Пуэ допустимые токовые нагрузки на провода и кабели

ПУЭ-7 п.1.3.10 ДОПУСТИМЫЕ ДЛИТЕЛЬНЫЕ ТОКИ ДЛЯ ПРОВОДОВ, ШНУРОВ И КАБЕЛЕЙ С РЕЗИНОВОЙ ИЛИ ПЛАСТМАССОВОЙ ИЗОЛЯЦИЕЙ

Допустимые длительные токи для проводов с резиновой или поливинилхлоридной изоляцией, шнуров с резиновой изоляцией и кабелей с резиновой или пластмассовой изоляцией в свинцовой, поливинилхлоридной и резиновой оболочках приведены в табл. 1.3.4-1.3.11. Они приняты для температур: жил +65, окружающего воздуха +25 и земли + 15°С.

При определении количества проводов, прокладываемых в одной трубе (или жил многожильного проводника), нулевой рабочий проводник четырехпроводной системы трехфазного тока, а также заземляющие и нулевые защитные проводники в расчет не принимаются.

Данные, содержащиеся в табл. 1.3.4 и 1.3.5, следует применять независимо от количества труб и места их прокладки (в воздухе, перекрытиях, фундаментах).

Допустимые длительные токи для проводов и кабелей, проложенных в коробах, а также в лотках пучками, должны приниматься: для проводов — по табл. 1.3.4 и 1.3.5 как для проводов, проложенных в трубах, для кабелей — по табл. 1.3.6-1.3.8 как для кабелей, проложенных в воздухе. При количестве одновременно нагруженных проводов более четырех, проложенных в трубах, коробах, а также в лотках пучками, токи для проводов должны приниматься по табл. 1.3.4 и 1.3.5 как для проводов, проложенных открыто (в воздухе), с введением снижающих коэффициентов 0,68 для 5 и 6; 0,63 для 7-9 и 0,6 для 10-12 проводников.

Для проводов вторичных цепей снижающие коэффициенты не вводятся.

Таблица 1.3.4. Допустимый длительный ток для проводов и шнуров с резиновой и поливинилхлоридной изоляцией с медными жилами

Ток, А, для проводов, проложенных в одной трубе

ДОПУСТИМЫЕ ТОКОВЫЕ НАГРУЗКИ

Допустимые длительные токовые нагрузки на установочные, монтажные провода, кабели и соединительные шнуры определяются ПУЭ. В таблицах приведены сведения для проводов с медными жилами, с алюминиевыми жилами, допустимые длительные токовые нагрузки на шнуры переносные, переносные гибкие шланговые легкие средние и тяжелые кабели, на шланговые прожекторные и переносные провода с медными жилами.

Допустимые токовые нагрузки на провода и шнуры с медными жилами с резиновой и пластмассовой изоляцией

Допутимые длительные токовые нагрузки на провода с алюминиевыми жилами с резиновой и поливинилхлоридной изоляцией

Допуcтимые длительные токовые нагрузки на шнуры переносные, переносные шланговые гибкие; легкие, средние и тяжелые кабели, шланговые прожекторные и переносные провода с медными жилами

Пуэ допустимые токовые нагрузки на провода и кабели

11.1. Расчётный ток нагрузки – это величина тока, определяемого, исходя из величины расчётной мощности потребителей.

Основой расчета сети является определение электрических нагрузок,

которое подробно рассмотрено в темах 5, 6, 7.

Длительно допустимые нагрузки проводников

Определенному значению длительно проходящего тока при неизменных температурах окружающей среды и условиях прокладки соответствует и определенная температура проводника. Соответственно наибольшей допусти­мой температуре нагрева проводника устанавливается величина длительно допустимого тока, нормируемая ПУЭ. Эта величина зависит от материала, сечения проводника, температуры окружающей среды материала изоляции и способа прокладки.

Длительно допустимые токовые нагрузки (11.2) могут определяться на основе теплового расчета, однако, в особенности для изолированных проводов и кабелей, формулы получаются сложными, и поэтому в ПУЭ даются готовые таблицы допустимых токовых нагрузок, которые получены как расчётным, так и экспериментальным путем (табл. 11.1) В ПУЭ приведены средние температуры окружающей среды, для которых составлены таблицы (внутри помещений +25 °С). Если температура окружающей среды существенно отличается от нормированной, то допустимые токовые нагрузки следует пересчитать, умножая нормированную нагрузку на коэффициент по ПУЭ.

11.2. Длительнодопустимой токовой нагрузкойназывается такая величина силы тока, при длительном протекании которого установившаяся температура проводника не превышает установленной допустимой температуры по величине теплового износа изоляции или по тепловому воздействию на голый проводник.

Выбор сечения проводов по условиям нагрева

Предельно допустимые температуры нагрева для некоторых типов проводов и кабелей следующие: неизолированные провода — 70°С; изолированные провода в резиновой или полихлорвиниловай изоляции-55° С; провода в теплостойкой резиновой изоляции-65°С; кабели с бумажной изоляцией на напряжение до 3 кВ — 80°С; кабели с бумажной изоляцией на напряжение до 6 кВ—65°С; кабели с бумажной изоляцией на напряжение до 10 кВ — 60° С.

Исходя из этих значений, определяют длительно допустимые токовые нагрузки на провода и кабели потаблице 11.1.

Для выбора сечения жил определяют расчётный ток и по таблице 1.1 выбирается ближайшее большее значение допустимого тока, по которому и выбирается стандартное сечение соответствующее этому току.

Например. Определён расчётный ток IР=78 А, известно, что провод алюминиевый, проложенный открыто. По табл. 11.1 находим равное или ближайшее большее значение тока – 80 А. Для такого тока находим в таблице 11.1 сечение 16 мм 2 .

Аналогично выбираются сечение жил кабелей по таблицам длительно допустимых токовых нагрузок, которые приведены в справочной литературе в зависимости от материала жил, их изоляции и условий прокладки (открыто, в трубах, в земле и др.) и количества кабелей в одной трассе.

В зависимости от температуры окружающей среды допустимый ток при длительном режиме работы определяется по формуле

где Iмакс — расчетный ток нагрузки, А; Кп — поправочный коэффициент на температуру окружающей среды

Расчетный ток нагрузки определяется по формулам:

а) для трехфазной четырехпроводной и трехпроводной сетей

б) для двухфазной сети с нулевым проводом при включении электроприемников на фазное напряжение

в) для однофазной сети

где Рмакс — расчетная максимальная нагрузка, кВт; UН — номинальное линейное напряжение, В; Uф— номинальное фазное напряжение, В.

Для сетей, питающих люминесцентные лампы, при определении расчетного тока следует вводить повышающий коэффициент, учитывающий потери в пускорегулирующих аппаратах (ПРА) по следующим средним данным, которые приняты в проектной практике: при стартерных схемах зажигания 1,25, при бесстартерных 1,3.

Коэффициент мощности cosφ следует принимать для линий, питающих электроприемники квартир, на основе указаний для электроприемников встроенных помещений — по проектам электрооборудования этих помещений; Для люминесцентных светильников, устанавливаемых на лестницах в холлах, вестибюлях,0,9 для светильников с компенсированными ПРА и 0,5 с некомпенсированными ПРА.

При выборе сечений проводов по условиям допустимого нагрева кроме указанного выше, необходимо учитывать следующее.

1. В трехфазных четырехпроводных питающих линиях квартир имеет место неустранимая постоянная асимметрия токовых нагрузок в фазных проводах. Поэтому ПУЭ требуют принимать сечения нулевых проводов равными сечениям фазных проводов при сечениях последних до 25 мм 2 включительно (по алюминию). При больших сечениях фазных проводов сечения нулевых проводов должны выбираться сечением не менее 50% фазных проводов.

2. Для двухфазных и однофазных линий сечения нулевых проводов принимаются равными сечениям фазных проводов.

3. При выборе сечений нулевых проводов сетей люминесцентного освещения необходимо учитывать наличие в этих проводах токов высших гармонических кратных трем, которые существуют вследствие несинусоидальности кривых токов, даже при равномерной нагрузке фаз.В связи с тем, что в этих случаях ток в нулевом проводе может достигать, особенно при компенсированных ПРА., 85—90% тока в фазном проводе, сечения нулевых проводов следует принимать равными сечениям фазных проводов.

4. При прокладке проводов в коробах и лотках допустимую токовую нагрузку следует принимать:

а) при прокладке проводов в лотках в один горизонтальный ряд как для открыто проложенных проводов;

б) при прокладке проводов в коробах и лотках пучками как для проводов, проложенных в трубах.

5. При прокладке более четырех проводов в трубах, коробах, а также в лотках пучками следует принимать допустимую токовую нагрузку:

а) для 5-6 одновременно нагруженных проводов как для открыто проложенных проводов с коэффициентом 0,68;

б) для 7-9 одновременно нагруженных проводов как для открыто проложенных проводов с коэффициентом 0,63;

в) для 10-12 Одновременно нагруженных проводов как для открыто проложенных проводов с коэффициентом 0,6.

Сечения проводов, проложенных в каналах строительных конструкций, а также замоноличенных проводок можно выбирать как для проводов в трубах.

6. Для четырехпроводных линий, проложенных в трубах или каналах строительных конструкций, питающих электроприемники квартир и общедомовых потребителей (силовых и осветительных с лампами накаливания), допустимые токовые нагрузки принимаются как для трех одножильных проводов, прокладываемых в одной трубе. Для таких же линий, питающих люминесцентное освещение, как для четырех одножильных проводов, прокладываемых в одной трубе.

7. При повторно-кратковременном и кратковременном режимах работы сети (например, линии, питающие лифты) расчетную токовую нагрузку следует приводить к длительному режиму по формуле

Формула применяется для алюминиевых проводов сечением более 16мм 2 . Для меньших сечений токовые нагрузки принимаются такими, как для длительного режима:

При этом имеется в виду, что Iмакс приведено к температуре окружающей среды.

Под повторно — кратковременным режимом работы согласно ПУЭ понимается такой режим, при котором общая длительность цикла Тц не превышает 10 мин, а продолжительность рабочего периода tp не превышает 4 мин. Продолжительность включения определяется из выражения

Кратковременным является режим работы, при котором проводник охлаждается до температуры окружающей среды за период паузы. При этом длительность рабочего периода не должна превышать 4мин.

Выбор сечений проводов и кабелей с учетом характеристик защитных аппаратов.

Правила устройства электроустановок регламентируют наряду с проверкой по допустимому нагреву определенные соотношения между токами защитных аппаратов и допустимым током, т. е. пропускной способностью проводов и кабелей. Эти соотношения в сетях, защищаемых от перегрузки, часто оказываются решающими при выборе сечений проводов и кабелей. Следует иметь в виду, что предохранители и автоматы, защищающие сети от перегрузок, одновременно надежно защищают их и от коротких замыканий.

Условие соответствия номинальному току или току трогания (срабатывания) защитного аппарата выражается следующим уравнением:

Смотрите так же:  Характеристики автоматов узо

где Кз — кратность допустимого тока проводника по отношению к соответствующему току защитного аппарата. Величины К3 для сетей, защищаемых только от коротких замыканий, а также от коротких замыканий и перегрузки, приведены в табл. 11.2.

Как сказано выше, выбранные защитные аппараты и сечения проводов должны удовлетворять еще одному требованию. Должно быть обеспечено надежное срабатывание защиты при коротких замыканиях в конце линии. Однако при обеспечении соотношений, в сетях, защищаемых только от коротких замыканий, т. е. не требующих защиты от перегрузки, расчетная проверка кратностей токов короткого замыкания может не производиться.

1. У автоматов, имеющих одновременно тепловой и электромагнитный расцепители, Кз проверяется только для теплового расцепителя (регулируемого и нерегулируемого).

2. Сечения проводов и кабелей для ответвлений к короткозамкнутым электродвигателям в сетях, проложенных в невзрывоопасных помещениях и защищаемых от перегрузки, выбираются, по номинальным токам электродвигателей.

3. Если требуемая допустимая токовая нагрузка проводника, не совпадает с данными таблиц допустимых нагрузок по ПУЭ, то допускается применение проводника ближайшего меньшего сечения. Однако при этом допустимый ток проводника не должен быть меньше расчетного тока линии.

Выбор сечения проводов и кабелей по экономической плотности тока

В стоимость передачи электрической энергии входят стоимость потерь энергии в проводах электрических сетей и в трансформаторах, годовые эксплуатационные расходы, слагаемые из отчислений на амортизацию, расходы на текущий ремонт и обслуживание.

При проектировании электрических сетей важно обеспечить наименьшую стоимость электроэнергии. В значительной степени это зависит от выбранных сечений проводов. Если их занизить, то потери возрастут, а увеличить — уменьшится стоимость потерянной электроэнергии. Однако это приводит к росту первоначальных капитальных затрат на сооружение сети.

Сечение, соответствующее минимуму стоимости передачи электроэнергии, называют экономическим. Установлена экономическая плотность тока, которая соответствует минимуму приведенных затрат и удовлетворяет оптимальному соотношению между затратами цветного металла и потерями энергии в линии.

11.3 Экономическая плотность тока– это плотность, при которой обеспечивается минимум денежных затрат на эксплуатацию системы электроснабжения

ПУЭ рекомендуют пользоваться следующей формулой для определения экономического сечения жил проводов и кабелей (мм 2 ):

где Iмах— расчетный ток линии при нормальной работе сети, А;Iэк —экономическая плотность тока(11.3), А/мм 2 , определяемая в зависимости от материала и времени использования максимальной нагрузки.

Расчетный ток линии принимают при нормальной работе сети без учета повышенной нагрузки при авариях и ремонтах.

Полученное сечение проводника округляют до ближайшего стандартного сечения.

В табл. 11.3 приведены экономические плотности тока, рекомендуемые ПУЭ.

Выбирают сечения проводов линии по экономической плотности тока. Выбранное сечение проверяют по допустимому нагреву, допустимой потере напряжения и механической прочности. Окончательно принимают наибольшее сечение, полученное в результате этих расчетов.

Согласно указаниям ПУЭ по экономической плотности тока, не выбирают:

а) сети промышленных предприятий и сооружений напряжением до 1000В при числе часов использования максимума нагрузки предприятия до 4000—5000 в год;

б) ответвления к отдельным электроприемникам напряжением до 1000 В, а также осветительные сети промышленных предприятий, жилых и общественных зданий, проверенные по потере напряжения;

в) сборные шины электроустановок всех напряжений;

г) сети временных сооружений, а также установки с малым сроком службы (3-5 лет)

д) провода, идущие к сопротивлениям, пусковым реостатам.

Для проводов и кабелей всех сечений экономическая плотность тока повышается на 40% при максимуме нагрузки в ночное время, а для изолированных проводов сечением до 16 мм 2 — независимо от времени максимума.

ПУЭ 7. Правила устройства электроустановок. Издание 7

Раздел 1. Общие правила

Глава 1.3. Выбор проводников по нагреву, экономической плотности тока и по условиям короны

Допустимые длительные токи для кабелей с бумажной пропитанной изоляцией

1.3.12. Допустимые длительные токи для кабелей напряжением до 35 кВ с изоляцией из пропитанной кабельной бумаги в свинцовой, алюминиевой или поливинилхлоридной оболочке приняты в соответствии с допустимыми температурами жил кабелей: ¶

Номинальное напряжение, кВ

Допустимая температура жилы кабеля, °С

1.3.13. Для кабелей, проложенных в земле, допустимые длительные токи приведены в табл. 1.3.13, 1.3.16, 1.3.19-1.3.22. Они приняты из расчета прокладки в траншее на глубине 0,7-1,0 м не более одного кабеля при температуре земли + 15 °С и удельном сопротивлении земли 120 см•К/Вт. ¶

Таблица 1.3.13. Допустимый длительный ток для кабелей с медными жилами с бумажной пропитанной маслоканифольной и нестекающей массами изоляцией в свинцовой оболочке, прокладываемых в земле

Сечение токопроводящей жилы, мм 2

Ток, А, для кабелей

одножильных до 1 кВ

двухжильных до 1 кВ

трехжильных напряжением, кВ

четырехжильных до 1 кВ

Таблица 1.3.14. Допустимый длительный ток для кабелей с медными жилами с бумажной пропитанной маслоканифольной и нестекающей массами изоляцией в свинцовой оболочке, прокладываемых в воде

Сечение токопроводящей жилы, мм 2

Ток, А, для кабелей

трехжильных напряжением, кВ

четырехжильных до 1 кВ

Таблица 1.3.15. Допустимый длительный ток для кабелей с медными жилами с бумажной пропитанной маслоканифольной и нестекающей массами изоляцией в свинцовой оболочке, прокладываемых в воздухе

Сечение токопро водящей жилы, мм 2

Ток, А, для кабелей

одножильных до 1кВ

двухжильных до 1кВ

трехжильных напряжением, кВ

четырехжильных до 1 кВ

Таблица 1.3.16. Допустимый длительный ток для кабелей с алюминиевыми жилами с бумажной пропитанной маслоканифольной и нестекающей массами изоляцией в свинцовой или алюминиевой оболочке, прокладываемых в земле

Сечение токопро водящей жилы, мм 2

Ток, А, для кабелей

одножильных до 1 кВ

двухжильных до 1 кВ

трехжильных напряжением, кВ

четырехжильных до 1 кВ

Таблица 1.3.17. Допустимый длительный ток для кабелей с алюминиевыми жилами с бумажной пропитанной маслоканифольной и нестекающей массами изоляцией в свинцовой оболочке, прокладываемых в воде

Сечение токопроводящей жилы, мм 2

Ток, А, для кабелей

трехжильных напряжением, кВ

четырех жильных до 1 кВ

Таблица 1.3.18. Допустимый длительный ток для кабелей с алюминиевыми жилами с бумажной пропитанной маслоканифольной и нестекающей массами изоляцией в свинцовой или алюминиевой оболочке, прокладываемых в воздухе

Сечение токопроводящей жилы, мм 2

Ток, А, для кабелей

одножильных до 1 кВ

двухжильных до 1 кВ

трехжильных напряжением, кВ

четырехжильных до 1 кВ

Таблица 1.3.19. Допустимый длительный ток для трехжильных кабелей напряжением 6 кВ с медными жилами с обедненнопропитанной изоляцией в общей свинцовой оболочке, прокладываемых в земле и воздухе

Сечение токопроводящей жилы, мм 2

Ток, А, для кабелей проложенных

Сечение токопроводящей жилы, мм 2

Ток, А, для кабелей проложенных

Таблица 1.3.20. Допустимый длительный ток для трехжильных кабелей напряжением 6 кВ с алюминиевыми жилами с обедненнопропитанной изоляцией в общей свинцовой оболочке, прокладываемых в земле и воздухе

Сечение токопроводящей жилы, мм 2

Ток, А, для кабелей проложенных

Сечение токопро водящей жилы, мм 2

Ток, А, для кабелей проложенных

Таблица 1.3.21. Допустимый длительный ток для кабелей с отдельно освинцованными медными жилами с бумажной пропитанной маслоканифольной и нестекающей массами изоляцией, прокладываемых в земле, воде, воздухе

Сечение токопроводящей жилы, мм 2

Ток, А, для трехжильных кабелей напряжением, кВ

Таблица 1.3.22. Допустимый длительный ток для кабелей с отдельно освинцованными алюминиевыми жилами с бумажной пропитанной маслоканифольной и нестекающей массами изоляцией, прокладываемых в земле, воде, воздухе

Сечение токопроводящей жилы, мм 2

Ток, А, для трехжильных кабелей напряжением, кВ

Таблица 1.3.23. Поправочный коэффициент на допустимый длительный ток для кабелей, проложенных в земле, в зависимости от удельного сопротивления земли

Удельное сопротивление см•К/Вт

Песок влажностью более 9% песчано-глинистая почва влажностью более 1%

Нормальные почва и песок влажностью 7-9%, песчано-глинистая почва влажностью 12-14%

Песок влажностью более 4 и менее 7%, песчано-глинистая почва влажностью 8-12%

Песок влажностью до 4%, каменистая почва

При удельном сопротивлении земли, отличающемся от 120 см•К/Вт, необходимо к токовым нагрузкам, указанным в упомянутых ранее таблицах, применять поправочные коэффициенты, указанные в табл. 1.3.23. ¶

1.3.14. Для кабелей, проложенных в воде, допустимые длительные токи приведены в табл. 1.3.14, 1.3.17, 1.3.21, 1.3.22. Они приняты из расчета температуры воды +15 °С. ¶

1.3.15. Для кабелей, проложенных в воздухе, внутри и вне зданий, при любом количестве кабелей и температуре воздуха +25 °С допустимые длительные токи приведены в табл. 1.3.15, 1.3.18-1.3.22, 1.3.24, 1.3.25. ¶

1.3.16. Допустимые длительные токи для одиночных кабелей, прокладываемых в трубах в земле, должны приниматься как для тех же кабелей, прокладываемых в воздухе, при температуре, равной температуре земли. ¶

Таблица 1.3.24. Допустимый длительный ток для одножильных кабелей с медной жилой с бумажной пропитанной маслоканифольной и нестекающей массами изоляцией в свинцовой оболочке, небронированных, прокладываемых в воздухе

Сечение токопроводящей жилы, мм 2

Ток *, А, для кабелей напряжением, кВ

* В числителе указаны токи для кабелей, расположенных в одной плоскости с расстоянием в свету 35-125 мм, в знаменателе — для кабелей, расположенных вплотную треугольником.

1.3.17. При смешанной прокладке кабелей допустимые длительные токи должны приниматься для участка трассы с наихудшими условиями охлаждения, если длина его более 10 м. Рекомендуется применять в указанных случаях кабельные вставки большего сечения. ¶

1.3.18. При прокладке нескольких кабелей в земле (включая прокладку в трубах) допустимые длительные токи должны быть уменьшены путем введения коэффициентов, приведенных в табл. 1.3.26. При этом не должны учитываться резервные кабели. ¶

Прокладка нескольких кабелей в земле с расстояниями между ними менее 100 мм в свету не рекомендуется. ¶

1.3.19. Для масло- и газонаполненных одножильных бронированных кабелей, а также других кабелей новых конструкций допустимые длительные токи устанавливаются заводами-изготовителями. ¶

1.3.20. Допустимые длительные токи для кабелей, прокладываемых в блоках, следует определять по эмпирической формуле ¶

где I — допустимый длительный ток для трехжильного кабеля напряжением 10 кВ с медными или алюминиевыми жилами, определяемый по табл. 1.3.27; a — коэффициент, выбираемый по табл. 1.3.28 в зависимости от сечения и расположения кабеля в блоке; b — коэффициент, выбираемый в зависимости от напряжения кабеля: ¶

Допустимые токовые нагрузки на провода и кабели пуэ таблица

Допустимые длительные токи для проводов, шнуров и кабелей с резиновой или пластмассовой изоляцией / ПУЭ 7

1.3.10. Допустимые длительные токи для проводов с резиновой или поливинилхлоридной изоляцией, шнуров с резиновой изоляцией и кабелей с резиновой или пластмассовой изоляцией в свинцовой, поливинилхлоридной и резиновой оболочках приведены в табл. 1.3.4-1.3.11. Они приняты для температур: жил + 65, окружающего воздуха + 25 и земли + 15°С. ¶

Смотрите так же:  Обрывок провода воробьев рассказ

При определении количества проводов, прокладываемых в одной трубе (или жил многожильного проводника), нулевой рабочий проводник четырехпроводной системы трехфазного тока, а также заземляющие и нулевые защитные проводники в расчет не принимаются. ¶

Данные, содержащиеся в табл. 1.3.4 и 1.3.5, следует применять независимо от количества труб и места их прокладки (в воздухе, перекрытиях, фундаментах). ¶

Допустимые длительные токи для проводов и кабелей, проложенных в коробах, а также в лотках пучками, должны приниматься: для проводов — по табл. 1.3.4 и 1.3.5 как для проводов, проложенных в трубах, для кабелей — по табл. 1.3.6-1.3.8 как для кабелей, проложенных в воздухе. При количестве одновременно нагруженных проводов более четырех, проложенных в трубах, коробах, а также в лотках пучками, токи для проводов должны приниматься по табл. 1.3.4 и 1.3.5 как для проводов, проложенных открыто (в воздухе), с введением снижающих коэффициентов 0,68 для 5 и 6; 0,63 для 7-9 и 0,6 для 10-12 проводников. ¶

Для проводов вторичных цепей снижающие коэффициенты не вводятся. ¶

Таблица 1.3.4. Допустимый длительный ток для проводов и шнуров с резиновой и поливинилхлоридной изоляцией с медными жилами ¶

Сечение токопроводящей жилы, мм2

Ток, А, для проводов, проложенных

Таблица 1.3.5. Допустимый длительный ток для проводов с резиновой и поливинилхлоридной изоляцией с алюминиевыми жилами ¶

Сечение токопроводящей жилы, мм2

Ток, А, для проводов, проложенных

Таблица 1.3.6. Допустимый длительный ток для проводов с медными жилами с резиновой изоляцией в металлических защитных оболочках и кабелей с медными жилами с резиновой изоляцией в свинцовой, поливинилхлоридной, найритовой или резиновой оболочке, бронированных и небронированных ¶

Сечение токопроводящей жилы, мм2

Ток *, А, для проводов и кабелей

* Токи относятся к проводам и кабелям как с нулевой жилой, так и без нее. ¶

Таблица 1.3.7. Допустимый длительный ток для кабелей с алюминиевыми жилами с резиновой или пластмассовой изоляцией в свинцовой, поливинилхлоридной и резиновой оболочках, бронированных и небронированных ¶

Сечение токопроводящей жилы, мм²

Ток, А, для кабелей

Примечание. Допустимые длительные токи для четырехжильных кабелей с пластмассовой изоляцией на напряжение до 1 кВ могут выбираться по табл. 1.3.7, как для трехжильных кабелей, но с коэффициентом 0,92. ¶

Таблица 1.3.8. Допустимый длительный ток для переносных шланговых легких и средних шнуров, переносных шланговых тяжелых кабелей, шахтных гибких шланговых, прожекторных кабелей и переносных проводов с медными жилами ¶

Сечение токопроводящей жилы, мм2

Ток *, А, для шнуров, проводов и кабелей

* Токи относятся к шнурам, проводам и кабелям с нулевой жилой и без нее. ¶

Таблица 1.3.9. Допустимый длительный ток для переносных шланговых с медными жилами с резиновой изоляцией кабелей для торфопредприятий ¶

Сечение токопроводящей жилы, мм2

Ток *, А, для кабелей напряжением, кВ

* Токи относятся к кабелям с нулевой жилой и без нее. ¶

Таблица 1.3.10. Допустимый длительный ток для шланговых с медными жилами с резиновой изоляцией кабелей для передвижных электроприемников ¶

Сечение токопроводящей жилы, мм2

Ток *, А, для кабелей напряжением, кВ

Сечение токопроводящей жилы, мм2

Ток *, А, для кабелей напряжением, кВ

* Токи относятся к кабелям с нулевой жилой и без нее. ¶

Таблица 1.3.11. Допустимый длительный ток для проводов с медными жилами с резиновой изоляцией для электрифицированного транспорта 1,3 и 4 кВ ¶

Сечение токопроводящей жилы, мм2

Сечение токопроводящей жилы, мм2

Сечение токопроводящей жилы, мм2

Таблица 1.3.12. Снижающий коэффициент для проводов и кабелей, прокладываемых в коробах ¶

Количество проложенных проводов и кабелей

Снижающий коэффициент для проводов, питающих

отдельные электроприемники с коэффициентом использования до 0,7

группы электроприемников и отдельные приемники с коэффициентом использования более 0,7

Многослойно и пучками

1.3.11. Допустимые длительные токи для проводов, проложенных в лотках, при однорядной прокладке (не в пучках) следует принимать, как для проводов, проложенных в воздухе. ¶

Допустимые длительные токи для проводов и кабелей, прокладываемых в коробах, следует принимать по табл. 1.3.4-1.3.7 как для одиночных проводов и кабелей, проложенных открыто (в воздухе), с применением снижающих коэффициентов, указанных в табл. 1.3.12. ¶

При выборе снижающих коэффициентов контрольные и резервные провода и кабели не учитываются.¶

Расчет сечения кабеля

ПУЭ, Таблица 1.3.4. Допустимый длительный ток для проводов и шнуров с резиновой и поливинилхлоридной изоляцией с медными жилами

ПУЭ, Таблица 1.3.5. Допустимый длительный ток для проводов с резиновой и поливинилхлоридной изоляцией с алюминиевыми жилами

ПУЭ, Таблица 1.3.6. Допустимый длительный ток для проводов с медными жилами с резиновой изоляцией в металлических защитных оболочках и кабелей с медными жилами с резиновой изоляцией в свинцовой, поливинилхлоридной, найритовой или резиновой оболочке, бронированных и небронированных

ПУЭ, Таблица 1.3.7. Допустимый длительный ток для кабелей с алюминиевыми жилами с резиновой или пластмассовой изоляцией в свинцовой, поливинилхлоридной и резиновой оболочках, бронированных и небронированных

ПУЭ, Таблица 1.3.8. Допустимый длительный ток для переносных шланговых легких и средних шнуров, переносных шланговых тяжелых кабелей, шахтных гибких шланговых, прожекторных кабелей и переносных проводов с медными жилами

ГОСТ 16442-80, Таблица 23. Допустимые токовые нагрузки кабелей до 3КВ включ. с медными жилами с изоляцией из полиэтилена и поливинилхлоридного пластиката, А*

ГОСТ 16442-80, Таблица 24. Допустимые токовые нагрузки кабелей до 3КВ включ. с алюминиевыми жилами с изоляцией из полиэтилена и поливинилхлоридного пластиката, А*

* Токи относятся к проводам и кабелям как с нулевой жилой, так и без нее.

Сечения приняты из расчета нагрева жил до 65°С при температуре окружающей среды +25°С. При определении количества проводов, прокладываемых в одной трубе, нулевой рабочий провод четырехпроводной системы трехфазного тока (или заземляющий провод) в расчет не входит.

Токовые нагрузки для проводов, проложенных в лотках (не в пучках), такие же, как и для проводов, проложенных открыто.

Если количество одновременно нагруженных проводников, проложенных в трубах, коробах, а также в лотках пучками, будет более четырех, то сечение проводников нужно выбирать как для проводников, проложенных открыто, но с введением понижающих коэффициентов для тока: 0,68 при 5 и 6 проводниках, 0,63 — при 7-9, 0,6 — при 10-12.

Допустимые длительные токи для проводов, шнуров и кабелей с резиновой или пластмассовой изоляцией

На уровень вверх

10 декабря 1979 г.

Ссылка на главу, вышедшую в другом издании

Нумерация может измениться

Перейдите по ссылке

чтобы узнать подробности

Данный документ находится в библиотеке сайта ElectroShock

Перейдите по ссылке, чтобы посмотреть список доступных документов

Там же находится ПУЭ в формате справки windows

1.3.10. Допустимые длительные токи для проводов с резиновой или поливинилхлоридной изоляцией, шнуров с резиновой изоляцией и кабелей с резиновой или пластмассовой изоляцией в свинцовой, поливинилхлоридной и резиновой оболочках приведены в табл. 1.3.4 — 1.3.11. Они приняты для температур: жил +65, окружающего воздуха +25 и земли +15 º С.

При определении количества проводов, прокладываемых в одной трубе (или жил многожильного проводника), нулевой рабочий проводник четырехпроводной системы трехфазного тока, а также заземляющие и нулевые защитные проводники в расчет не принимаются.

Данные, содержащиеся в табл. 1.3.4 и 1.3.5, следует применять независимо от количества труб и места их прокладки (в воздухе, перекрытиях, фундаментах). Допустимые длительные токи для проводов и кабелей, проложенных в коробах, а также в лотках пучками, должны приниматься: для проводов — по табл. 1.3.4 и 1.3.5, как для проводов, проложенных в трубах, для кабелей — по табл. 1.3.6 — 1.3.8, как для кабелей, проложенных в воздухе. При количестве одновременно нагруженных проводов более четырех, проложенных в трубах, коробах, а также в лотках пучками, токи для проводов должны приниматься по табл. 1.3.4 и 1.3.5, как для проводов, проложенных открыто (в воздухе), с введением снижающих коэффициентов 0, 68 для 5 и 6; 0, 63 для 7 — 9 и 0, 6 для 10 — 12 проводов.

Для проводов вторичных цепей снижающие коэффициенты не вводятся.

1.3.11. Допустимые длительные токи для проводов, проложенных в лотках, при однорядной прокладке (не в пучках) следует принимать как для проводов, проложенных в воздухе.

Допустимые длительные токи для проводов и кабелей, прокладываемых в коробах, следует принимать по табл. 1.3.4 — 1.3.7, как для одиночных проводов и кабелей, проложенных открыто (в воздухе), с применением снижающих коэффициентов, указанных в табл. 1.3.12.

При выборе снижающих коэффициентов контрольные и резервные провода и кабели не учитываются.

Допустимый длительный ток для проводов и шнуров с резиновой и поливинилхлоридной изоляцией с медными жилами

Сечение токопроводящей жилы, мм2

Ток, А, для проводов, проложенных

двух одно жильных

трех одно жильных

четырех одно жильных

одного двух жильного

одного трех жильного

Допустимый длительный ток для проводов с резиновой и поливинилхлоридной изоляцией с алюминиевыми жилами

Сечение токопроводящей жилы, мм2

Ток, А, для проводов, проложенных

Допустимый длительный ток для проводов с медными жилами с резиновой изоляцией в металлических защитных оболочках и кабелей с медными жилами с резиновой изоляцией в свинцовой, поливинилхлоридной, найритовой или резиновой оболочке, бронированных и небронированных

Сечение токопроводящей жилы, мм2

Ток*, А, для проводов и кабелей

Допустимый длительный ток для кабелей с алюминиевыми жилами с резиновой или пластмассовой изоляцией в свинцовой, поливинилхлоридной и резиновой оболочках, бронированных и небронированных*

Сечение токопроводящей жилы, мм2

Ток, А, для проводов и кабелей

Допустимый длительный ток для переносных шланговых легких и средних шнуров, переносных шланговых тяжелых кабелей, шахтных гибких шланговых, прожекторных кабелей и переносных проводов с медными жилами

Сечение токопроводящей жилы, мм2

Ток*, А, для шнуров, проводов и кабелей

Допустимый длительный ток для переносных шланговых с медными жилами с резиновой изоляцией кабелей для торфопредприятий

Сечение токопроводящей жилы, мм2

Ток*, А, для кабелей напряжением, кВ

Допустимый длительный ток для шланговых с медными жилами с резиновой изоляцией кабелей для передвижных электроприемников

Сечение токопроводящей жилы, мм2

Ток*, А, для кабелей напряжением, кВ

Смотрите так же:  Штроборез в 220 вольт

Сечение токопроводящей жилы, мм2

Ток*, А, для кабелей напряжением, кВ

Допустимый длительный ток для проводов с медными жилами с резиновой изоляцией для электрифицированного транспорта 1, 3 и 4 кВ

Сечение токопроводящей жилы, мм2

Сечение токопроводящей жилы, мм2

Сечение токопроводящей жилы, мм2

Снижающий коэффициент для проводов и кабелей, прокладываемых в коробах

Количество проложенных проводов и кабелей

Снижающий коэффициент для проводов и кабелей, питающих

отдельные электроприемники с коэффициентом использования до 0, 7

группы электроприемников и отдельные приемники с коэффициентом использования более 0, 7

Многослойно и пучками

Длительно-допустимые токовые нагрузки кабелей

Токи, протекающие по кабелю, нагревают проводник. Это не относится к полезному действию тока, как например, нагревание спирали лампочки или электрической плитки. Поэтому мы и не учитываем это действие, когда рассчитываем общую мощность потребления. Однако забывать о расходе энергии на нагревание проводов не следует, так как это может привести к печальным последствиям.

Величина тока, протекающего по проводам, зависит от мощности устройств-потребителей, так как мощность, выделяемая на самих проводах, пренебрежимо мала — в связи с малым удельным сопротивлением металлов, используемых для провода и в кабеле проводки. Ток течет только тогда, когда мы включаем в сеть приборы. При этом суммарный ток в каждый момент времени определяется только мощностью приборов (связанной с сопротивлением), потребляющих энергию в сети именно в этот момент времени. Но при расчете сети по току и мощности всегда необходимо брать только ситуации, когда одновременно включены все потребляющие устройства. Только такой подход дает возможность застраховаться от всех возможных перегрузок. Но и это еще не все. В момент включения многие устройства потребляют так называемый стартовый ток, который может быть процентов на 10–20 выше по потреблению от стационарной работы данного устройства. Это связано у некоторых устройств с трудностью запуска — разгона массивных роторов, создания рабочих перепадов давления и так далее. Поэтому при выполнении расчета требуется делать поправку еще и на это.

Допустимый длительный ток для кабелей

Токонесущие провода под действием тока нагреваются всегда. Весь вопрос только в количестве выделяемой теплоты. С одной стороны, она зависит от протекающего тока, удельного сопротивления материала проводника, его сечения, с другой — от факторов отведения тепла в условиях прохождения проводов: от количества проводов и их близости, изоляции, которая препятствует теплоотводу, наличия коробов или каналов, в которые заправлен кабель, скрытности проводки. И вообще, от климатических факторов, действующих на кабель в местах прохождения проводов: вентиляции, открытого пространства и так далее.

Качество проводки и старение

В результате действия всех этих многочисленных факторов провод, систематически нагревающийся от проходящего по нему тока, с точки зрения безопасности может быть:

  • Надежным носителем тока и напряжения. У такого провода срок будущей безаварийной работы можно считать неограниченным.
  • Старым или стареющим носителем электроэнергии. Качество провода за время эксплуатации снизилось, ухудшилась изоляция, стыки и соединения проводов потеряли часть проводимости. Старение провода имеет склонность со временем накапливаться и способствовать увеличению скорости старения и возрастанию отрицательных факторов.
  • Опасной проводкой электроэнергии. Режим работы таков, что аварии вероятны. Это выражается в увеличении нагрева проводов на обычном токе, неравномерности нагрева из-за ухудшения изоляции, окислении контактов, ухудшении равномерности сечения проводов из-за естественного для металлов окисления. Неравномерности тоже имеют свойство усиливать старение и локально ухудшать качество.

Температура, таким образом, является очень важным показателем безопасности работы электрической проводки. Кроме того, температурный режим сам по себе способен ухудшать проводку, а в случаях превышения предельного порога приводить к авариям. В результате допустимые токовые нагрузки кабелей должны быть уменьшены.

Например, есть такое правило, что каждые 8° лишнего нагрева кабеля по току ускоряют процессы (и химические, и физические) в материале в два раза. Это отражается на характеристиках проводника (особенно алюминиевого) и ухудшает характеристики изолятора.

Изоляция и температура

Изоляция в результате нагрева сама может стать источником опасных и вредных факторов. Например, ПВХ при увеличении температуры ведет себя так:

  • 80 °С — размягчение;
  • 100 °С — выделение HCl (летучего вредного газа, хлористого водорода, который при растворении в воде становится соляной кислотой). С повышением температуры процесс усиливается. При 160 °С его уже выделится 50%, при 300 °С — 85%;
  • 210 °С — плавление;
  • 350 °С — начинается возгорание углеродной основы ПВХ.

Это касается твердого ПВХ, мягкий содержит много добавок-пластификаторов, которые улетучиваются и способны загореться уже при 200 °С.

Размягчение, тем более плавление, кроет в себе другую опасность — могут сблизиться несущие ток провода, что обычно приводит к КЗ и возгоранию.

По соображениям безопасности верхней границей температуры проводов, по которым проходит электрический ток, установили 65 °С. Это при окружающей температуре воздуха 25 °С, земли — 15 °С.

Задача выдержать такую норму нагрева состоит в том, чтобы для всего разнообразия условий подобрать сечения для проводов из разных материалов, применяемых в электротехнике, достаточные для безопасного, то есть без накопления тепла, прохождения тока.

Обязательным условием является то, что имеется в виду допустимый длительный ток для кабелей, а не кратковременные перегрузки.

От внезапных перегрузок по току провода и кабели должны защищать автоматы на щите питания.

Причем их номиналы подбираются так, чтобы они были выше токов, возникающих при кратковременных, но допустимых перегрузках, но ниже опасных для сети перенапряжений.

Структура проводки потребляющей сети

Потребляющая сеть состоит из нескольких групп потребителей. В каждой из них свой характер нагрузок и режим токов, следовательно, и проводка должна соответствовать правилам безопасности. Самое главное правило: должна быть обеспечена высокая нагружаемость там, где нагружено. То есть вводные провода, несущие всю тяжесть потребления в сети, должны быть самыми большими по сечению, поскольку через них идет расход энергии на всю мощность нагрузок в рассматриваемой сети.

Пример. Расчет сечения кабеля для квартирной потребляющей сети

В таблице приведены приборы потребления

Ток шины из формулы суммарной мощности

Формула суммарной мощности

при KИ , коэффициенте использования, равном 75% и cos j = 1,

получается в диапазоне I = 41–81 А. Для проводки, учитывающей любые возможные варианты мощностей подключаемых электроприборов, следует брать верхнее значение и запас на будущее порядка 10–20%. Поэтому принимаем максимальный ток, равный 100 А.

Возможно, такая нагрузка ляжет на шины домовой сети тяжким бременем, и электроснабженческая организация не разрешит иметь столько потребителей сразу, однако выбор проводов не должен зависеть от таких «политических» вопросов. Тем более что проводка в старых домах уже демонстрирует недальновидность прежних ограничений.

Сечение шин, подведенных к квартирам, надо принимать как данность. Если мы делаем разводку в квартире сами, то делим ее на несколько подсетей по группам по току потребляющих устройств. От шин щитка питания каждая подсеть будет запитана отдельно. И выполнять ее нужно с расчетом на максимальное потребление именно в этой подсети.

ПУЭ — правила устройства электроустановок

Для регламентации безопасности, касающейся всего, что связано с электроэнергией, существует система правил, которые начали разрабатываться с самого начала использования электроэнергии (1899 год, Первый всероссийский электротехнический съезд) и приводиться в систему, близкую к современной, сразу после Великой Отечественной войны в 1946–1949 годах. И существуют и продолжают разрабатываться и сейчас — в России, Белоруссии и на Украине.

Электробезопасность — это очень серьезно, несмотря на расхождения во взглядах где-то еще. У нас, например, предусматриваются и штрафы за несоблюдение правил устройства электроустановок для граждан, должностных лиц и предпринимателей и для юридических лиц.

То, что касается безопасности электропроводки, собрано в 1 разделе в 3 главе.

В таблицах отображен допустимый длительный ток для кабелей для множества вариантов проводов, металлов (разное удельное сопротивление), изоляции, характера (одножильный – многожильный), сечения провода, а также способов прокладки кабеля.

Полный текст 3 главы из 1 раздела 7-го издания ПУЭ имеется в следующем файле. Допустимый длительный ток для кабелей в них представлен в таблицах 3.1.7.4 – 3.1.7.11.

Для нашего примера построим таблицу, разбив всех потребителей на группы, в каждой группе посчитаем суммарную мощность, ток и найдем по ПУЭ соответствующее ему сечение кабеля для меди и алюминия.

В нашем случае выделим подсети и просчитаем для каждой из них суммарную мощность и максимальный ток. Из ПУЭ сделаем выбор сечения провода для медных проводов и алюминия:

Получилось, для осветительной сети подходит сечение провода 1 мм2 меди или 2 мм2 алюминия.

Для розеточной сети с невысоким потреблением (жилые помещения), соответственно, 1,5 и 2,5 мм2.

Две розеточные подсети со значительным уровнем потребления — в кухне и ванной — дали 4 и 5–6 мм2.

Отдельные потребители могут быть запитаны и отдельной проводкой с индивидуальным расчетом тока и сечения.

Похожие статьи:

  • От крайнего провода Допустимые расстояния от проводов ВЛ ЛЭП до различных объектов ПУЭ-7 "Правила устройства электроустановок". Раздел 2. Глава 2.5. читаем: 1. Расстояние от ЛЭП до газопровода при параллельной прокладке газопровода и ВЛ, должно быть не менее […]
  • Армирование провода неразборной арматурой Форум проектировщиков электрических и слаботочных сетей Автор Тема: Розетка в утеплителе? (Прочитано 6224 раз) 0 Пользователей и 1 Гость просматривают эту тему. Быстрый ответ Предупреждение: в данной теме не было сообщений более […]
  • Заземление зпл 10 25мм2 ЗПЛ-10Н (сеч. 25мм2) - заземление переносное для воздушных линий от 1 до 10 кВ Обратите внимание! Купить приборы и оборудование в нашей компании могут только организации. Форма оплаты - безналичный расчет. Назначение Предназначены […]
  • 220 вольт златоуст Электроустановочные изделия с экономией до 40% в интернет-магазине 220 Вольт Электроустановочные изделия по сниженным ценам! Весь месяц, с 1 по 31 октября, электроустановочные изделия в интернет-магазине 220 Вольт продаются с […]
  • Обрывок провода воробьев рассказ Победа будет за нами!: рассказы Код: 140091 Серия: Школьная библиотека Страниц: 317 стр., бумага офсетная Размер: 20,6 х 13,5 х 1,8 см Переплет: твердый ISBN: 978-5-08-005406-8 Вес: 345 г. Количество в пачке: 16 шт. […]
  • Электрические схемы word ШАБЛОН MS-Word ДЛЯ РИСОВАНИЯ СХЕМ Предлагаемый Вам шаблон - это попытка создать более комфортное рабочее место для человека, занимающегося выпуском конструкторской документации, циркуляров и инструкций, может оказаться полезным для […]