной задачей каждого производителя можно назвать продать свою продукцию. Именно поэтому, следует обратить внимание на нижеприведенные нюансы правильного выбора:

  1. Скалярный или векторный метод управления. Современные варианты исполнения зачастую имеют векторные методы управления, однако особый режим работы позволяет переключиться на скалярный метод управления. Найти новый частотник без векторного метода управления практически невозможно.
  2. Мощностной ряд. Стоит помнить о том, что мощность потребителя энергии – важный показатель, на который стоит обращать внимание.
  3. Входное напряжение, а точнее допустимый диапазон, определяет то, при каком напряжении преобразователь частоты может работать без сбоев. При этом, важно понять, что падение показателя приведет к остановке частотника, увеличение – к выходу из строя всего оборудования. Поэтому следует обеспечить работу при постоянном показателе входного напряжения.
  4. Диапазон регулировки – также важный показатель, особенно при использовании двигателей, которые работают при высоких показателях номинальной частоты.
  5. Как организовано управление. Современные варианты исполнения имеют специальные пульты, при помощи которых можно вводить необходимые значения.
  6. Срок гарантии косвенно говорит о надежности техники. Однако, стоит помнить о том, что выход из строя при подаче тока с неправильными номинальными показателями нельзя назвать гарантийным случаем.
Смотрите так же:  Как узнать где фаза а в с

Вышеприведенные особенности следует учитывать при выборе преобразователя частоты.

Обзоры моделей

Выделим следующие модели рассматриваемого оборудования:

Стоимость этой модели составляет 15 000 рублей. Значение мощности 0,75 кВт, выходного тока 2,1 А. Вес подобного блока составляет 1,5 кг. Блок компактный и прост в использовании. Данный вариант исполнения имеет встроенный блок управления.

Стоимость около 24 000 рублей. Значение мощности 1,1 кВт, выходного тока 3,3. Вес блока составляет 5 кг. Довольно дорогая модель, несмотря на небольшое повышение выходных показателей.

Мощный блок, который может работать при 90 кВт. Стоимость около 250 000 рублей. Выходной ток 176 А. Установка имеет вес 50 кг. Рассматриваемая установка одна из самых дорогих. Имеет довольно большие габаритные размеры, несколько напоминает шкаф.

Существует огромное количество моделей, их стоимость зачастую зависит от эксплуатационных характеристик.

Преобразователи частоты для асинхронных двигателей

Преобразователи частоты предназначены для управления скоростью вращения трехфазных асинхронных двигателей за счет изменения частоты и уровня питающего напряжения. Применение частотных преобразователей с асинхронными двигателями сегодня является безусловно перспективным и экономически обоснованным способом замены как регулируемого привода постоянного тока, так и нерегулируемого привода переменного тока.

Преобразователи частоты являются универсальными устройствами управления электродвигателями, которые обеспечивают наиболее широкие возможности управления электродвигателем:

  • бесступенчатое регулирование частоты вращения двигателя в широком диапазоне;
  • изменение направления вращения (реверс);
  • плавный запуск и плавный останов с токами не более 100-120% (вместо 600-800% при прямом пуске);
  • рекуперативное торможение асинхронного двигателя (с рассеиванием энергии на тормозном резисторе);
  • полный комплекс защит электродвигателя;
  • экономия электроэнергии до 40-50%.

Компания НПФ «Битек» работает в области внедрения частотно-регулируемого электропривода с 2003-го года и имеет партнерские отношения с разными производителями преобразователей частоты.

Несмотря на то, что в настоящее время преобразователи частоты разных производителей имеют в целом очень схожие функции и характеристики, разные преобразователи частоты могут быть лучше адаптированы для разных типов задач, поэтому специалисты НПФ «Битек» помогут сориентировать в выборе и оказать квалифицированную техническую поддержку.

Мы всегда сможем подобрать более доступные аналоги преобразователей частоты Siemens, ABB, Schneider Electric, Mitsubishi Electric, Omron, Yaskawa, Hitachi, Danfoss, Vacon, Allen Bradley, Control Technics, KEB, Elettronica Santerno, LG, Meidensha (Сбережок) и других.

Преобразователи частоты Schneider Electric

Преобразователи частоты компании Schneider Electric одни из наиболее востребованных преобразователей в России. Диапазон мощностей 0.2 — 630 кВт

Преобразователи частоты Lenze — AC Tech

Преобразователи частоты американского подразделения Lenze — AC Tech разработаны в соответствии с критерием разумной достаточности, благодаря чему являются одними из самых компактных и экономичных моделей на рынке. Диапазон мощностей от 0.25 до 45 кВт.

Преобразователи частоты Delta Electronics

Delta Electronics (Тайвань) один из крупнейших мировых производителей приводной техники и средств автоматизации. Преобразователи частоты Delta Electronics имеют широкий ассортимент моделей от самых простых до высокоточных с функциями сервоуправления и встроенным высокопроизводительным ПЛК. Обновленный модельный ряд преобразователей частоты Delta демонстрирует одни из лучших показателей функциональности и гибкости применения. Диапазон мощностей от 0.04 до 400 кВт.

Преобразователи частоты Prostar

Преобразователи частоты китайской компании Prostar обладают экономичной ценой при высоком уровне функциональности и качества. Диапазон мощностей 0.4 — 315 кВт

Преобразователи частоты Fuji Electric

Преобразователи частоты японской компании Fuji Electric позволяют решать максимально широкий спектр задач управления электроприводом и демонстрируют одни из лучших в мире показатели функциональности и надежности. Обновленный модельный ряд преобразователей частоты включает в себя 5 серий, которые позволяют подобрать оптимальное решение для каждой задачи. Диапазон мощностей 0.1 — 710 кВт

Расчет параметров частотного преобразователя для асинхронных двигателей

  • 0 comments
  • Принцип работы
  • Январь 30, 2017

Зачастую приходится понижать скорость вращения двигателя, выполняющего определенные задачи в механизме. Уменьшение числа оборотов элеткродвигателя можно добиться с помощью самодельных приборов, управляющих схем стандартного изготовления.

Электродвигатели переменного тока часто используются в деятельности человека, на металлообрабатывающих станках, транспорта, крановых механизмов и другого оборудования. Двигатели превращают энергию переменного тока питания во вращение вала и агрегатов. Используются в основном асинхронные двигатели переменного тока.

Ротор, а также и статор двигателя состоят из катушек провода, уложенного в сердечник, изготовленный из специальной стали. Классификация электродвигателей следует от способа закладки обмотки.

Обмотка из латунных и медных стержней вставляется в сердечник, по краям устанавливаются кольца. Такая катушка провода называется короткозамкнутым (КР) ротором. Электродвигатели небольшой мощности имеют стержни, а также диски, которые были отлиты вместе. Для электродвигателей с мощным моментом детали отливаются отдельно, затем свариваются. Обмотка статора может быть подключена двумя методами: треугольником, звездой.

Фазный ротор состоит из 3-фазной роторной обмотки, подключенной контактными кольцами и щетками к питанию. Обмотка соединена «звездой».

Расчет количества оборотов асинхронного двигателя

Распространенным двигателем на станках и подъемных устройствах является двигатель с короткозамкнутым ротором, поэтому пример для расчета следует брать для него. Сетевое напряжение поступает на статорную обмотку. Обмотки смещены друг от друга на 120 градусов. Возникшее поле электромагнитной индукции возбуждает электрический ток в обмотке. Ротор начинает работать под действием ЭМС.

Основной характеристикой работы двигателя является число оборотов в минуту. Рассчитываем это значение:

n = 60 f / p, обор / мин;

где f – частота сети, герц, р – количество полюсов статора (в парах).

На корпусе электродвигателя имеется табличка с техническими данными. Если ее нет, то можно самому рассчитать число оборотов вала оборудования по другим имеющимся данным. Расчет производится тремя способами.

  1. Расчет числа катушек, которое сравнивается с нормами для разного напряжения, следует по таблице:

  1. Расчет скорости работы по шагу диаметра обмотки по формуле:

2 p = Z1 / y, где 2р – количество полюсов, Z1 – число пазов в статоре, у – шаг обмотки.

Выбираем из таблицы подходящие обороты двигателя:

  1. Высчитываем количество полюсов по параметрам сердечника по формуле:

2p = 0,35 Z1 b / h или 2 p = 0,5 Di / h,

где 2р – количество полюсов, Z1 – число пазов, b – размер зуба, см, h – высота спинки, см, Di – диаметр по зубцам, см.

По результатам расчета и индукции следует число витков обмотки, сравнивается со значениями мотора по паспорту.

Как изменить скорость работы двигателя?

Изменять скорость вращающего момента механизма оборудования можно различными способами, например, механическими редукторами с переключением передач, муфтами и другими устройствами. Но это не всегда возможно. Практически используется 7 способов коррекции частоты вращения регулируемых приводов. Все способы разделены на два основных направления.

  1. Коррекция магнитного поля путем воздействия на частоту тока, уменьшение или увеличение числа пар полюсов, коррекция напряжения. Направление характерно моторам с короткозамкнутым (КР) ротором.
  2. Скольжение корректируется напряжением питания, добавлением еще одного резистора в цепь схемы ротора, установкой двойного питания, использованием каскада вентилей. Такое направление используется для роторов с фазами.
Смотрите так же:  Соединить две части провода

Регулировка частоты и напряжения с помощью частотного преобразователя, путем создания дополнительной катушки с переключением полюсов пар, являются самыми востребованными способами.

Распространенные схемы регуляторов

Существует множество частотных преобразователей для асинхронных двигателей, а также различных регуляторов для них. Самостоятельно возможно изготовить прибор для регулировки частоты, применяя транзисторы или тиристоры. Прибор работает как в быту, так и для станочного оборудования, крановых механизмов, различных регулируемых приводов агрегатов.

Мощный регулятор частоты и напряжения показан на схеме. Прибор плавно изменяет параметры привода, экономит энергию, снижает расходы на обслуживание.

Для применения этой схемы в быту, она сложная. Если использовать симистор рабочим элементом, то схема упрощается, и выглядит иначе.

Регулировка будет происходить работой потенциометра, определяюцим фазу импульса входа, и открывающего симистор.

Эффект эксплуатации станков, обрабатывающих металл, подъемных устройств также следует из вращения двигателя, как и сами его эксплуатационные параметры. В продаже имеется множество приборов для регулировки частоты, однако можно вполне собрать такой прибор собственными силами.

Как выбрать частотный преобразователь?

Если проанализировать цены и функции преобразователей частоты, то можно понять, что по цене определяется количество встроенных функции частотного преобразователя. Дорогие модели обладают большой функциональностью. Но для выбора прибора лучше руководствоваться требуемыми условиями применения.

  • Частотники бывают с двумя видами управления: скалярное, векторное. При скалярном управлении прибор действует при определенных значениях выходной разности потенциалов и частотой, работают в примитивных домашних приборах, например, вентиляторах. При векторном управлении сила тока устанавливается достаточно точно.
  • При выборе прибора параметры мощности играют определяющую роль. Величина мощности расширяет сферу использования, упрощает обслуживание.
  • При выборе устройства учитывается интервал рабочего напряжения сети, что снижает опасность выхода его из строя из-за резких перепадов разности потенциалов. При чрезмерном повышении напряжения конденсаторы сети могут взорваться.
  • Частота – немаловажный фактор. Его величина определяется требованиями производства. Наименьшее значение говорит о возможности использования скорости в оптимальном режиме работы. Для получения большего интервала частоты применяют частотники с векторным управлением. В реальности часто используются инверторы с интервалом частот от 10 до 10 Гц.
  • Частотный преобразователь, имеющий много разных выходов и входов удобен в пользовании, но стоимость его выше, настройка сложнее. Разъемы частотников бывают трех типов: аналоговые, дискретные, цифровые. Связь обратного вида вводных команд производится через аналоговые разъемы. Цифровые клеммы производят ввод сигналов от датчиков цифрового типа.
  • Выбирая модель частотного преобразователя, нужно дать оценку управляющей шине. Ее характеристика подбирается под схему инвертора, что обуславливает число колодок. Наилучшим выбором работает частотник с запасом количества разъемов для дальнейшей модернизации прибора.
  • Частотники, выдерживающие большие перегрузки (на 15% выше мощности мотора), при выборе имеют предпочтения. Чтобы не ошибиться при покупке преобразователя частоты, ознакомьтесь с инструкцией. В ней имеются главные параметры эксплуатации оборудования. Если нужен прибор для максимальных нагрузок, то необходимо выбирать частотник, сохраняющий ток на пике работы выше, чем на 10% от номинала.

Как подключить частотный преобразователь

Если кабель для подключения на 220 В с 1-й фазой, применяется схема «треугольника». Нельзя подключать частотник, если выходной ток выше 50% от номинального значения.

Если кабель питания на три фазы 380 В, то делается схема «звезды». Чтобы проще было подключать питание, предусмотрены контакты и клеммы с буквенными обозначениями.

  • Контакты R, S, T предназначены для подключения сети питания по фазам.
  • Клеммы U , V , W служат соединением электродвигателя. Для реверса достаточно изменить подключение двух проводов между собой.

В приборе должна быть колодка с клеммой подключения к земле. Подробней, как подключить, здесь.

Как обслуживать частотные преобразователи?

Для долгосрочной эксплуатации инвертора требуется контроль за его состоянием и выполнение предписаний по обслуживанию:

  1. Очищать от пыли внутренние элементы. Можно использовать компрессор для удаления пыли сжатым воздухом. Пылесос для этих целей не подходит.
  2. Периодически контролировать состояние узлов, производить замену. Срок службы электролитических конденсаторов составляет пять лет, предохранительных вставок – десять лет. Охлаждающие вентиляторы работают до замены 3 года. Шлейфы проводов используются шесть лет.
  3. Контроль напряжения шины постоянного тока и температура механизмов является необходимым мероприятием. При повышенной температуре термопроводящая паста засыхает и выводит из строя конденсаторы. Каждые 3 года на силовые клеммы наносят слой токопроводящей пасты.
  4. Условия и режим работы необходимо соблюдать в строгом соответствии. Температура окружающей среды не должна превышать 40 градусов. Пыль и влажность отрицательно влияют на состояние рабочих элементов прибора.

Окупаемость преобразователя частоты

Электроэнергия постоянно дорожает, руководители организаций вынуждены экономить разными путями. В условиях промышленного производства большая часть энергии расходуется механизмами, имеющими электродвигатели.

Изготовители устройств для электротехнических машин и агрегатов предлагают специальные устройства и приборы для управления электромоторами. Такие устройства экономят энергию электрического тока. Они называются инверторами или частотными преобразователями.

Финансовые затраты на покупку частотника не всегда оправдывают экономию средств, так как стоимость их сопоставима со стоимостью сэкономленной энергии. Не всегда привод механизма можно быстро оснастить инвертором. Какие сложности при этом возникают? Разберем способы запуска асинхронных двигателей для пониманию достоинств инверторов.

Методы запуска двигателей

Можно определить 4 метода пуска двигателей.

  1. Прямое включение, для моторов до 10 кВт. Способ неэффективен для ускорения, увеличения момента, перегрузок. Токи выше номинала в 7 раз.
  2. Включение с возможностью выбора схем «треугольника» и «звезды».
  3. Интегрирование устройства плавного пуска.
  4. Применение инвертора. Способ особенно эффективен для защиты мотора, ускорения, момента, экономии энергии.

Экономическое обоснование эффекта от инвертора

Время окупаемости инвертора рассчитывается отношением затрат на покупку к экономии энергии. Экономия обычно равна от 20 до 40% от номинальной мощности мотора.

Затраты снижают факторы, повышающие производительность частотных преобразователей:

  1. Уменьшение затрат на обслуживание.
  2. Повышение ресурса двигателя.

где Э – экономия денег в рублях;

Рпч – мощность инвертора;

Ч – часов эксплуатации в день;

К – коэффициент ожидаемого процента экономии;

Т – тариф энергии в рублях.

Время окупаемости равно отношению затрат на покупку инвертора к экономии денег. Расчеты показывают, что период окупаемости получается от 3 месяцев до 3 лет. Это зависит от мощности мотора.

Похожие статьи:

  • Однофазный двигатель переменного тока с конденсатором Конденсаторный двигатель В ГОСТ 27471-87 [1] дано следующее определение:Конденсаторный двигатель - двигатель с расщепленной фазой, у которого в цепь вспомогательной обмотки постоянно включен конденсатор. Конденсаторный двигатель, хотя и […]
  • Определить напряжение в точке а относительно общего провода 12v 8v 10v 1v Определить напряжение в точке а относительно общего провода 12v 8v 10v 1v 5 правильных ответов на 6 вопросов(класс,хоть в одном наврать можно.Вот спасибо )и,наверно, прошивочка наша,товарищи. Мужчины,помогите. пожалуйста Тест. 1.Что […]
  • Две фазы на выключатель Как подключить двухклавишный выключатель? Не ругайте сильно если тема уже сто первая. Снимаю квартиру, там в большой комнате сломался веревочный выключатель. Люстра двух режимная, из потолка там где была коробка выключателя, торчат три […]
  • Электроавтоматы с узо Автоматические электровыключатели, электроавтоматы. Выключатели автоматические предназначены для применения в электрических цепях переменного тока, защиты при перегрузках и токах короткого замыкания (КЗ), пуска и остановки асинхронных […]
  • Настройка тв антенны от провода Лайфхак: как смотреть качественное ТВ без интернета, кабеля и тарелки Через кабель и штекер с сильными помехами у меня показывали «Первый», «Россия 1» и «Рен ТВ». И все бы ничего. Телевизор я почти не смотрю (только спорт, «Что? Где? […]
  • Непаяное заземление Концевые муфты ЭНЕРГО Типы установкиКонцевые муфты КВтп-10 предназначены для внутренней установки. Буква «В» в артикуле об этом свидетельствует. Муфты КНтп-10, предназначены для наружной установки, буква «Н», об этом свидетельствует. […]