Простой вольтметр 220 схема

Простой вольтметр 220 схема

ЦИФРОВОЙ ВОЛЬТМЕТР СЕТЕВОГО НАПРЯЖЕНИЯ НА МИКРОКОНТРОЛЛЕРЕ ATTINY

Целью написания данной статьи является разработка встраиваемого цифрового вольтметра для измерения сетевого напряжения 220 В. Все началось с того, что у моего товарища возникла необходимость контролировать напряжение сети, для этого есть много способов. Самый простой – это контроль с помощью китайского цифрового мультиметра, т.к. он обеспечивает с приемлемой точностью измерение напряжения переменного тока. Не совсем удобно, его нужно периодически подключать к измеряемой цепи, а постоянное подключение нецелесообразно, т.к. бесполезно расходуется энергия «Кроны», а попытки запитать мультиметр от сетевого адаптера питания на 9 В и измерения напряжения сети привели к выходу мультиметра из строя. Второй способ – купить готовое устройство – реле напряжения щитового исполнения типа «Барьер». Тут есть некоторые факторы – в распределительном щитке не осталось лишнего места для установки хоть самого маломощного реле напряжения (2 модуля), и слегка завышенная цена на эти устройства. Покупные стрелочные вольтметры не обеспечивают приемлемой точности. Значит – есть выход из положения – изготовить цифровой встраиваемый вольтметр. Но и тут есть два варианта – изготовить на базе специализированной БИС АЦП КР572ПВ2 и изготовить на МК с встроенным АЦП. Первый вариант не устроил меня сразу, 40-выводный ДИП-корпус, два напряжения питания +5 В и -5 В, статическая индикация, сложная разводка платы, много навесных компонентов и т.п. Второй вариант – МК с встроенным АЦП.

Был выбран второй вариант – собрать цифровой вольтметр сетевого напряжения на микроконтроллере ATTINY26, который содержит 10-разрядный АЦП, трехразрядный светодиодный индикатор с динамической индикацией, линейный стабилизатор 7805, ну еще несколько токоограничительных резисторов. Конечно, большая часть рассыпухи используется для работы бестрансформаторного БП. Ниже приведена схема. Для удобства чтения схемы условно разделил схему источника питания и цифровую часть.

Детали: все диоды в схеме использованы типа 1N4007, но подойдут и любые другие с прямым током от 0,5 А и обратным напряжением 400 В, конденсатор C1 – обязательно пленочный, 1,5 мкФ 400 В, но лучше 630 В (надежнее). Все выводные резисторы, кроме R2 рассчитаны на 0,125-0,25 Вт, R2 – на 1-2 Вт, SMD резисторы применены типоразмера 1206. Подстроечный резистор RV1 лучше применить многооборотный типа 3296, это позволит более точно откалибровать вольтметр по образцовому вольтметру. Стабилитрон D1 мощностью 0,5 Вт 8,2 В, можно и на другое напряжение стабилизации, не рекомендую ниже 7,5 В и выше 10 В. Конденсаторы электролитические выбраны на 16 В, керамические SMD 100 нФ типоразмер 0805. МК – Attiny26 в дип-20 корпусе, светодиодный индикатор ТОТ3361 красного цвета свечения, такие светодиоды раньше применяли в телефонах с АОН «Русь 27». Для удобства подключения питающих проводов применен двухконтактный клеммник на плату.

Сборка. Итак, приступаем к сборке цифрового вольтметра на микроконтроллере , рисунок платы прилагается ниже.

Устройство собрано на плате из односторонне фольгированного текстолита, размером 83х30 мм. Все выводные детали размещаем со стороны компонентов.

Гасящий конденсатор С1 1,5 мкФ 400 В размещаем со стороны монтажа.

Все запаяно, проверено на предмет обрыва/КЗ. В микроконтроллере программируются фьюзы так, что он тактировался от внутреннего RC-генератора 8МГц, т.е установить фьюзы CKSEL = 0100. Остальные фьюзы можно не трогать. Можно включать в сеть для проверки и настройки.

Внимание: данное устройство не имеет гальванической развязки от питающей сети, а значит, все перепайки в схеме производить только после отключения схемы от сети, а настройку производить с помощью отвертки с хорошо изолированной ручкой

Производим пробное включение, собранное без ошибок устройство начинает работать сразу. Убедились, что на светодиодах есть какие-нибудь цифры, хоть далекие от идеала. Потом в ту же розетку включаем цифровой мультиметр для измерения действующего напряжения сети и с помощью движка подстроечного резистора (с соблюдением правил техники безопасности) устанавливаем на индикаторе напряжение, соответствующее показаниям контрольного вольтметра (мультиметра). После этого несколько раз проверяем соответствие показаний показаниям контрольного вольтметра. В случае необходимости корректируем все тем же подстроечником. На фото ниже показано работающее устройство.

Судя по яркости, не мешало бы применить светофильтр, это повысит контрастность изображения и читаемость в светлое время суток. Габариты собранного устройства 83х30х20 мм, что позволяет установить его в пластиковый квартирный щиток. А роль светофильтра выполняет его крышка с темного прозрачного пластика. Вот и все, цифровой вольтметр сетевого напряжения на микроконтроллере ATTINY26 готов к применению. В архиве прилагается схема, рисунок печатной платы в формате Sprint Layout 5.0, а также исходный код на CodeVision AVR 1.25, прошивка МК. Скачать файлы можно на ФОРУМЕ
Материал предоставил i8086.

Вольтметр 220 вольт с защитой на ATmega8

Автор: с2. Опубликовано в Вольтметры

Устройство отображает значение напряжения сети на светодиодном 7″сегментном 3″разрядном индикаторе. При возникновении аварийной ситуации, когда напряжение сети выйдет за допустимые пределы, устройство защиты отключает нагрузку.

Устройство защиты имеет следующие технические характеристики:
Диапазон контролируемых напряжений, В . . . . . . . . . . . . . . . . . .120…380
Нижний/верхний предел
устанавливаемых напряжений срабатывания, В . . . . . .170. 209/216. 280V
Время срабатывания при аварии при использовании реле, с . . . . . . . . .0,1
Погрешность измерения напряжения, В . . . . . . . . . . . . . . . . . . . . . . . . .±1
Время включения после аварии (задаётся пользователем), с . . . . . .1…600
Дискретность установки порогов напряжения, В . . . . . . . . . . . . . . . . .1

Потребляемый ток (без учёта реле), мА . . . . . . . . . . . . . . . . . . . . . . ..30

Меню устройства защиты (УЗРежим»

• UuP — верхнее граничное напряжение (первое нажатие на кнопку «Режим»);


• Udn — нижнее граничное напряжение (второе нажатие на кнопку «Режим»);


• tir — время на задержку включения контактора после вхождения измеряемого напряжения в заданные пределы (третье нажатие на кнопку «Режим» );


• tun — поправочный коэффициент, необходимый для пересчёта результата измерения сетевого напряжения, произведённого АЦП. Таким образом, каждое изменение параметров установки фиксируется в энергонезависимой EEPROM-памяти МК. Это необходимо для того, чтобы при выключении сетевого напряжения ранее установленные значения были сохранены. После записи в память EEPROM и выхода из режима настройки производится разрешение всех прерываний.

Выход из системного меню происходит при пятом нажатии кнопки «Режим», или если в течении 30 с не нажималась ни одна из кнопок УЗ.

Каждое изменение параметров установки фиксируется в энергонезависимой EEPROM памяти МК.

Работа схемы УЗ в Proteus 7.7 SP2 .

Прошивка е2р, плата, скачать zachita220_е2р.rar

прошивка в формате — НЕХ , протеус zachita220_нех.rar

Паяем — Все о электронике

Цифровой вольтметр с LED дисплеем

Лицевая сторона

Общее описание:

Это простой, но в тоже время довольно точный вольтметр. Схема работает на основе АЦП (аналого-цифровой преобразователь) IC CL7107, сделанный компанией Intersil. В схеме имеется 40-контактная микросхема, которая отвечает за преоброзованике аналогового сигнала в цифровой. Схема, как это описано здесь может отображать любое напряжение постоянного тока в диапазоне 0-1999 Вольт.

Технические характеристики:

  • Напряжение питания: + / — 5 В (симметричный)
  • Требования к питанию: 200 мА (максимум)
  • Диапазон измерения: + / — 0-1,999

Особенности:

  • Малый размер
  • Простота конструкции
  • Низкая стоимость
  • Простая настройка
  • Малое количество внешних компонентов

Как это работает?

Схема:

Дисплей MAN6960

Аналого-цифровой преобразователь , (ADC отныне) более известен как двойной преобразователь наклона или интегрирующего преобразователя . Этот тип преобразователя , как правило, предпочтительнее, чем другие типы, так как он обладает более высокой точностью и прост в дизайне. Работу схемы проще понять, если она описана в два этапа. На первом этапе и в течение заданного периода входное напряжение интегрируется и на выходе интегратора в конце этого периода есть напряжение, которое прямо пропорционально входному напряжению. В конце установленного периода интегратор подается с внутренним опорным напряжением и на выходе схемы постепенно уменьшается, пока не достигнет уровня опорного напряжения (нуль). Второй этап известен как отрицательный период наклона и его продолжительность зависит от выхода интегратора в первом периоде. Поскольку продолжительность первой операции является фиксированной и длина второго является переменной можно сравнить два и таким образом входное напряжение на самом деле по сравнению с внутренним опорным напряжением, и результат кодируется и посылается на дисплей.

Задняя сторона

Все это звучит довольно просто, но это на самом деле серия очень сложных операций, которые все сделанные АЦП IC с помощью нескольких внешних компонентов, которые используются для настройки схемы и её работы. Более подробно схема работает следующим образом. Напряжение измеряется через точки 1 и 2 цепи и цепи через R3, R4 и C4, наконец, применяется к контактам 30 и 31 ИС. Это вход IC, как вы можете видеть из ее диаграммы (В высоких и в низких соответственно). Резистор R1 вместе с С1 используются для установки частоты внутреннего генератора (часы), который установлен на частоте около 48 Гц. В этот тактовой частоте насчитывается около трех различных показаний в секунду. Конденсатор C2, который соединен между выводами 33 и 34, ИС была выбрана, чтобы компенсировать погрешности, вызванной внутренним опорным напряжением, а также держит дисплей устойчивым. Конденсатор C3 и резистор R5 вместе образуют цепь, которая делает интеграцию входного напряжения и в то же время предотвращает разделение входного напряжения, делает контур быстрее и надежнее, возможность ошибки значительно снижается. Конденсатор C5 вынуждает инструмент отображать нуль, когда нет напряжения на его входе. Резистор R2 вместе с P1 используются для настройки прибора при вводе в эксплуатацию. Резистор R6 контролирует ток, который протекает через дисплей. Три правых дисплея подключены, чтобы они могли показать все цифры от 0 до 9, а первый слева может отображать только номер 1, и когда напряжение отрицательно знак минус. Вся схема работает от симметричной ? 5 В постоянного тока , которая применяется в контактах 1 (+5 В) , 21 (0 В) и 26 (-5 В) из IC.

Смотрите так же:  Провода сип 5

Изготовление:

Прежде всего рассмотрим несколько основ в изготовлении электронной схемы на печатной плате. Плата выполнена из тонкого изолирующего материала, покрытого тонким слоем токопроводящей меди, которая формируется таким образом, чтобы сформировать необходимые проводники между различными компонентами схемы. Использование правильно спроектированной печатной платы очень необходимо, поскольку это ускоряет изготовление и существенно уменьшает возможность совершения ошибок. Медь должна быть луженая в процессе производства и покрыта специальным лаком, который защищает её окисления, а также чтобы делать пайки проще. Пайка компонентов к плате является единственным способом, чтобы построить вашу схему и от того, как вы это делаете зависит в значительной степени ваш успех или неудача. Эта работа не очень сложная, и если вы будете придерживаться нескольких правил, с которыми вы не должны иметь никаких проблем. Паяльник, который вы используете, должен быть легким и его мощность не должна превышать 25 Ватт. Есть много различных типов припоя на рынке и вы должны выбрать тот, который содержит необходимый флюс, чтобы обеспечить идеальную совместимость. Для того, чтобы спаять компонент правильно, вы должны сделать следующее: очистить компонент с помощью небольшого куска наждачной бумаги. Согните их на правильном расстоянии от компонента и вставьте компонент на своё место на борту.

Размещение:

PCB размеры: 77,6 мм х 44,18 мм или масштабировать его на уровне 35%

Возьмите горячий утюг и поместите его кончик на поводке компонентов, держа конец проволочного припоя в точке, где ведущий выходит. Когда припой начинает плавиться и течь, подождать, он охватит равномерно всю область вокруг отверстия и поток кипит и выходит из-под припоя. Вся операция не должна занимать более 5 секунд. Если все было сделано правильно поверхность шва должна иметь светлое металлическую отделку и ее края должны быть гладкие. Если припой в трещинах или имеет форму капли, то вы сделали сухой шов и вы должны удалить припой и переделывать. Постарайтесь, чтобы не перегреть дорожки, поскольку можно сместить их с доски и разбить их. Не используйте больше припои, так как вы работаете с риском короткого замыкания соседних дорожек на плате, особенно если они очень близко друг к другу. Когда вы закончите вашу работу, нужно отрезать избыток компонентов и очистите доску тщательно подходящим растворителем, чтобы удалить все остатки флюса, которые могут по-прежнему остаться на нем.

Рекомендуется начать работу по идентификации компонентов и разделения их на группы. Есть два момента, в изготовлении этого проекта, что вы должны соблюдать: перемычка используется для управления десятичной точки на дисплее. Если вы собираетесь использовать инструмент только для одного диапазона вы можете сделать перемычку соединение между самым правым отверстием на борту и соответствующим требуемой позиции для десятичной точки для конкретного приложения. Если вы планируете использовать вольтметр в различных диапазонах, вы должны использовать один полюс, трехпозиционный переключатель, сдвинуть десятичную точку в нужное место для диапазона измерения выбранного . (Этот переключатель может предпочтительно быть объединен с переключателем, который используется, чтобы фактически изменить чувствительность прибора). Помимо этого рассмотрения, и на то, что небольшой размер платы и большое количество стыков на нем что требует очень тонкого наконечника паяльника, строительство проекта очень простое. Вставить разъем IC и припаять его на месте, припаять флажки, резисторы, конденсаторы и многооборотный триммера Р1. Поверните доску и очень тщательно припаяйте дисплей ИС от медной стороны платы. Не забудьте проверить базу IC, как только одна строка будет покрыта за дисплеи и уже будет невозможно увидеть какую-либо ошибку, что вы возможно и сделали после того, как припаяли дисплеи на место. R3 контролирует диапазон измерения вольтметра и если вы предоставите для некоторых средств, для переключения различных резисторов на его месте вы можете использовать инструмент в диапазоне напряжений.

Замена резисторов:

  • 0 — 2 В ………… R3 = 0 Ом 1 %
  • 0 — 20 В ……….. R3 = 1,2 кОм 1 %
  • 0 — 200 В ………. R3 = 12 кОм 1 %
  • 0 — 2000 В ……… R3 = 120 кОм 1 %

Когда вы закончите всю пайку на доске и вы уверены, что все в порядке, вы можете вставить IC на свое место. ИК CMOS очень чувствительны к статическому электричеству. Это следует завернуть в алюминиевую фольгу, чтобы защитить его от статических разрядов и с ним следует обращаться с большой осторожностью, чтобы не повредить его. Старайтесь избегать касаясь его флажков руками. Подключите схему к подходящему источнику питания ? 5 В постоянного тока и включите питание. Дисплеи должен загореться немедленно и должнен сформировать ряд. Короткое замыкание входной (0 В) и отрегулируйте триммер P1 пока на дисплее не будет « 0 ».

  • R1 180k
  • R2 22k
  • R3 12k
  • R4 1M
  • R5 470k
  • R6 560 Ом
  • С1 100 пФ
  • C2, C6, C7 100нФ
  • С3 47nF
  • С4 10нФ
  • С5 220nF
  • P1 20k триммер многооборотный
  • U1 ICL 7107
  • LD1, 2,3,4 MAN 6960 общий анод LED дисплей
Если он не работает:

Проверьте остатки пайки, из-за низ могут вонзникнуть проблемы. Проверьте еще раз все внешние подключения к схеме, чтобы увидеть есть ли ошибка. Смотрите, что нет ли никаких недостающих компонетов или вставленных в неправильных местах. Убедитесь, что все поляризованные компоненты были припаяны правильно. Убедитесь, что питания имеет правильное напряжение и связано правильно, вокруг вашей схемы. Проверьте исправны ли, или может повреждены ваши компоненты.

Источник питания:

Источник питания 2:

Простой цифровой вольтметр от 0 до 30 вольт на 3 сегмента

Хочу поделиться опытом изготовления цифрового вольтметра на основе микропроцессора РІС16F676. Делаю его для домашнего блока питания. Поскольку корпус не большой — разогнаться на особые «навороты» не получается. Места на стрелочные индикаторы недостаточно, да и маленькие вольтметры, как правило, военного образца либо не градуированы на необходимые напряжения либо не имеют нормального обзора шкалы.

Придумать все самому не получается – пока знаний программирования микропроцессоров не достаточно (только учусь), а отставать не хочется. Серфинг Интернета дал несколько разных вариантов как по сложности схемотехники и выполняемых функций, так и самих процессоров. Анализ ситуации на местных радиорынках и трезвый подход (покупать то что по карману; делать то, что реально сможешь, а процесс изготовления да время настройки не затянется на неограниченное время) остановил мой выбор на схеме вольтметра описанного на www.CoolCircuit.com.

Купив процессоры да индикаторы с общим анодом (делаю сразу два вольтметра на двухполярный блок питания) начал разводку печатной платы. Но далеко не «зашел» ибо оказалось что автор неверно указал распиновку процессора. Потраченные деньги заставили успокоиться и мысли направить в правильное русло – скачал даташит на этот РІС и начал разбираться что куда. Усилия не пропали и в результате все работает как надо. Дабы граждане, желающие использовать в своих разработках указанный цифровой вольтметр, не повторяли мои ошибки, решил поделиться своими мыслями.

Итак, нижеприведенная принципиальная схема уже исправлена . Прошивка осталась родная (main.HEX — приобщаю).

Те, кто процессоры «держит в руках часто» дальше могут не читать, а остальным, особенно кто в первый раз, расскажу, как все сделать хоть и не оптимально (да простят мне профессионалы стиль изложения), но в итоге правильно.
Итак, для справки: семейство процессоров РІC на 14 ножек имеют разную распиновку поэтому нужно проверить подходит ли имеющийся у Вас программатор с панельками под этот чип. Обратите внимание именно на 8-пиновую панельку, как правило, именно она и подходит, а крайние справа выводы просто висят. Я пользовался обычным программатором «PonyProg» .

Следует учесть при пограммировании РІС важно не затереть калибровочную константу внутреннего генератора чипа ибо внешний кварц здесь не используется. Она записана в последней ячейке (адресе) памяти процессора. Если использовать IcProg, выбрав тип МК, то в окне – «Адрес программного кода» в последней строке обозначенной адресом — 03F8 крайние справа четыре символа и есть указанная индивидуальная константа. (Если микросхема новая и ни разу не программированная то после кучи символов 3FFF – последним будет что то типа 3454 – это самое то).

Смотрите так же:  Регистратор без провода

Чтобы расчет показаний вольтметра соответствовал истине, все сделать правильно и понять процесс происходящего предлагаю хоть не оптимальный но надеюсь понятный алгоритм:

— перед программированием МК, необходимо в IcProg сначала дать команду «Читать все» и посмотреть на вышеуказанную ячейку памяти – там будет значится индивидуальная константа этого чипа. Ее надо переписать на бумажку ( в памяти не держать!- забудешь).
— загрузить программный файл прошивки МК – с расширением *.hex (в даном случае -«main.hex») и проверить какая константа записана в той же ячейке в данном программном продукте. Если она отличается – поставить курсор и ввести туда данные, ранее записанные на бумажке.
— нажимаем команду программировать — после появившегося вопроса типа: «использовать ли данные осцилятора из файла» – соглашаетесь. Ибо Вы уже проверили, что там то что надо.

Еще раз прошу прощения у тех, кто программирует много и так не делает, но я пытаюсь донести до начинающих информацию о достаточно важном программном элементе данного микропроцессора и не потерять его из-за разных иногда совсем непонятных, а то и необъяснимых потом ситуаций. Особенно если дрожащими от волнения руками воткнул чип в только что сооруженный и впервые соединенный с компом программатор и, волнуясь, нажимаешь кнопку программировать, а оное чудо техники начинает еще и непонятные вопросы задавать – вот тут то все неприятности и начинаются.

Итак, если все этапы пройдены верно, – микросхема МК готова к использованию. Дальше дело техники.
От себя хочу добавить, что транзисторы здесь не критичные – подходят любые р-n-р структуры, в т.ч. советские, в пластмассовом корпусе. Я использовал выпаянные из импортной бытовой техники после проверки на соответствие структуры проводимости. В этом случае присущ еще один нюанс – расположение вывода базы транзистора может быть по середине корпуса или с краю. Для работы схемы это безразлично, нужно только соответственно формировать выводы при пайке. Постоянные резисторы для делителя напряжения – именно указанного номинала. Если найти импортный подстроечный резистор на 50 кОм не удастся, то советского производства желательно взять чуточку больше — 68 кОм, а 47 кОм брать не рекомендую ибо в случае одновременного совпадения пониженных номиналов — потеряется расчетное соотношение сопротивлений делителя напряжения, которое может быть трудно исправить подстоечником.

Как я уже писал у моего блока питания два плеча – поэтому сделал сразу два вольтметра на одной плате, а индикаторы вывел на отдельную плату для экономии места на лицевой панели. Развел под обычные элементы. Файлы с разводкой плат, исходник и hex прилагаются в архиве. У Вас — SMD, то переделать ее не трудно, если надо обращайтесь.

Для тех, кто захочет повторить этот вольтметр и имеет, как у меня, двухполярный блок питания с общей средней точкой — напоминаю о необходимости питания обоих вольтметров от двух отдельных (гальванически разделенных) источников. Скажем — отдельных обмоток сылового трансформатора или, как вариант – импульсный преобразователь, но обязательно с двумя обмотками по 7 Вольт (нестабилизированных ). Для тех, кто будет делать «импульсник»: ток потребления вольтметра от 70 до 100 мА в зависимости от размера и цвета индикатора. Иначе никак ибо на порт МК нельзя подавать отрицательное напряжение.
Если кому понадобится и схема преобразователя, спрашивайте на форуме, я сейчас над этим вопросом работаю.

Архив с нужными даными и печатками в SLayout-5rus:
 ▼ datat.rar 🕗 19/01/10 ⚖️ 33,04 Kb ⇣ 753

Здравствуй, читатель! Меня зовут Игорь, мне 45, я сибиряк и заядлый электронщик-любитель. Я придумал, создал и содержу этот замечательный сайт с 2006 года.
Уже более 10 лет наш журнал существует только на мои средства.


Спасибо за внимание!
Игорь Котов, главный редактор журнала «Датагор»

Схема вольтметра на светодиодах

Хорошо применять такой светодиодный индикатор своими руками в самодельных регулируемых блоках питания. Если под рукой есть все необходимые радиокомпоненты, то схему измерителя напряжения возможно собрать самостоятельно очень быстро и легко.

На трех операционных усилителях LM324 собраны компараторы напряжения. Их инверсные входы подсоединены к резисторному делителю напряжения, собранного на резисторах R1 и R2, через который на схему идет контролируемое напряжение.

На неинвертирующие входы операционных усилителей поступает опорное напряжение с делителя, выполненного на сопротивлениях R3 — R15. Если на входе вольтметра отсутствует напряжение, то на выходах ОУ будет высокий уровень сигнала и на выходах логических элементов будет логический ноль, поэтому светодиоды не светятся.

При поступление на вход светодиодного индикатора измеряемого напряжения, на определенных выходах компараторов ОУ установится низкий логический уровень, соответственно на светодиоды поступит высокий логический уровень, в результате чего загорится соответствующий светодиод. Для предотвращения подачи уровня напряжения на входе устройства имеется защитный стабилитрон на 12 вольт.

Этот вариант рассмотренной выше схемы отлично подойдет любому автовладельцу и даст ему наглядную информацию о состоянии заряда аккумуляторной батареи. В данном случае задействованы четыре встроенных компаратора микросборки LM324. Инвертирующими входами формируются опорные напряжения 5,6V, 5,2V, 4,8V, 4,4V соответственно. Напряжение аккумулятора напрямую поступает на инвертирующий вход через делитель на сопротивлениях R1 и R7.

Светодиоды выступают в роли мигающих индикаторов. Для настройки, вольтметр, подсоединяют к АКБ, затем регулируют переменный резистор R6 так, чтобы нужные напряжения присутствовали на инвертирующих выводах. Зафиксируйте индикаторные светодиоды на передней панели авто и нанесите рядом с ними напряжение аккумулятора, при котором загораются тот, или иной индикатор.

Итак, хочу сегодня рассмотреть очередной проект с применением микроконтроллеров, но еще и очень полезный в ежедневных трудовых буднях радиолюбителя. Это цифровое устройство на современном микроконтроллере. Конструкция его была взята из журнала радио за 2010 год и может быть с легкостью перестроена под амперметр в случае необходимости.

Это простая конструкция автомобильного вольтметра используется для контроля напряжения бортовой сети автомобиля и расчитана на диапазон от 10,5В до 15 вольт. В роли индикатора применены десять светодиодов.

Сердцем схемы является ИМС LM3914. Она способна оценить уровень входное напряжение и отобразить приблизительный результат на светодиодах в режиме точка или столбик.

Светодиоды выводят текущее значение напряжения аккумулятора или бортовой сети в режиме точки (вывод 9 не подключен или подсоединен на минус) или столбика (вывод 9 к плюсу питания).

Сопротивление R4 регулирует яркость свечения светодиодов. Резисторы R2 и переменный R1 образуют делитель напряжения. При помощи R1 осуществляется настройка верхнего порога напряжения, а при помощи резистора R3 нижнего.

Калибровка схемы делается по следующуму принципу. Подаем на вход вольтметра 15 вольт. Затем изменяя сопротивление R1, добивемся, зажигания светодиода VD10 (в режиме точка) или всех светодиодов(в режиме столбик).

Затем на вход подаем 10,5 вольт и R3 добиваемся свечения VD1. А затем увеличиваем уровень напряжение с шагом в половину вольта. Тумблер SA1 используется для переключения между режимами индикации точка/столбик. При замкнутом SA1 – столбик, при разомкнутом – точка.

Если напряжение на аккумуляторной батареи ниже уровня 11 вольт, стабилитроны VD1 и VD2 не пропускают ток, из-за чего светится только HL1, говорящий о низком уровне напряжения бортовой сети автомобиля.

Если напряжение лежит в интервале от 12 до 14 вольт, стабилитрон VD1 отпирает VT1. HL2 горит, указывая на нормальный уровень АКБ. Если напряжение батареи выше 15 вольт, стабилитрон VD2 отпирает VT2, и загорается светодиод HL3, показывающий значительное превышение напряжения в сети автомобиля.

В роли индикатора, как и в предыдущей конструкции, применены три светодиода.

При низком напряжении уровне загорается HL1. Если норма HL2. А более 14 вольт, вспыхивает третий светодиод. Стабилитрон VD1 формирует опорное напряжение для работы ОУ.

Самодельные измерительные приборы

Огромная подборка схем, руководств, инструкций и другой документации на различные виды измерительной техники заводского изготовления: мультиметры, осциллографы, анализаторы спектра, аттенюаторы, генераторы, измерители R-L-C, АЧХ, нелинейных искажений, сопротивлений, частотомеры, калибраторы и многое другое измерительное оборудование.

Во многих устройствах применяются оптроны, и надо четко понимать, что такое оптрон и как его проверить, для успешного поиска неисправностей

В процессе эксплуатации внутри оксидных конденсаторов постоянно происходят электрохимические процессы, разрушающие место соединения вывода с обкладками. И из-за этого появляется переходное сопротивление, достигающее иногда десятков Ом. Токи Заряда и разряда вызывают нагрев этого места, что еще больше ускоряет процесс разрушения. Еще одной частой причиной выхода из строя электролитических конденсаторов является «высыхание», электролита. Чтоб уметь отбраковывать такие конденсаторы предлагаем радиолюбителям собрать эту несложную схему

Идентификация и проверка стабилитронов оказывается несколько сложнее чем проверка диодов, т.к для этого нужен источник напряжения, превышающий напряжение стабилизации.

С помощью этой самодельной приставки вы сможете одновременно наблюдать на экране однолучевого осциллографа сразу за восемью низкочастотными или импульсными процессами. Максимальная частота входных сигналов не должна превышать 1 МГц. По амплитуде сигналы должны не сильно отличаться, по крайней мере, не должно быть более 3-5-кратного отличия.

Смотрите так же:  Тонкие провода к розетке

Кварц это кристаллический электронный прибор, поддерживающий резонансные колебания на фиксированной частоте. Чтобы проверить кварц нужно собрать одну из предложенных схем для проверки.

Устройство расчитано на проверку почти всех отечественных цифровых интегральных микросхем . Им можно проверить микросхемы серий К155, К158, К131, К133, К531, К533, К555, КР1531, КР1533, К176, К511, К561, К1109 и многие другие

Помимо измерения емкости, эту приставку можно использовать для измерения Uстаб у стабилитронов и проверки полупроводниковых приборов, транзисторов, диодов. Кроме того можно проверять высоковольтные конденсаторы на токи утечки, что весьма помогло мне при налаживание силового инвертора к одному медицинскому прибору

Конечно, есть много способов убедится в исправности батареек, например поменять их заведомо рабочими, но иногда в домашних припасах обнаруживается целые залежи батареек и не понятно, что с ними делать, насколько надежны они в работе, не откажет ли наша любимая мыльница в самый неподходящий момент. Поэтому если у вас есть хотя бы тестер или мультиметр, рекомендую сделать отбраковку ненадежных элементов питания

Эта приставка к частотомеру используется для оценки и измерения индуктивности в диапазоне от 0,2 мкГн до 4 Гн. А если из схемы исключить конденсатор С1 то при подключении на вход приставки катушки с конденсатором, на выходе будет резонансная частота. Кроме того, благодаря малому значению напряжения на контуре можно оценивать индуктивность катушки непосредственно в схеме, без демонтажа, я думаю многие ремонтники оценят эту возможность.

В интернете много разных схем цифровых термометров, но мы выбрали те которые отличается своей простотой, малым количеством радиоэлементов и надежностью, а пугаться того, что она собрана на микроконтроллере не стоит, т.к его очень легко запрограммировать.

Одну из схем самодельного индикатора температуры со светодиодным индикатором на датчике LM35 можно использовать для визуальной индикации плюсовых значений температуры внутри холодильника и двигателя автомобиля, а также воды в аквариуме или бассейне и т.п. Индикация выполнена на десяти обычных светодиодах подключенных к специализированной микросхеме LM3914 которая используется для включения индикаторов с линейной шкалой, и все внутренние сопротивления ее делителя обладают одинаковыми номиналами

Если перед вами встанет вопрос как измерить частоту вращения двигателя от стиральной машины. Мы подскажем простой ответ. Конечно можно собрать простой стробоскоп, но существует и более грамотная идея, например использованием датчика Холла

Две очень простые схемы часов на микроконтроллере PIC и AVR. Основа первой схемы микроконтроллер AVR Attiny2313, а второй PIC16F628A

Итак, хочу сегодня рассмотреть очередной проект на микроконтроллерах, но еще и очень полезный в ежедневных трудовых буднях радиолюбителя. Это цифровой вольтметр на микроконтроллере. Схема его была позаимствована из журнала радио за 2010 год и может быть с легкостью переделана под амперметр.

Эта конструкция описывает простой вольтметр, с индикатороми на двенадцати светодиодах. Данное измерительное устройство позволяет отображать измеряемое напряжение в диапазоне значений от 0 до 12 вольт с шагом в 1 вольт, причем погрешность в измерении очень низкая.

Метрономы используются при задании танцевального ритма в танцах и ритмической гимнастике, при занятиях музыкой. Всего на двух биполярных транзисторах можно сделать схему метронома своими руками, при помощи которого можно устанавливать ритм от 35 до 220 ударов в минуту.

Рассмотрена схема измерителя индуктивности катушек и емкости конденсаторов, выполненная всего на пяти транзисторах и, несмотря на свою простоту и доступность, позволяет в большом диапазоне определять с приемлемой точностью емкость и индуктивность катушек. Имеется четыре поддиапазона для конденсаторов и целых пять поддиапазонов катушек.

Думаю большинству понятно, что звучание системы во многом определяется различным уровнем сигнала на ее отдельных участках. Контролируя эти места, мы можем оценить динамику работы различных функциональных узлов системы: получить косвенные данные о коэффициенте усиления, вносимых искажениях и т.п. Кроме того, результирующий сигнал просто не всегда можно прослушать, поэтому и, применяются различного рода индикаторы уровня.

В электронных конструкциях и системах встречаются неисправности, которые возникают достаточно редко и их очень сложно вычислить. Предлагаемое самодельное измерительное устройство используется для поиска возможных контактных проблем, а также дает возможность проверять состояние кабелей и отдельных жил в них.

Основой этой схемы является микроконтроллер AVR ATmega32. ЖК дисплей с разрешением 128 х 64 точек. Схема осциллографа на микроконтроллере предельно проста. Но есть один существенный минус — это достаточно низкая частота измеряемого сигнала, всего лишь 5 кГц.

Ваттметр — измерительный прибор, используемый для определения мощности электрического тока или электромагнитного поля. В быту такое устройство применяют для определения величины энергопотребление устройств электронной техники.

Эта приставка здорово облегчит жизнь радиолюбителя, в случае если у него появится необходимость в намотке самодельной катушки индуктивности, или для определения неизвестных параметров катушки в какой либо аппаратуре.

В данной теме рассмотрим подборку нескольких радиолюбительских схем, позволяющих собрать переходник USB COM, который часто используется в измерительной и медицинской техники. Устаревший, но все еще актуальный последовательный порт RS-232, он же COM-порт, используется для обмена информацией между компьютером и устройством. Последовательным он назван потому, т.к обмен данными идет бит за битом по одному.

Предлагаем вам повторить электронную часть схемы весов на микроконтроллере с тензодатчиком, прошивка и чертеж печатной платы к радиолюбительской разработке прилагаеться.

Самодельный измерительный тестер обладает следующими Функциональными возможностями: измерение частоты в диапазоне от 0.1 до 15000000 Гц с возможностью изменения времени измерения и отображением значение частоты и длительности на цифровом экране. Наличие опции генератора с возможностью регулировки частоты во всем диапазоне от 1-100 Гц и выводом результатов на дисплей. Наличие опции осциллограф с возможностью визуализации формы сигнала и измерения его амплитудного значения. Функция измерения емкости, сопротивления, а также напряжения в режиме осциллографа.

Простым методом измерения тока в электрической цепи является способ измерение падения напряжения на резисторе, соединенным последовательно с нагрузкой. Но при протекании тока через это сопротивление, на нем генерируется ненужная мощность в виде тепла, поэтому его необходимо выбрать минимально возможной величиной, что ощутимо усиливает полезный сигнал. Следует добавить, что рассмотренные ниже схемы позволяют отлично измерять не только постоянный, но и импульсный ток, правда, с некоторым искажением, определяемый полосой пропускания усилительных компонентов.

Устройство используется для измерения температуры и относительной влажности воздуха. В качестве первичного преобразователя взят датчик влажности и температуры DHT-11. Самодельный измерительный прибор можно использовать в складских и жилых помещениях для мониторинга температуры и влажности, при условии, что не требуется высокая точность результатов измерений.

В основном для измерения температуры применяются температурные датчики. Они имеют различные параметры, стоимость и формы исполнения. Но у них имеется один большой минус, ограничивающий практику их использования в некоторых местах с большой температурой среды объекта измерения с температурой выше +125 градусов по Цельсию. В этих случаях намного выгоднее использовать термопары.

Схема межвиткового тестора и его работа довольна проста и доступна для сборки даже начинающими электронщиками. Благодаря этому прибору сможно проверить практически любые трансформаторы, генераторы, дроссели и катушеки индуктивности номиналом от 200 мкГн до 2 Гн. Индикатор способен определить не только целостность исследуемой обмотки, но и отлично выявляет межвитковое замыкание, а кроме того им можно проверить p-n переходы у кремниевых полупроводниковых диодов.

Для измерения такой электротехнической величины, как сопротивление используется измерительный прибор называемый Омметр. Приборы, измеряющие только одно сопротивление, в радиолюбительской практике используются достаточно редко. Основная масса пользуется типовым мультиметров в режиме измерения сопротивления. В рамках данной темы рассмотрим простую схему Омметра из журнала Радио и еще более простую на плате Arduino.

Похожие статьи:

  • Пускатель магнитный кми 34012 Контактор КМИ-34012 40А 230В/АС3 1НО;1НЗ ИЭК KKM31-040-230-11 Контактор ИЭК Cертификат IEK Малогаборитный магнитный пускатель КМИ-34012 40А 230В/АС3 с одним нормально-открытым и одним нормально-закрытым доп. контактами IEK Описание […]
  • Твердотельное реле управление 220 вольт SSR-1-D22DC40 Твердотельное реле 40 Ампер, 5-220 Вольт постоянного тока, управление 3-32 VDC Есть в наличии: 5 шт. Артикул/код товара: SSR-1-D22DC40 Товарное предложение обновлено Вчера в 16:39 Описание товара SSR-1-D22DC40 Твердотельное […]
  • К средней точке горизонтально подвешенного провода длиной 40 м Для того, чтобы оценить ресурс, необходимо авторизоваться. В части пособия "Механика" представлены типичные задачи по кинематике, динамике, статике, гидростатике и применению законов сохранения импульса и механической энергии, […]
  • Узо schneider 40a УЗО Easy9 2П 40А 30мА AC 230В Schneider Electric Schneider Electric Техническое описание УЗО Easy9 2П 40А 30мА AC 230В Cертификат Schneider Electric Двухполюсный дифференциальный выключатель (УЗО) "EASY 9" 40А 30мА 230В AC S 2М […]
  • Какую нагрузку держат провода Diesel Forum Медный провод 2*4квадрата(двухжильный, жесткий. Нравится Не нравится Рустик 25-11-2010 Итак народ помогите мне. Я сам своим руками собрал проводку в комнате. Сделал отдельную проводку от счётчика. Весь кабель медный, 2 […]
  • Схема работы ламп дневного света Схема работы ламп дневного света 1.Дроссель 2. Слой люминофора 3.Пары ртути 4.Вывода стартёра 5.Электроды стартёра 6.Стеклянная колба стартёра 7.Биметаллический контакт 8.Свечение инертного газа 9.Вольфрамовые нити накала лампы 10.Капля […]