Пусковые токи на электродвигатели

Оглавление:

Пусковой ток электродвигателя

Пусковой ток электродвигателя.

Всем кто сталкивался с пуском электродвигателей, знакомо выражение, пусковой ток электродвигателя. При запуске пусковой ток электродвигателя , в зависимости от мощности и номинальных оборотов, может составлять от 2 до 8 кратного значения.

Все это негативно сказывается на работе других потребителей работающих в одной линии с данным оборудованием. При таких пусках, которые характеризуются высоким уровнем потребления реактивной мощности за короткий период времени, другие электродвигатели и те потребители, для которых показатель стабильности напряжения имеет приоритетное значение, находятся в дискомфортном состоянии. Такая ситуация приводит к непредсказуемым последствиям в работе данного электрооборудования. Ведь каждый такой пуск резко понижает напряжение питающей сети. Для того чтобы снизить негативные воздействия таких процессов используются несколько традиционных методов для того чтобы снизить пусковой ток электродвигателя.

1. Пуск электродвигателя производят после снятия механических нагрузок на приводной вал электродвигателя, так называемый холостой запуск. Затем нагружают электродвигатель, постепенно выводя его на рабочий режим. Такой метод применим для работы насосов и вентиляционных систем, где есть возможность регулировать нагрузку на электродвигатель при помощи расходных и всасывающих запорных элементов. Этим снижается величина реактивной мощности, а значит и пускового тока электродвигателя.

2.Включение электродвигателя по схеме звезда → треугольник. Данный метод применим при определенном условии. Двигатель должен иметь обмотку на необходимый диапазон напряжений. Для нашей промышленной сети этот диапазон составляет 380/660В. Если это условие соблюдено, запуск электродвигателя производится в мягком режиме, при котором пусковые токи не превышают номинальные более чем в 2 раза.

3. Автотрансформаторный запуск. Пуск таким образом, чем–то напоминает предыдущее действие, только подача напряжения на запускаемый электродвигатель, производится плавной подачей напряжения через автотрансформатор.

Данный вид запуска практически не применяется в виду его высокой стоимости и значительных габаритов пускорегулирующей аппаратуры.

4. Применение пусковых резисторов или реакторов для ограничения пусковых токов. Где ток, превышающий некоторое заданное значение, выделяется в виде тепловой энергии на гасящих резисторах.

5. Частотные регуляторы. Новое направление в решении пуска и возможности снизить пусковой ток электродвигателя. Данный метод повсеместно внедряется везде, где надо и не надо. Этот метод пуска не требует значительных вложений финансовых средств, если это касается электродвигателей небольшой мощности 10–30 КВт. При оборудовании электродвигателей большей мощности такими устройствами их стоимость может значительно превышать стоимость самого электродвигателя.

6.Устроойство плавного пуска на основе современных твердотельных электронных элементов – тиристоров, управление таких пусковых устройств осуществляется методом фазового управления. Но у этого метода есть один существенный недостаток, в сетях недостаточной мощности провалы напряжения компенсировать не удается. Такое устройство подвержено критическим режимам работы в данном режиме и выход его из строя дело времени.

В решении данной проблемы, потребитель должен найти приемлемое решение, для эффективного и безопасного запуска мощных электродвигателей и снизить пусковой ток электродвигателя.

Совет 1: Как рассчитать пусковой ток

  • Как рассчитать пусковой ток
  • Как рассчитать мощность электродвигателя
  • Как рассчитать мощность
  • Техническая документация на электродвигатель.
  • Онлайн-электрик
  • пусковой ток электродвигателя

Совет 2: Как рассчитать ток в трансформаторе

Совет 3: Как найти номинальный ток

  • Для проведения измерений и расчетов возьмите вольтметр, штангенциркуль, таблицу зависимости номинального тока от сечения, техпаспорта электродвигателей.

Совет 4: Как рассчитать автоматический выключатель

Существуют три основные характеристики срабатывания, установленные на автоматических выключателях:
— B (для жилых домов);

— C (для жилых домов, а также для защиты цепей, используемых потребителями, обладающими большим пусковым током);

— D (для потребителей с очень большим пусковым током).

Согласно установленным стандартам, защита в случае перегрузки может быть обеспечена, если:
— потребляемый ток меньше или равен номинальном току «автомата», который должен быть не больше, чем максимальные показатели нагрузки цепи или кабеля;

— показатели номинального тока срабатывания «автомата» должны быть в 1,5 раза меньше, чем показатели максимально допустимой нагрузки цепи или кабеля.

Расчет пускового тока электродвигателя

Пусковые токи асинхронных электродвигателей

Подписка на рассылку

Ток, который нужен для запуска электродвигателя, называется пусковым. Как правило, пусковые токи электродвигателей в несколько раз большие, чем токи, необходимые для работы в нормально-устойчивом режиме.

Рисунок 1. Асинхронный электродвигатель Большой пусковой ток асинхронного электродвигателя необходим для того, чтобы раскрутить ротор с места, для чего требуется приложить гораздо больше энергии, чем для дальнейшего поддержания постоянного числа его оборотов. Стоит отметить, что, несмотря на совсем другой принцип действия, однофазные двигатели постоянного тока также характеризуются большими значениями пусковых токов.

Высокие пусковые токи электродвигателей — нежелательное явление, поскольку они могут приводить к кратковременной нехватке энергии для другого подключенного к сети оборудования (падению напряжения). Поэтому при подключении и наладке двигателей переменного тока (наиболее распространенных в промышленности) всегда стоит задача минимизировать значения пусковых токов, а также повысить плавность пуска двигателя за счет применения специального дополнительного оборудования. Такие мероприятия также позволяют снизить уровень затрат на пуск электродвигателя (применять провода меньшего сечения, стабилизаторы и дизельные электростанции меньшей мощности, проч.).

Одной из наиболее эффективных категорий устройств, облегчающих тяжелые условия пуска, являются софтстартеры и частотные преобразователи. Особенно ценным считается их свойство поддерживать пусковой ток двигателей переменного тока в течение продолжительного периода — более минуты. Также пусковой ток асинхронного электродвигателя можно уменьшить за счет внедрения внешнего сопротивления в обмотку ротора.

Расчет пускового тока асинхронного электродвигателя

Рисунок 2. Асинхронный электродвигатель с частотным преобразователем Расчет пускового тока электродвигателя может потребоваться для того, чтобы подобрать подходящие автоматические выключатели, способные защитить линию включения данного электродвигателя, а также для того, чтобы подобрать подходящее по параметрам дополнительное оборудование (генераторы, проч.).

Расчет пускового тока электродвигателя осуществляется в несколько этапов:

Определение номинального тока трехфазного электродвигателя переменного тока согласно формуле: Iн=1000Pн/(Uн*cosφ*√ηн). Рн здесь — номинальная мощность двигателя, Uн выступает номинальным напряжением, а ηн — номинальным коэффициентом полезного действия. Cosφ — это номинальный коэффициент мощности электромотора. Все эти данные можно найти в технической документации по двигателю.

Расчет величины пускового тока по формуле Iпуск=Iн*Кпуск. Здесь Iн — номинальная величина тока, а Кпуск выступает кратностью постоянного тока к номинальному значению, которая также должна указываться в технической документации к электродвигателю.

Точно зная пусковые токи электродвигателей, можно правильно подобрать автоматические выключатели, которые будут защищать линию включения.

Пусковой ток.

В паспорте электрического двигателя указывается ток при номинальной нагрузке на валу, он меньше пускового тока. Если отмечено 13,8/8 А, то это значит, что при подсоединении двигателя к сети 220 В и номинальной нагрузке ток двигателя будет равен 13,8 А. При подсоединении к сети 380 В — ток 8 А, таким образом верно равенство мощностей: √3 х 380 х 8 = √3 х 220 х 13,8.

Зная номинальную мощность двигателя определяют его номинальный ток. При включении двигателя в трехфазную распредсеть 380 В номинальный ток рассчитывается следующим образом:

Iн = Pн/(√3Uн х сosφ), кА

где Pн — номинальная мощность двигателя, кВт, Uн — напряжение в сети, кВ (0,38 кВ). Коэффициент мощности (сosφ) — паспортные значения двигателя.

Рис. 1. Паспорт электрического двигателя.

Если не известен коэффициент мощности двигателя, то номинальный его ток с малой погрешностью определяется по отношению «два ампера на киловатт», т.е. если номинальная мощность двигателя 10 кВт, то потребляемый им из сети ток будет приблизительно равен 20 А.

Для упомянутого на рисунке двигателя это отношение также выполняется (3,4 А ≈ 2 х 1,5). Более верные величины тока при применении данного отношения получаются при мощностях электродвигателей от 3 кВт.

При холостом ходе электродвигателя из сети потребляется маленький ток (ток холостого хода). При увеличении нагрузки увеличивается и ток. С увеличением тока повышается нагрев обмоток. Большая перегрузка приводит к перегреву обмоток двигателя, и возникает опасность выхода из строя электродвигателя.

При пуске из сети электрическим двигателем потребляется пусковой ток Iпуск, который в 3 — 8 раз выше номинального. Характеристика изменения тока представлена на графике (рис. 2, а).

Рис. 2. Характеристика изменения тока, потребляемого электродвигателем из сети (а), и влияние большого тока на колебания напряжения в сети (б)

Подлинную величину пускового тока для электродвигателя определяют зная величину кратности пускового тока — Iпуск/Iном. Кратность пускового тока — техническая характеристика двигателя, ее известна из каталогов. Пусковой ток рассчитывается согласно формуле: I пуск = Iх. х (Iпуск/Iном).

Понимание истинной величины пускового тока необходимо для подбора плавких предохранителей, проверки включения электромагнитных расцепителей во время пуска двигателя, при подборе автоматических выключателей и для высчитывания величины падения напряжения в сети при пуске.

Большой пусковой ток вызывает значительное падение напряжения в сети (рис. 2, б).

Если взять электросопротивление проводов, проложенных от источника до электродвигателя, равным 0,5 Ом, номинальный ток Iн=15 А, а пусковой ток Iп равным пятикратному от номинального, потери напряжения в проводах во время пуска составят 0,5 х 75 + 0,5 х 75 = 75 В.

На клеммах электродвигателя, а также и на клеммах рядом работающих электродвигателей напряжение будет 220 — 75 = 145 В. Это понижение напряжения вызывает торможение работающих электродвигателей, что влечет за собой еще большее повышение тока в сети и выход из строя предохранителей.

В электрических лампах в моменты запуска электродвигателей уменьшается накал (лампы «мигают»). Поэтому при включении электродвигателей стремятся уменьшить пусковые токи .

Для понижения пускового тока используется схема пуска электродвигателя с переключением обмоток статора со звезды на треугольник.

Рис. 3. Схема пуска электрического электродвигателя с переключением обмоток статора со звезды на треугольник.

Имеет принципиальное значение то, что далеко не каждый двигатель возможно включать по этой схеме. Широко распространенные асинхронные двигатели с рабочим напряжением 220/380 В, в том числе и двигатель, показанный на рисунке 1 при включении по этой схеме выйдут из строя.

Для понижения пускового тока электродвигателей энергично употребляют специальные процессорные устройства плавного пуска (софт-стартеры).

Какой ток потребляет двигатель из сети при пуске и работе

В паспорте электрического двигателя указан ток при номинальной нагрузке на валу. Если, например, указано 13,8/8 А, то это означает, что при включении двигателя в сеть 220 В и при номинальной нагрузке ток, потребляемый из сети, будет равен 13,8 А. При включении в сеть 380 В из сети будет потребляться ток 8 А, то есть справедливо равенство мощностей: √ 3 х 380 х 8 = √ 3 х 220 х 13,8.

Зная номинальную мощность двигателя (из паспорта) можно определить его номинальный ток. При включении двигателя в трехфазную сеть 380 В номинальный ток можно посчитать по следующей формуле:

I н = P н/ ( √3 U н х η х с osφ).

где P н — номинальная мощность двигателя в кВт, U н — напряжение в сети, в кВ (0,38 кВ). Коэффициент полезного действия ( η) и коэффициент мощности (с osφ) — паспортные значения двигателя, которые написаны на щитке в виде металлической таблички. См. также — Какие паспортные данные указываются на щитке асинхронного двигателя.

Рис. 1. Паспорт электрического двигателя. Номинальная мощность 1,5 кВ, номинальный ток при напряжении 380 В — 3,4 А.

Если не известны к.п.д. и коэффициент мощности двигателя, например, при отсутствии на двигателе паспорта-таблички, то номинальный его ток с небольшой погрешностью можно определить по соотношению «два ампера на киловатт», т.е. если номинальная мощность двигателя 10 кВт, то потребляемый им ток будет примерно равен 20 А.

Для указанного на рисунке двигателя это соотношение тоже выполняется (3,4 А ≈ 2 х 1,5). Более точные значения токов при использовании данного соотношения получаются при мощностях двигателей от 3 кВт.

При холостом ходе электродвигателя из сети потребляется незначительный ток (ток холостого хода). При увеличении нагрузки увеличивается и потребляемый ток. С увеличением тока повышается нагрев обмоток. Большая перегрузка приводит к тому, что увеличенный ток вызывает перегрей обмоток двигателя, и возникает опасность обугливания изоляции (сгорания электродвигателя).

В момент пуска из сети электрическим двигателем потребляется так называемый пусковой ток. который может быть в 3 — 8 раз больше номинального. Характер изменения тока представлен на графике (рис. 2, а).

Рис. 2. Характер изменения тока, потребляемого двигателем из сети (а), и влияние большого тока на колебания напряжения в сети (б)

Точное значение пускового тока для каждого конкретного двигателя можно определить зная значение кратности пускового тока — I пуск/ I ном. Кратность пускового тока — одна из технических характеристик двигателя, которую можно найти в каталогах. Пусковой ток определяется по следующей формуле: I пуск = I н х ( I пуск/ I ном). Например, при номинальном токе двигателя 20 А и кратности пускового тока — 6, пусковой ток равен 20 х 6 = 120 А.

Знание реальной величины пускового тока нужно для выбора плавких предохранителей, проверке срабатывания электромагнитных расцепителей во время пуска двигателя при выборе автоматических выключателей и для определения величины снижения напряжения в сети при пуске.

Процесс выбора плавких предохранителей подробно рассмотрен в этой статье: Выбор предохранителей для защиты асинхронных электродвигателей

Большой пусковой ток, на который сеть обычно не рассчитана, вызывает значительные снижения напряжения в сети (рис. 2, б).

Если принять сопротивление проводов, идущих от источника до двигателя, равным 0,5 Ом, номинальный ток I н=15 А, а пусковой ток равным пятикратному от номинального, то потери напряжения в проводах в момент пуска составят 0,5 х 75 + 0,5 х 75 = 75 В.

На зажимах двигателя, а также и на зажимах рядом работающих электродвигателей будет 220 — 75 = 145 В. Такое снижение напряжения может вызвать торможение работающих двигателей, что повлечет за собой еще большее увеличение тока в сети и перегорание предохранителей.

В электрических лампах в моменты пуска двигателей уменьшается накал (лампы «мигают»). Поэтому при пуске электродвигателей стремятся уменьшить пусковые токи.

Для уменьшения пускового тока может использоваться схема пуска двигателя с переключением обмоток статора со звезды на треугольник. При этом фазное напряжение уменьшится в √ З раз и соответственно ограничивается пусковой ток. После достижения ротором некоторой скорости обмотки статора переключаются в схему треугольника и напряжение ни них становится равным номинальному. Переключение обычно производится автоматически с использованием реле времени или тока.

Рис. 3. Схема пуска электрического двигателя с переключением обмоток статора со звезды на треугольник

Важно понимать, что не далеко каждый двигатель можно подключать по этой схеме. Наиболее распространенные асинхронные двигатели с рабочим напряжение 380/200 В, в том числе и двигатель, показанный на рисунке 1 при включении по данной схеме выйдут из строя. Подробнее об этом читайте здесь: Выбор схемы соединения фаз электродвигателя

В настоящее время, для уменьшения пускового тока электрических двигателей активно используют специальные микропроцессорные устройства плавного пуска (софт-стартеры). Подробнее о назначении такого типа устройств читайте в статье Для чего нужен плавный пуск асинхронного двигателя.

Пусковые токи электродвигателя

Ток, потребляемый электродвигателем в момент подачи питания, называется пусковым током. Обычно пусковые токи электродвигателя ограничивают, так как они по величине во много раз превышают номинальный показатель. Для этого используются автоматические выключатели, имеющие необходимую токовую характеристику. Помимо выполнения основной функции – ограничения, такие выключатели обеспечивают защиту линии включения движка.

Пусковой конденсатор

Во всех моделях электродвигателей имеются два конденсатора – рабочий и пусковой. Последний включается единовременно в момент пуска и увеличивает пусковой момент. При напряжении 120В обычно используются пусковые конденсаторы, оптимальная емкость которых составляет от 3 до 10 мкФ, поскольку напряжение, создаваемое на зажимах конденсатора, намного выше, чем напряжение осветительной сети. Из-за небольших габаритов конденсаторов для стабильности их функционирования необходимо добиться малой величины последовательного сопротивления.

Смотрите так же:  Провести заземление в дом

После разгона движка отключение пускового конденсатора производится одним из следующих способов:

  • Автоматически (посредством реле времени, центробежного выключателя, токового или дифференциального реле).
  • Вручную (с помощью выключателя).

Недостатки пускового тока и способы их устранения

Основным недостатком пускового тока является превышение допустимых показателей в момент пусковых процессов (это относится и к напряжению на обмотках движка). Это приводит к:

  • подгоранию контактов и их разрушению;
  • пробою и износу изоляции;
  • уменьшению срока службы подшипников;
  • и как итог, сокращению срока функционирования двигателя и повышению вероятности его поломки.

Для того чтобы свести к минимуму вышеизложенные проблемы, используется дополнительный пусковой механизм – устройство плавного пуска электродвигателя. Оно позволяет намного увеличить срок его службы и удобно в применении, так как отличается высокой эффективностью и компактностью.

Рабочая и пусковая обмотки электродвигателя

Наличие двух дополняющих друг друга обмоток (рабочей и пусковой) – залог полноценной и эффективной работы электродвигателя. Одна обмотка в статоре не обеспечивает вращения внутри механизма электромагнитного поля (оно может только «пульсировать»). Без пусковой обмотки автоматический запуск движка стал бы невозможным – пришлось бы раскручивать вал вручную. Пусковая обмотка необходима для самостоятельного запуска агрегата. Фаза в ней сдвигается на 90 градусов при помощи индуктивности или конденсатора, после чего пусковая обмотка приводит ротор в движение.

Двигатель с пусковой обмоткой может подключаться двумя способами:

  • посредством сопротивления (в редких случаях);
  • через конденсатор (что применяется гораздо чаще).

Первый вариант неудобен тем, что, являясь частью обмотки, сопротивление повышается прямо пропорционально длине провода. Но и в этом случае индуктивность катушки будет неизменной.

Пусковой ток

При работе с различными электротехническими устройствами довольно часто возникает вопрос, что такое пусковой ток. В самом простом варианте ответа это будет такой ток, который потребен при запуске электродвигателя или другого устройства. Его значение может в несколько раз превышать номинальное, требующееся в нормальном устойчивом режиме работы. Таким образом, для того чтобы раскрутить ротор, электродвигатель должен приложить гораздо больше энергии по сравнению с работой при постоянном числе оборотов. Снизить пусковые токи можно с помощью специальных систем гашения и устройств плавного пуска.

Пусковые токи электродвигателей

В каждом приборе, устройстве или механизме возникают процессы, называемые пусковыми. Это особенно заметно при начале движения, когда необходимо тронуться с места. В этот момент для первоначального толчка требуется значительно больше усилий, чем при дальнейшей работе данного механизма.

Точно такие же явления затрагивают и электрические устройства – электродвигатели, электромагниты, лампы и другие. Наличие пусковых процессов в каждом из них зависят от того, в каком состоянии находятся рабочие элементы. Например, нить накаливания обычной лампочки в холодном состоянии обладает сопротивлением, значительно меньшим, чем при нагревании в рабочем режиме до 1000 0 С. То есть, у лампы, мощностью 100 Вт сопротивление нити во время работы составит около 490 Ом, а в выключенном состоянии этот показатель снижается до 50 Ом. Поэтому при высоком пусковом токе лампочки иногда перегорают. От всеобщего перегорания их спасает сопротивление, возрастающее при нагревании. Постепенно оно достигает постоянного значения и способствует ограничению рабочего тока до нужной величины.

Влияние пусковых токов в полной мере затрагивает все виды электродвигателей, широко применяющихся во многих областях. Для того чтобы правильно эксплуатировать электроприводы нужно знать их пусковые характеристики. Существует два основных параметра, оказывающих влияние на пусковой ток. Скольжение является связующим звеном между частотой вращения ротора и скоростью вращения электромагнитного поля. Снижение скольжения происходит от 1 до минимума по мере набора скорости. Пусковой момент является вторым параметром, определяющим степень механической нагрузки на валу. Эта нагрузка имеет максимальное значение в момент пуска и становится номинальной после того, как произошел полный разгон механизма.

Следует учитывать особенности асинхронных электродвигателей, которые при пуске становятся эквивалентны трансформатору с короткозамкнутой вторичной обмоткой. Она обладает совсем небольшим сопротивлением, поэтому величина пускового тока при скачке может достичь многократного превышения по сравнению с номиналом. В процессе дальнейшей подачи тока в обмотки, сердечник ротора начинает по нарастающей насыщаться магнитным полем. Возникает ЭДС самоиндукции, под действием которой начинает расти индуктивное сопротивление цепи. С началом вращения ротора происходит снижение коэффициента скольжения, то есть наступает фаза разгона двигателя. При росте сопротивления пусковой ток снижается до нормативных показателей.

В процессе эксплуатации может возникнуть проблема, связанная с увеличенными пусковыми токами. Причиной их возникновения, чаще всего, становится перегрев электродвигателей, перегруженные электрические сети в момент пуска, а также ударные механические нагрузки в подключенных устройствах и механизмах, таких как редукторы и другие. Для решения этой проблемы предусмотрены специальные приборы, представленные частотными преобразователями и устройствами плавного пуска. Они выбираются с учетом особенностей эксплуатации того или иного электродвигателя. Например, устройства плавного пуска используются в основном для агрегатов, соединенных с вентиляторами. С их помощью достигается ограничение пускового тока до двух номиналов. Это вполне нормальный показатель, поскольку во время обычного пуска ток превышает номинальное значение в 5-10 раз. Ограничение достигается за счет измененного напряжения в обмотках.

Обычные двигатели переменного тока получили широкое распространение в промышленном производстве, благодаря очень простой конструкции и низкой стоимости. Их серьезным недостатком считается тяжелый запуск, который существенно облегчается частотными преобразователями. Наиболее ценным качеством этих устройств является способность к поддержке пускового тока в течение одной минуты и более. Самые современные приборы позволяют не только регулировать пуск, но и оптимизировать его по заранее установленным эксплуатационным характеристикам.

Пусковой ток аккумуляторной батареи

Аккумулятор не зря считается одним из важных элементов автомобиля. Его основная функция заключается в подаче напряжения на имеющееся электрооборудование. В основном это стартер, автомагнитола, освещение и другие устройства. Для того чтобы успешно решать эту задачу, в аккумуляторе должно происходить не только накопление, но и сохранение заряда в течение длительного времени.

Одним из основных параметров батареи является пусковой ток. Данная величина соответствует параметрам тока, который протекает в стартере в момент его пуска. Пусковой ток непосредственно связан с режимом работы автомобиля. Если транспортное средство эксплуатируется очень часто, особенно в холодных условиях, в этом случае батарея должна иметь большой пусковой ток. Его номинальный параметр обычно находится в соответствии с мощностью источника питания, выдаваемой в течение 30 секунд при температуре минус 18 0 С. Он появляется в тот момент, когда ключ поворачивается в замке зажигания и начинает работать стартер. Измерение токового значения производится в амперах.

Пусковые токи могут быть совершенно разными у аккумуляторов, одинаковых по своему внешнему виду и основным характеристикам. На этот фактор существенное влияние оказывают физические свойства материалов для изготовления и конструктивные особенности каждого изделия. Например, возрастание тока может наблюдаться, если свинцовые пластины становятся пористыми, повышается их количество, используется ортофосфорная кислота. Завышенная величина тока не оказывает негативного влияния на оборудование, она лишь способствует повышению надежности пуска.

Как посчитать пусковой ток электродвигателя

Величина пускового тока, необходимого для приведения двигателя в действие, существенно (иногда в 8-10 раз) превышает показатели тока, который подается для работы в нормальном режиме. Результатом резкого роста потребления энергии становится падение напряжения в питающих электросетях, что может повлечь за собой:

  • проблемы с другими подключенными к сети приборами;
  • более скорый износ узлов самого двигателя (этому способствует рывок при запуске).

Свести отрицательное воздействие к минимуму возможно, используя дополнительные устройства. Параметры вспомогательного оборудования определяют, исходя из значения пускового тока для данной модели двигателя.

Как посчитать пусковой ток электродвигателя

Разобраться, как посчитать пусковой ток электродвигателя, можно самостоятельно, ознакомившись с технической документацией к агрегату и формулами для расчета. Сначала вам потребуется определить величину номинального тока (IH, зависит от типа двигателя). Для этого предусмотрены следующие формулы (все необходимые данные есть в техпаспорте к оборудованию):

  • 1000PH/(ηHUH) для двигателей постоянного тока;
  • 1000PH/(UHcosφH√ηH) для устройств переменного тока.

Далее проводится собственно расчет значения пускового тока (IП) по формуле Кп (кратность постоянного тока к номинальному показателю, указана в техдокументации)*IH.

Способы уменьшения пускового тока

Проблема снижения пускового тока и более плавной подачи напряжения решается с помощью специального оборудования:

  • софтстартеров и устройств плавного пуска;
  • автоматических выключателей соответствующего типа отключения (B, D или C).

Грамотный подход к расчету значения пускового тока для электрического двигателя позволит вам получить точные результаты и подобрать наиболее эффективные средства защиты линии включения.

Оптимальные схемы для плавного пуска электродвигателя, созданных своими руками

Устройство безопасного запуска электродвигателя

Широкое использование асинхронных трехфазных двигателей в различных механизмах и оборудовании часто сталкивается с проблемой резкого пуска силовой установки, что во многих случаях влияет на долговечность эксплуатации или приводит к выходу из строя приводимых в действие элементов.

Кроме того, при резком запуске, пусковой ток электродвигателя в несколько раз превышает его рабочие показатели и тем самым влияет на срок эксплуатации не только электрического оборудования, но и сетей, к которым он подключен. Для устранения этого недостатка и негативных его последствий для оптимальной работы применяют устройство плавного пуска (УПП) электродвигателя.

Функции прибора

Аппаратура, которая осуществляет процесс плавного пуска также реализует и функцию торможения, что тоже немаловажно для лояльной работы многих агрегатов на основе электрических приводов.

Софтстартеры, так называют устройства плавного пуска, реализованы на базе симисторов, которые в отличие от других схем запуска электродвигателя обеспечивает поступательный бесступенчатый разгон двигателя, ограничивая пусковой ток.

Этот принцип не только оптимизирует пусковой момент, но выполняет функции управления и защиты, а кроме того дает вполне определяемый экономический эффект.

Следует определить, что УПП в большинстве случаев реализует функции:

  • по ограничению пускового тока до 3 – 4,5 номинального значения,
  • понижению напряжения питания при наличии соответствующего по мощности трансформатора и подводящих шин,
  • оптимизации пускового и тормозного момента,
  • аварийной защиты сети от токовых перегрузок,
  • предотвращение заклинивания вала электродвигателя.

При этом необходимо понимать, что УПП не может производить регулировку частоты вращения, реверсировать направление вращения, увеличивать пусковой момент и снижать пусковой ток до значения ниже, чем требуется для старта вращения ротора.

Плавный пуск электродвигателя может быть реализован несколькими вариантами включения симисторов в цепи управления и разделяется на однофазные, двухфазные и трехфазные схемы включения, каждая из которых имеет функциональные отличия и стоимость исполнения соответственно. Кроме того, при использовании для питания двигателя соединения типа «треугольник» существует возможность включить симистор в разрыв обмотки.

Симистор, как известно, представляет собой включенных два встречно параллельных тиристора с управляющим входным каналом. В схеме УПП тиристоры исполняют роль быстродействующих контакторов, которые включаются напряжением, а выключаются током.

Однофазная схема регулирования (рис.

1) предполагает запуск электродвигателя мощностью не более 11 кВт в том случае, если требуется смягчить пусковой удар, а уже торможение, длительный запуск и ограничения на пусковой ток не имеют значения, так как при этом варианте реализовать такие функции нет возможности. Подобные УПП в последнее время сняты с производства как следствие значительного удешевления полупроводниковых приборов, в том числе и тиристоров.

Двухфазные УПП (рис. 2) применяются для регулирования пуска двигателей мощностью до 250 кВт. Такие устройства, хотя иногда и снабжают байпасными контакторами (by pass) с целью удешевления, но этим решением не устраняют недостаток, заключенный в несимметричности питания каждой фазы, что в итоге может привести к перегреву.

Самой совершенной схемой, осуществляющей не только мягкий пуск электродвигателя, но и обеспечивающей универсальное применение УПП, является трехфазное регулирование.

Мощность управляемых УПП двигателей ограничивается тепловой и электрической прочностью симисторов, а функциональность таких устройств позволяет реализовать множество решений.

в том числе динамическое торможение, подхват обратного хода и симметричность ограничений силы магнитного поля и тока.

Важной составляющей устройства плавного пуска является байпасный контактор, о котором упоминалось ранее, позволяющий создать наиболее комфортные условия, как для работы электродвигателей, так и для самого УПП.

Байпасный, или иначе ,обходной контактор (БК), предназначен для облегчения теплового режима системы плавного запуска для питания двигателя при выходе на установленные обороты.

Схематично включение БК выглядит, как указано на рисунке.

Варианты схем включения УПП в систему питания и управления электродвигателем

Стандартная схема включения устройства для плавного запуска электродвигателя предусматривает использование магнитного пускателя, теплового реле, быстродействующих предохранителей или автоматических выключателей, причем, последние должны иметь регулировку по токам перегрузки. Ниже на рисунках изображено принципиальное включение элементов УПП относительно обмоток электродвигателя по трех проводной и шести проводной схеме.

Схема включения, исключающая потерю мощности

В предложенной схеме используется шунтирующий пускатель, который обеспечивает работу двигателя после его выхода на установленное число оборотов и отключает устройство плавного пуска.

Важной характеристикой шунтирующего (байпасного) пускателя является то, что он в отличие от сетевого адаптера не должен проводить через себя пусковой ток и рассчитываются его параметры только по номинальной (установившейся) нагрузке.

Подобная схема включения УПП является единственно правильной при управлении параллельно несколькими двигателями, которые должны работать в синхронном режиме. Кроме того байпасная схема рекомендуется к применению для двигателей большой мощности.

Современные устройства плавного пуска выпускаются с возможностью сопряжения с программируемыми контролерами и компьютерными системами через совместимый интерфейс и могут включаться по требованию оператора или общей системы управления.

Кроме всех преимуществ, отмеченных выше, стоит отметить, что изменение характеристик пусковых токов несет экономическую выгоду, которая определяется сохранностью оборудования и питающих сетей и может быть просчитана в долгосрочном режиме.

Схема тиристорного устройствоа плавного пуска асинхронного электродвигателя

Александр Ситников (Кировская обл.)

Рассматриваемая в статье схема позволяет осуществить безударный пуск и торможение электродвигателя, увеличить срок службы оборудования и снизить нагрузку на электросеть. Плавный пуск достигается путём регулирования напряжения на обмотках двигателя силовыми тиристорами.

Устройства плавного пуска (УПП) широко применяются в различных электроприводах. Структурная схема разработанного УПП приведена на рисунке 1, а диаграмма работы УПП – на рисунке 2. Основой УПП являются три пары встречно-параллельных тиристоров VS1 – VS6, включенных в разрыв каждой из фаз. Плавный пуск осуществляется за счёт постепенного

увеличения прикладываемого к обмоткам электродвигателя сетевого напряжения от некоторого начального значения Uначдо номинального Uном. Это достигается путём постепенного увеличения угла проводимости тиристоров VS1 – VS6 от минимального значения до максимального в течение времени Тпуск, называемого временем пуска.

Обычно значение Uначсоставляет 30…60% от Uном, поэтому пусковой момент электродвигателя существенно меньше, чем в случае подключения электродвигателя на полное напряжение сети.

При этом происходит постепенное натяжение приводных ремней и плавное зацепление зубчатых колес редуктора.

Это благоприятно сказывается на снижении динамических нагрузок электропривода и, как следствие, способствует продлению срока службы механизмов и увеличению интервала между ремонтами.

Применение УПП также позволяет снизить нагрузку на электросеть, поскольку в этом случае пусковой ток электродвигателя составляет 2 – 4 номинала тока двигателя, а не 5 – 7 номиналов, как при непосредственном пуске. Это важно при питании электроустановок от источников энергии ограниченной мощности, например, дизель-генераторных установок, источников бесперебойного питания и трансформаторных подстанций малой мощности

(особенно в сельской местности). После завершения пуска тиристоры шунтируются байпасом (обходным контактором) К, благодаря чему в течение времени Траб на тиристорах не рассеивается мощность, а значит, экономится электроэнергия.

При торможении двигателя процессы происходят в обратном порядке: после отключения контактора К угол проводимости тиристоров максимален, напряжение на обмотках электродвигателя равно сетевому за вычетом падения напряжения на тиристорах.

Затем угол проводимости тиристоров в течение времени Тторм уменьшается до минимального значения, которому соответствует напряжение отсечки Uотс, после чего угол проводимости тиристоров становится равным нулю и напряжение на обмотки не подается.

На рисунке 3 приведены диаграммы тока одной из фаз двигателя при постепенном увеличении угла проводимости тиристоров.

На рисунке 4 приведены фрагменты принципиальной электрической схемы УПП. Полностью схема приведена на сайте журнала. Для её работы требуется напряжение трех фаз А, В, С стандартной сети 380 В частотой 50 Гц. Обмотки электродвигателя при этом могут быть соединены как «звездой», так и „треугольником“.

Смотрите так же:  Кабель под 15 квт 3 фазы

В качестве силовых тиристоров VS1 – VS6 применены недорогие приборы типа 40TPS12 в корпусе ТО-247 с прямым током Iпр= 35 А. Допустимый ток через фазу составляет Iдоп= 2Iпр= 70 А. Будем считать, что максимальный пусковой ток составляет 4Iном, откуда следует, что Iном

Параллельно тиристорам подключены демпфирующие RC-цепочки R48, C20, C21, R50, C22, C23, R52, C24, C25, предотвращающие ложное включение тиристоров, а также варисторы R49, R51 и R53, поглощающие импульсы перенапряжения свыше 700 В. Обходные реле К1, К2, К3 типа TR91-12VDC-SC-C с номинальным током 40 А шунтируют силовые тиристоры после завершения пуска.

Питание системы управления осуществляется от трансформаторного блока питания, запитанного от межфазного напряжения Uав.

В блок питания входят понижающие трансформаторы TV1, TV2, диодный мост VD1, токоограничивающий резистор R1, сглаживающие конденсаторы С1, С3, С5, помехоподавляющие конденсаторы С2, С4, С6 и линейные стабилизаторы DA1 и DA2, обеспечивающие напряжение 12 и 5 В соответственно.

Система управления построена с применением микроконтроллера DD1 типа PIC16F873. Микроконтроллер выдаёт импульсы управления тиристорами VS1 – VS6 путём «зажигания» оптосимисторов ОРТ5-ОРТ10 (MOC3052).

Для ограничения тока в цепях управления тиристоров VS1 – VS6 служат резисторы R36 – R47. Импульсы управления подаются одновременно на два тиристора с задержкой относительно начала полуволны межфазного напряжения.

Цепи синхронизации с сетевым напряжением состоят из трёх однотипных узлов, состоящих из зарядных резисторов R13, R14, R18, R19, R23, R24, диодов VD3 – VD8, транзисторов VT1 – VT3, накопительных конденсаторов С17 – С19 и оптопар OPT2 – OPT4.

C выхода 4 оптопар OPT2, OPT3, OPT4 на входы микроконтроллера RC2, RC1, RC0 поступают импульсы длительностью примерно 100 мкс, соответствующие началу отрицательной полуволны фазных напряжений Uab, Ubc, Uca.

Диаграммы работы узла синхронизации приведены на рисунке 5. Если принять верхний график за сетевое напряжение Uав, то среднийграфик будет соответствовать напряжению на конденсаторе С17, а нижний – току через фотодиод оптопары ОРТ2.

Микроконтроллер регистрирует поступающие на его входы синхроимпульсы, определяет наличие, порядок чередования, отсутствие «слипания» фаз, а также производит расчёт времени задержки импульсов управления тиристорами.

Входы цепей синхронизации защищены от перенапряжения варисторами R17, R22 и R27.

С помощью потенциометров R2, R3, R4 задаются параметры, соответствующие диаграмме работы УПП, приведённой на рисунке 2; соответственно R2 – Tпуск, R3 – Тторм, R4 – Uначи Uотс.

Напряжения уставок с движков R2, R3, R4 поступают на входы RA2, RA1, RA0 микросхемы DD1 и преобразуются с помощью АЦП.

Время пуска и торможения регулируется в пределах от 3 до 15 с, а начальное напряжение – от нуля до напряжения, соответствующего углу проводимости тиристора в 60 электрических градусов. Конденсаторы С8 – С10 – помехоподавляющие.

Команда «ПУСК» подаётся путём замыкания контактов 1 и 2 разъёма XS2, при этом на выходе 4 оптопары OPT1 появляется лог.

1; конденсаторы С14 и С15 производят подавление колебаний, возникающих вследствие „дребезга“ контактов. Разомкнутому положению контактов 1 и 2 разъёма XS2 соответствует команда „СТОП“.

Коммутацию цепи управления запуском можно реализовать кнопкой с фиксацией, тумблером или контактами реле.

Силовые тиристоры защищены от перегрева термостатом B1009N с нормально-замкнутыми контактами, размещёнными на теплоотводе. При достижении температуры 80°С контакты термостата размыкаются, и на вход RC3 микроконтроллера поступает уровень лог. 1, свидетельствующий о перегреве.

Светодиоды HL1, HL2, HL3 служат индикаторами следующих состояний:

  • HL1 (зелёный) «Готовность» – отсутствие аварийных состояний, готовность к запуску;
  • HL2 (зелёный) «Работа» – мигающий светодиод означает, что УПП производит пуск или торможение двигателя, постоянное свечение – работа на байпасе;
  • HL3 (красный) «Авария» – свидетельствует о перегреве теплоотвода, отсутствии или „слипании“ фазных напряжений.

Включение обходных реле К1, К2, К3 производится путём подачи микроконтроллером лог. 1 на базу транзистора VT4.

Программирование микроконтроллера – внутрисхемное, для чего используется разъём XS3, диод VD2 и микропереключатель Дж1. Элементы ZQ1, C11, C12 образуют цепь запуска тактового генератора, R5 и С7 – цепь сброса по питанию, С13 осуществляет фильтрацию помех по шинам питания микроконтроллера.

На рисунке 6 приведён упрощённый алгоритм работы УПП.

После инициализации микроконтроллера вызывается подпрограмма Error_Test, которая определяет наличие аварийных ситуаций: перегрев теплоотвода, невозможность синхронизироваться с сетевым напряжением вследствие потери фазы, неверного подключения к сети или сильных помех.

Если аварийная ситуация не фиксируется, то переменной Error присваивается значение «0», после возврата из подпрограммы зажигается светодиод „Готовность“, и схема переходит в режим ожидания команды „ПУСК“.

После регистрации команды „ПУСК“ микроконтроллер производит аналого!цифровое преобразование напряжений уставок
на потенциометрах и расчёт параметров Тпуск и Uнач, после чего выдаёт импульсы управления силовыми тиристорами. По окончании пуска включается байпас. При торможении двигателя процессы управления выполняются в обратном
порядке.

Схема плавного запуска трехфазного двигателя, выполненная на базе микросхем КР1182ПМ1

Устройства плавного пуска электродвигателя

Плавный пуск электродвигателя в последнее время применяется все чаще. Области его применении разнообразны и многочисленны. Это промышленность, электротранспорт, коммунальное и сельское хозяйство. Применение подобных устройств позволяет значительно снизить пусковые нагрузки на электродвигатель и исполнительные механизмы, тем самым, продлив срок их службы.

Пусковые токи достигают значений в 7-10 раз выше, чем в рабочем режиме.

Это привод к «просаживанию» напряжения в питающей сети, что отрицательно сказывается не только на работе остальных потребителей, но и самого двигателя.

Время пуска затягивается, что может привести к перегреву обмоток и постепенному разрушению их изоляции. Это способствует преждевременному выходу электродвигателя из строя.

Устройства плавного пуска позволяют значительно снизить пусковые нагрузки на электродвигатель и электросеть, что особенно актуально в сельской местности либо при питании двигателя от автономной электростанции.

В момент запуска двигателя момент на его валу очень нестабилен и превышает номинальное значение более чем в пять раз.

Поэтому пусковые нагрузки исполнительных механизмов также повышены по сравнению с работой в установившемся режиме и могут достигать до 500 процентов.

Нестабильность момента при пуске приводит к ударным нагрузкам на зубья шестерен, срезанию шпонок и иногда даже к скручиванию валов.

Устройства плавного пуска электродвигателя значительно уменьшают пусковые нагрузки на механизм: плавно выбираются зазоры между зубьями шестерен, что препятствует их поломке. В ременных передачах также плавно натягиваются приводные ремни, что уменьшает износ механизмов.

Кроме плавного пуска на работе механизмов благотворно сказывается режим плавного торможения. Если двигатель приводит в движение насос, то плавное торможение позволяют избежать гидравлического удара при выключении агрегата.

Устройства плавного пуска промышленного изготовления

Устройства плавного пуска в настоящее время выпускается многими фирмами, например, Siemens, Danfoss, Scheider Electric. Такие устройства обладают многими функциями, которые программируются пользователем. Это время разгона, время торможения, защита от перегрузок и множество других дополнительных функций.

При всех достоинствах фирменных устройства обладают одним недостатком, — достаточно высокой ценой. Вместе с тем можно создать подобное устройство самостоятельно. Стоимость его при этом получится небольшой.

Устройство плавного пуска на микросхеме КР1182ПМ1

На основе микросхемы КР1182ПМ1 возможно создание достаточно простого устройства плавного пуска трехфазного электродвигателя. Схема устройства показана на Рис.1.

Рис.1. Схема устройства плавного пуска двигателя

Плавный пуск осуществляется при помощи постепенного увеличения напряжения на обмотках двигателя от нулевого значения до номинального. Это достигается за счет увеличения угла открывания тиристорных ключей за время, называемое временем запуска.

В конструкции используется трехфазный электродвигатель 50 Гц, 350 В. Обмотки двигателя, соединенные «звездой», подключаются к выходным цепям, обозначенным на схеме как L1, L2, L3. Средняя точка «звезды» подключается к сетевой нейтрали (N).

Выходные ключи выполнены на тиристорах, включенных встречно-параллельно. В конструкции применены импортные тиристоры типа 40ТРS12. При небольшой стоимости они обладают достаточно большим током – до 35 А, а их обратное напряжение – 1200 В.

Кроме них в ключах присутствуют еще несколько элементов.

Их назначение следующее: демпфирующие RC-цепочки, включенные параллельно тиристорам, предотвращают ложные включения последних (на схеме это R8С11, R9С12, R10С13), а с помощью варисторов RU1- RU3 поглощаются коммутационные помехи, амплитуда которых превышает 500В.

В качестве управляющих узлов для выходных ключей используются микросхемы DA1-DA3 типа КР1182ПМ1. Конденсаторы С5-С10 внутри микросхемы формируют пилообразное напряжение, которое синхронизировано сетевым. Сигналы управления тиристорами в микросхеме формируются путем сравнения пилообразного напряжения с напряжением между выводами микросхемы 3 и 6.

Для питания реле К1-К3 в устройстве имеется блок питания, который состоит из нескольких элементов. Это трансформатор Т1, выпрямительный мостик VD1, сглаживающий конденсатор С4. На выходе выпрямителя установлен интегральный стабилизатор DA4 типа 7812 обеспечивающий на выходе напряжение 12 В, и защиту от коротких замыканий и перегрузок на выходе.

Описание работы устройства плавного пуска электродвигателей

Сетевое напряжение на схему подается при замыкании силового выключателя Q1. Однако, двигатель еще не запускается. Это происходит потому, что обмотки реле К1…К3 пока обесточены, и их нормально-замкнутые контакты шунтируют выводы 3 и 6 микросхем DA1…DA3 через резисторы R1…R3. Это обстоятельство не дает заряжаться конденсаторам С1…С3, поэтому управляющие импульсы микросхемы не вырабатывают.

Пуск устройства в работу

При замыкании тумблера SA1 напряжение 12 В включает реле К1…К3. Их нормально-замкнутые контакты размыкаются, что обеспечивает возможность зарядки конденсаторов С1…С3 от внутренних генераторов тока.

Вместе с увеличением напряжения на этих конденсаторах увеличивается и угол открывания тиристоров. Тем самым достигается плавное увеличение напряжения на обмотках двигателя.

Когда конденсаторы зарядятся полностью, угол включения тиристоров достигнет максимальной величины, и частота вращения электродвигателя достигнет номинальной.

Отключение двигателя, плавное торможение

Для выключения двигателя следует разомкнуть выключатель SA1, Это приведет к отключению реле К1…К3. Их нормально – замкнутые контакты замкнутся, что приведет к разряду конденсаторов С1…С3 через резисторы R1…R3. Разряд конденсаторов будет длиться несколько секунд, за это же время произойдет останов двигателя.

При пуске двигателя в нулевом проводе могут протекать значительные токи.

Это происходит оттого, что в процессе плавного разгона токи в обмотках двигателя несинусоидальные, но особо бояться этого не стоит: процесс пуска достаточно кратковременный.

В установившемся же режиме этот ток будет много меньше (не более десяти процентов тока фазы в номинальном режиме), что обусловлено лишь технологическим разбросом параметров обмоток и «перекосом» фаз. От этих явлений избавиться уже невозможно.

Детали и конструкция

Для сборки устройства необходимы следующие детали:

Трансформатор мощностью не более 15 Вт, с напряжением выходной обмотки 15…17 В.

В качестве реле К1…К3 подойдут любые с напряжением катушки 12 В, имеющие нормально-замкнутый или переключающий контакт, например TRU-12VDC-SB-SL.

Конденсаторы С11…С13 типа К73-17 на рабочее напряжение не менее 600 В.

Устройство выполнено на печатной плате. Собранное устройство следует поместить в пластмассовый корпус подходящих размеров, на лицевой панели которого разместить выключатель SA1 и светодиоды HL1 и HL2.

Подключение двигателя

Подключение выключателя Q1 и двигателя выполняется проводами, сечение которых соответствует мощности последнего. Нулевой провод выполняется тем же проводом, что и фазные. При указанных на схеме номиналах деталей возможно подключение двигателей мощностью до четырех киловатт.

Если предполагается использовать двигатель мощностью не более полутора киловатт, а частота пусков не будет превышать 10…15 в час, то мощность, рассеиваемая на тиристорных ключах незначительна, поэтому радиаторы можно не ставить.

Если же предполагается использовать более мощный двигатель или запуски будут более частыми, потребуется установка тиристоров на радиаторы, изготовленные из алюминиевой полосы. Если же радиатор предполагается использовать общий, то тиристоры следует изолировать от него при помощи слюдяных прокладок. Для улучшения условий охлаждения можно воспользоваться теплопроводящей пастой КПТ– 8.

Проверка и наладка устройства

Перед включением, прежде всего, следует проверить монтаж на соответствие принципиальной схеме. Это основное правило, и отступать от него нельзя.

Ведь пренебрежение этой проверкой может привести к куче обугленных деталей, и надолго отбить охоту делать «опыты с электричеством».

Найденные ошибки следует устранить, ведь все же эта схема питается от сети, а с нею шутки плохи. И даже после указанной проверки подключать двигатель еще рано.

Сначала следует вместо двигателя подключить три одинаковых лампы накаливания, мощностью 60…100 Вт. При испытаниях следует добиться, чтобы лампы «разжигались» равномерно.

Неравномерность времени включения обусловлена разбросом емкостей конденсаторов С1…С3, которые имеют значительный допуск по емкости. Поэтому лучше перед установкой сразу подобрать их с помощью прибора, хотя бы с точностью процентов до десяти.

Время выключения обусловлено еще сопротивлением резисторов R1…R3. С их помощью можно выровнять время выключения. Эти настройки следует выполнять в том случае, если разброс времени включения – выключения в разных фазах превышает 30 процентов.

Двигатель можно подключать лишь после того, как вышеуказанные проверки прошли нормально, не сказать бы даже на отлично.

Что можно еще добавить в конструкцию

Выше уже было сказано, что такие устройства в настоящее время выпускаются разными фирмами. Конечно, все функции фирменных устройств в подобном самодельном повторить невозможно, но одну все-таки, скопировать, наверно, удастся.

Речь идет о так называемом шунтирующем контакторе. Назначение его следующее: после того, как двигатель достиг номинальных оборотов, контактор просто перемыкает тиристорные ключи своими контактами.

Ток идет через них в обход тиристоров. Такую конструкцию часто называют байпасом (от английского bypass – обход). Для такого усовершенствования придется ввести дополнительные элементы в блок управления.

Плавный пуск электродвигателя

Электродвигатели – самые распространенные в мире электрические машины. Ни одно промышленное предприятие, ни один технологический процесс без них не обходится. Вращение вентиляторов, насосов, перемещение лент конвейеров, движение кранов – вот неполный, но уже весомый перечень задач, решаемых с помощью двигателей.

Однако есть один нюанс работы всех без исключения электромоторов: в момент старта они кратковременно потребляют большой ток, называемый пусковым.

Чем опасен пусковой ток электродвигателя

При подаче напряжения на обмотку статора скорость вращения ротора равна нулю. Ротор нужно стронуть с места и раскрутить до номинального частоты вращения. На это тратится значительно большая энергия, чем та, что нужна для номинального режима работы.

Под нагрузкой пусковые токи больше, чем на холостом ходу. К весу ротора прибавляется механическое сопротивление вращению от приводимого двигателем в движение механизма. На практике влияние этого фактора стремятся минимизировать. Например, у мощных вентиляторов на момент запуска автоматически закрываются шиберы в воздуховодах.

В момент протекания пускового тока из сети потребляется значительная мощность, расходуемая на выведение электродвигателя на номинальный режим работы. Чем мощнее электромотор, тем большая мощность для разгона ему требуется. Не все электрические сети переносят этот режим без последствий.

Перегрузка питающих линий неизбежно приводит к снижению напряжения в сети. Это не только еще более затрудняет процесс запуска электродвигателей, но и влияет на других потребителей.

Да и сами электродвигатели во время пусковых процессов испытывают повышенные механические и электрические нагрузки. Механические связаны с увеличением вращающего момента на валу. Электрические же, связанные с кратковременным увеличением тока, воздействуют на изоляцию обмоток статора и ротора, контактные соединения и пусковую аппаратуру.

Методы снижения пусковых токов

Маломощные электромоторы с недорогой пускорегулирующей аппаратурой вполне достойно запускаются и без применения каких-либо средств. Снижать их пусковые токи или изменять частоту вращения нецелесообразно экономически.

Но, когда влияние на режим работы сети в процессе запуска оказывается существенным, пусковые токи требуют снижения. Этого добиваются за счет:

  • применения электродвигателей с фазным ротором;
  • использование схемы для переключения обмоток со звезды на треугольник;
  • использование устройств плавного пуска;
  • использование частотных преобразователей.

Для каждого механизма подходит один или несколько указанных методов.

Электродвигатели с фазным ротором

Применение асинхронных электродвигателей с фазным ротором на участках работы с тяжелыми условиями труда – самая древняя форма снижения пусковых токов. Без них невозможна работа электрифицированных кранов, экскаваторов, а также – дробилок, грохотов, мельниц, редко запускающихся при отсутствии продукции в приводимом механизме.

Снижение пускового тока достигается за счет поэтапного вывода из цепи ротора резисторов. Первоначально, в момент подачи напряжения, к ротору подключено максимально возможное сопротивление. По мере разгона реле времени один за другим включают контакторы, шунтирующие отдельные резистивные секции. В конце разгона добавочное сопротивление, включенное к цепи ротора, равно нулю.

Крановые двигатели не имеют автоматического переключения ступеней с резисторами. Это происходит по воле крановщика, передвигающего рычаги управления.

Смотрите так же:  Какое сечение акустического кабеля

Переключение схемы соединения обмоток статора

В брно (блок распределения начала обмоток) любого трехфазного электромотора выведено 6 выводов от обмоток всех фаз. Таким образом, их можно соединить либо в звезду, либо в треугольник.

За счет этого достигается некоторая универсальность применения асинхронных электродвигателей. Схема включения звездой рассчитывается на большую ступень напряжения (например, 660В), треугольником – на меньшую (в данном примере – 380В).

Но при номинальном напряжении питания, соответствующем схеме с треугольником, можно воспользоваться схемой со звездой для предварительного разгона электромотора. При этом обмотка работает на пониженном напряжении питания (380В вместо 660), и пусковой ток снижается.

Для управления процессом переключения потребуется дополнительный кабель в брно электродвигателя, так как задействуются все 6 выводов обмоток. Устанавливаются дополнительные пускатели и реле времени для управления их работой.

Частотные преобразователи

Первые два метода можно применить не везде. А вот последующие, ставшие доступными относительно недавно, позволяют осуществить плавный пуск любого асинхронного электродвигателя.

Частотный преобразователь – сложное полупроводниковое устройство, сочетающее силовую электронику и элементы микропроцессорной техники. Силовая часть выпрямляет и сглаживает сетевое напряжение, превращая его в постоянное. Выходная часть из этого напряжения формирует синусоидальное с изменяемой частотой от нуля до номинального значения – 50 Гц.

За счет этого достигается экономия электроэнергии: приводимые во вращение агрегаты не работают с избыточной производительностью, находясь в строго требуемом режиме. К тому же технологический процесс получает возможность тонко настраиваться.

Но важное в спектре рассматриваемой проблемы: частотные преобразователи позволяют осуществлять плавный пуск электродвигателя, без толчков и рывков. Пусковой ток полностью отсутствует.

Устройства плавного пуска

Устройство плавного пуска электродвигателя – это тот же частотный преобразователь, но с ограниченным функционалом. Работает он только при разгоне электродвигателя, плавно изменяя скорость его вращения от минимально заданного значения до номинальной.

Чтобы исключить бесполезную работу устройства по окончании разгона электродвигателя, рядом устанавливается шунтирующий контактор. Он подключает электродвигатель напрямую к сети после завершения запуска.

При выполнении модернизации оборудования – это самый простой метод. Он зачастую может быть реализован своими руками, без привлечения узкопрофильных специалистов. Устройство устанавливается на место магнитного пускателя, управляющего пуском электромотора. Может потребоваться замена кабеля на экранированный. Затем в память устройства вносятся параметры электромотора, и оно готово к действию.

А вот с полноценными частотными преобразователями справиться самостоятельно по силам не каждому. Поэтому их применение в единичных экземплярах обычно лишено смысла. Установка частотных преобразователей оправдана лишь при проведении общей модернизации электрооборудования предприятия.

Плавный пуск для болгарки своими руками – экономия ваших средств и защита электроинструмента

В связи с особенностями конструкции, старт угловой шлифовальной машины сопряжен с высокими динамическими нагрузками. За счет массы рабочего диска, в начале вращения на ось редуктора действуют силы инерции. Это влечет за собой некоторые негативные моменты:

    Нагрузки на ось при резком старте создают инерционный рывок, который при большом диаметре и массе диска может вырвать электроинструмент из рук;

ВАЖНО! При запуске болгарки, всегда держите инструмент обеими руками, и будьте готовы к его удержанию. В противном случае можно получить травму. Данное предупреждение особенно актуально для тяжелых алмазных или стальных дисков.

При резкой подаче рабочего напряжения на двигатель, возникает перегрузка по току, которая проходит после набора номинальных оборотов;

В результате чего изнашиваются щетки и перегреваются обе обмотки электромотора. При постоянном включении и выключении электроинструмента, перегрев может оплавить изоляцию обмоток и привести к короткому замыканию, с последующим дорогостоящим ремонтом.

Большой крутящий момент при резком наборе оборотов преждевременно изнашивает шестерни редуктора УШМ;

В некоторых случаях возможно отламывание зубьев и заклинивание редуктора.

Перегрузки, которые воспринимает рабочий диск, могут разрушить его при запуске двигателя.

Поэтому наличие защитного кожуха обязательно.

ВАЖНО! Во время запуска болгарки, открытый сектор кожуха должен быть направлен в сторону, противоположную от оператора.

Чтобы лучше понять механику работы, рассмотрим устройство болгарки на чертеже. Хорошо видны все элементы, испытывающие перегрузку при резком старте.

Схематический чертеж расположение рабочих органов и систем управления в болгарке

Для уменьшения пагубных воздействий резкого пуска, производители выпускают болгарки с регулировкой оборотов и плавным пуском.

Регулировка оборотов находится на рукоятке инструмента

Но таким приспособлением оснащаются лишь модели средней и высокой ценовой категории. Многие домашние мастера приобретают УШМ без регулятора и замедления пусковых оборотов.

Особенно это касается мощных экземпляров с диаметром отрезного диска более 200 мм. Такую болгарку мало того что тяжело удержать в руках во время запуска, износ механики и электрической части происходит гораздо быстрее.
Выход один – установить плавный пуск болгарки самостоятельно.

Существуют готовые заводские устройства с регулятором оборотов и замедлением старта двигателя при запуске.

Готовое устройство для регулировки плавного пуска

Такие блоки устанавливаются внутрь корпуса, при наличии свободного места. Однако, большинство пользователей УШМ предпочитают изготавливать схему для плавного пуска болгарки самостоятельно, и подключать ее в разрыв питающего кабеля.

Как изготовить схему плавного пуска угловой шлифовальной машины своими руками

Популярная схема реализуется на основе управляющей микросхемы фазового регулирования КР118ПМ1, а силовая часть выполнена на симисторах. Такое устройство достаточно просто монтируется, не требует дополнительной настройки после сборки, а стало быть, изготовить ее может мастер без специализированного образования, достаточно уметь держать в руках паяльник.

Электрическая схема регулировки плавного пуска для болгарки

Предложенный блок можно подключить к любому электроинструменту, рассчитанному на переменное напряжение 220 вольт. Отдельный вынос кнопки питания не требуется, доработанный электроинструмент включается штатной клавишей. Схему можно установить как внутрь корпуса болгарки, таки и в разрыв питающего кабеля в отдельном корпусе.

При замыкании клавиши пуска болгарки, по общей цепи питания подается напряжение на микросхему DA1. На управляющем конденсаторе происходит плавное нарастание напряжения.

По мере заряда оно достигает рабочей величины. За счет этого тиристоры в составе микросхемы открываются не сразу, а с задержкой, время которой определяется зарядом конденсатора.

Симистор VS1, управляемый тиристорами, открывается с такой же паузой.

Посмотрите видео с подробным разъяснением как сделать и какую схему применить

В каждом полупериоде переменного напряжения, задержка уменьшается в арифметической прогрессии, в результате чего напряжение на входе в электроинструмент плавно возрастает. Этот эффект и определяет плавность запуска двигателя болгарки. Следовательно обороты диска возрастают постепенно, и вал редуктора не испытывает инерционного шока.

Время набора оборотов до рабочего значения определяется емкостью конденсатора С2. Величина 47 мкФ обеспечивает плавный пуск за 2 секунды. При такой задержке нет особого дискомфорта для начала работы с инструментом, и в то же время сам электроинструмент не подвергается избыточным нагрузкам от резкого старта.

После выключения УШМ, конденсатор С2 разряжается сопротивлением резистора R1. При номинале 68 кОм время разряда составляет 3 секунды. После чего устройство плавного пуска готово к новому циклу запуска болгарки.

Таким образом, в одном корпусе можно выполнить регулятор оборотов двигателя и устройство плавного пуска электроинструмента.

Остальные детали схемы работают следующим образом:

  • Резистор R2 контролирует величину силы тока, протекающую через управляющий вход симистора VS1;
  • Конденсаторы С1 и С2 являются компонентами управления микросхемой КР118ПМ1, используемыми в типовой схеме включения.

Для простоты и компактности монтажа, резисторы и конденсаторы припаиваются прямо к ножкам микросхемы.

Симистор VS1 может быть любым, со следующими характеристиками: максимальное напряжение до 400 вольт, минимальный пропускной ток 25 ампер. Величина тока зависит от мощности угловой шлифовальной машины.

По причине плавного пуска болгарки, ток не будет превышать номинального рабочего значения для выбранного электроинструмента. Для экстренных случаев, например, заклинивания диска УШМ – необходим запас по току. Поэтому значение номинальной величины в амперах следует увеличить вдвое.

Номиналы радиодеталей, использованных в предлагаемой электросхеме – испытаны на УШМ мощностью 2 кВт. Запас по мощности имеется до 5 кВт, это связано с особенностью работы микросхемы КР118ПМ1.
Схема рабочая, многократно исполненная домашними мастерами.

Устройство плавного пуска электродвигателя :

Характерным для любого электродвигателя в процессе запуска является многократное превышение тока и механической нагрузки на приводимое в действие оборудование. При этом также возникают перегрузки питающей сети, создающие просадку напряжения и ухудшающие качество электроэнергии. Во многих случаях требуется устройство плавного пуска (УПП).

Необходимость плавного пуска электродвигателей

Статорная обмотка является катушкой индуктивности, состоящей из активного сопротивления и реактивного. Значение последнего зависит от частоты подаваемого напряжения. При запуске двигателя реактивное сопротивление изменяется от нуля, а пусковой ток имеет большую величину, многократно превышающую номинальный.

Момент вращения также велик и может разрушить приводимое в движение оборудование. В режиме торможения также появляются броски тока, приводящие к повышению температуры статорных обмоток. При аварийной ситуации, связанной с перегревом двигателя, возможен ремонт, но параметры трансформаторной стали изменяются и номинальная мощность снижается на 30 %.

Поэтому необходим плавный пуск.

Запуск электродвигателя переключением обмоток

Обмотки статора могут соединяться «звездой» и «треугольником». Когда у двигателя выведены все концы обмоток, можно снаружи коммутировать схемы «звезда» и «треугольник».

Устройство плавного пуска электродвигателя собирается из 3 контакторов, реле нагрузки и времени.

Электродвигатель запускается по схеме «звезда», когда контакты К1 и К3 замкнуты. Через интервал, заданный реле времени, К3 отключается и производится подключение схемы «треугольник» контактором К2. При этом двигатель выходит на полные обороты. Когда он разгоняется до номинальных оборотов, пусковые токи не такие большие.

Недостатком схемы является возникновение короткого замыкания при одновременном включении двух автоматов. Этого можно избежать, применив вместо них рубильник. Для организации реверса нужен еще один блок управления. Кроме того, по схеме «треугольник» электродвигатель больше нагревается и жестко работает.

Частотное регулирование скорости вращения

Вал электродвигателя вращается магнитным полем статора. Скорость зависит от частоты питающего напряжения. Электропривод будет работать эффективней, если дополнительно менять напряжение.

В состав устройства плавного пуска асинхронных двигателей может входить частотный преобразователь.

Первой ступенью устройства является выпрямитель, на который подается напряжение трехфазной или однофазной сети. Он собирается на диодах или тиристорах и предназначен для формирования пульсирующего напряжения постоянного тока.

В промежуточной цепи пульсации сглаживаются.

В инверторе выходной сигнал преобразуется в переменный заданной частоты и амплитуды. Он работает по принципу изменения амплитуды или ширины импульсов.

Все три элемента получают сигналы от электронной схемы управления.

Принцип действия УПП

Увеличение пускового тока в 6-8 раз и вращающего момента требуют применения УПП для выполнения следующих действий при запуске или торможении двигателя:

  • постепенное увеличение нагрузки;
  • снижение просадки напряжения;
  • управление запуском и торможением в определенные моменты времени;
  • снижение помех;
  • защита от скачков напряжения, при пропадании фазы и др.;
  • повышение надежности электропривода.

Устройство плавного пуска двигателя ограничивает величину напряжения, подаваемого в момент пуска. Оно регулируется путем изменения угла открытия симисторов, подключенных к обмоткам.

Пусковые токи необходимо снижать до величины, не более чем в 2-4 раза превышающей номинал.

Наличие байпасного контактора предотвращает перегрев симисторов после его подключения после того, как двигатель раскрутится. Варианты включения бывают одно-, двух- и трехфазные.

Каждая схема функционально отличается и имеет разную стоимость. Наиболее совершенным является трехфазное регулирование. Оно наиболее функционально.

Недостатки УПП на симисторах:

  • простые схемы применяются только с небольшими нагрузками или при холостом запуске;
  • продолжительный запуск приводит к перегреву обмоток и полупроводниковых элементов;
  • момент вращения вала снижается и двигатель может не запуститься.

Наиболее распространены регуляторы без обратной связи по двум или трем фазам. Для этого предварительно устанавливается напряжение и время пуска.

Недостатком является отсутствие регулирования момента по нагрузке на двигатель.

Эту проблему решает устройство с обратной связью наряду с выполнением дополнительных функций снижения пускового тока, создания защиты от перекоса фаз, перегрузки и пр.

Наиболее современные УПП имеют цепи непрерывного слежения за нагрузкой. Они подходят для тяжело нагруженных приводов.

Большинство УПП — это регуляторы напряжения на симисторах, различающиеся функциями, схемами регулирования и алгоритмами изменения напряжения. В современных моделях софтстартеров применяются фазовые методы регулирования электроприводов с любыми режимами пуска. Электрические схемы могут быть с тиристорными модулями на разное количество фаз.

Одно из самых простых — это устройство плавного пуска с однофазным регулированием через один симистор, позволяющее только смягчать механические ударные нагрузки двигателей мощностью до 11 кВт.

Двухфазное регулирование также смягчает механические удары, но не ограничивает токовые нагрузки. Допустимая мощность двигателя составляет 250 кВт. Оба способа применяются из расчета приемлемых цен и особенностей конкретных механизмов.

Многофункциональное устройство плавного пуска с трехфазным регулированием имеет самые лучшие технические характеристики. Здесь обеспечивается возможность динамического торможения и оптимизации его работы. В качестве недостатков можно отметить только большие цены и габариты.

В качестве примера можно взять устройство плавного пуска Altistart. Можно подобрать модели для запуска асинхронных двигателей, мощность которых достигает 400 кВт.

Устройство выбирается по номинальной мощности и режиму работы (нормальный или тяжелый).

Основными параметрами, по которым выбираются устройства плавного пуска, являются:

  • предельная сила тока УПП и двигателя должны быть правильно подобраны и соответствовать друг другу;
  • параметр количества запусков в час задается как характеристика софтстартера и не должен превышаться при эксплуатации двигателя;
  • заданное напряжение устройства не должно быть меньше сетевого.

Упп для насосов

Устройство плавного пуска для насоса предназначено преимущественно для снижения гидравлических ударов в трубопроводах. Для работы с приводами насосов подходят УПП Advanced Control. Устройства практически полностью устраняют гидроудары при заполненных трубопроводах, позволяя увеличить ресурс оборудования.

Плавный запуск электроинструментов

Для электроинструмента характерны высокие динамические нагрузки и большие обороты. Его наглядным представителем является угловая шлифовальная машинка (УШМ). На рабочий диск действуют значительные силы инерции в начале вращения редуктора. Большие перегрузки по току возникают не только при запуске, но и при каждой подаче инструмента.

Устройство плавного пуска электроинструмента применяется только для дорогих моделей. Экономичным решением является его установка своими руками. Это может быть готовый блок, который помещается внутри корпуса инструмента. Но многие пользователи собирают простую схему самостоятельно и подключают ее в разрыв питающего кабеля.

При замыкании цепи двигателя, на регулятор фазы КР1182ПМ1 подается напряжение и начинает заряжаться конденсатор С2. За счет этого симистор VS1 включается с задержкой, которая постепенно уменьшается. Ток двигателя плавно нарастает и обороты набираются постепенно. Двигатель разгоняется примерно за 2 сек. Мощность, отдаваемая в нагрузку, достигает 2,2 кВт.

Устройство можно применять для любого электроинструмента.

Заключение

Выбирая устройство плавного пуска, необходимо анализировать требования к механизму и характеристикам электродвигателя. Характеристики производителя находятся в прилагаемой к оборудованию документации. Ошибки при выборе быть не должно, поскольку нарушится функционирование устройства. Важен учет диапазона скоростей, чтобы выбрать лучшее сочетание преобразователя и двигателя.

Похожие статьи:

  • Как паять провода зарядка Как спаять ПРОВОД зарядки от ноутбука Lenovo S10-2 ? Вот и первая поломка. Споткнулись хорошенько об зарядку ноутбука, и в результате порванный провод в месте коробки зарядного устройства. Оба конца провода видны. Но дело в том, что без […]
  • Выключатель аварийки схема Схема включения указателей поворота ВАЗ 2113, 2114, 2115 26352 Просмотра Обсудить Схема включения указателей поворота и аварийной сигнализации ВАЗ 2113, 2114, 2115 : 1 — лампы указателей поворота; 2 — монтажный блок; 3 — […]
  • Счетчик меркурий на 220 вольт Счетчики Меркурий Поставляем счётчики Меркурий со склада и под заказ. Предлагается весь выпускаемый перечень модификаций электросчетчиков Меркурий и дополнительного оборудования (УСПД - концентраторы, шлюзы, адаптеры и др.) из […]
  • Обжим провода цвета Обжим витой пары: пошаговые инструкции и схемы цветов на 4 и 8 жил Несмотря на кажущуюся простоту вопроса и наличия в сети необходимой информации, с обжимом витой пары могут возникнуть сложности, особенно у тех, чья профессиональная […]
  • Как обжимать жилы у провода Обжим витой пары: пошаговые инструкции и схемы цветов на 4 и 8 жил Несмотря на кажущуюся простоту вопроса и наличия в сети необходимой информации, с обжимом витой пары могут возникнуть сложности, особенно у тех, чья профессиональная […]
  • Lwa 10 3 фазы Дизельный генератор Lister Petter LWA 10 3 фазы в кожухе с АВР Узнать о скидке на эту модель можно по номеру 8 (495) 215-07-48 Компания «ЭнергоПлаза» предлагает профессиональные решения для энергосбережения – дизельные генераторы мировых […]