Расчет нулевого провода

Оглавление:

Расчет нулевого провода

В этом случае линейные токи ÍA,ÍB,ÍC образуют симметричную систему векторов:

;;; (54)

Расчёт схемы, когда нагрузка соединена звездой и известны линейные напряжения (рис. 22)

Сюда подходят схемы соединений треугольник – звезда и звезда – звезда без нулевого провода.

Рис. 22. Электрическая схема

По первому закону Кирхгофа можно записать:

Токи в фазах нагрузки можно записать через фазные напряжения нагрузок ÚA,ÚB,ÚCи комплексные проводимости нагрузок:

Подставим (57) в (56):

Фазные напряжения ÚВ иÚС могут быть выражены черезÚА и заданные линейные напряженияÚАВ иÚСА:

Подставим (59) и (60) в (58):

(61)

Теперь фазные напряжения ÚАиÚСвыразим черезÚВ и заданные линейные напряженияÚАВ иÚВС:

Подставим (62) и (63) в (61):

(64)

Аналогично выразим ÚАиÚВвыразим черезÚС и заданные линейные напряженияÚСА иÚВС:

Подставим (66) и (65) в (64):

(67)

Расчёт схемы, когда нагрузка соединена треугольником и известны линейные напряжения (рис. 23)

Сюда подходят схемы соединений треугольник – треугольник и звезда – треугольник.

Рис. 23. Электрическая схема

Так как заданные линейные напряжения ÚAB,ÚBС,ÚСА напрямую подключаются к сопротивлениям нагрузкиZ­ab,Z­bc,Z­ca, то легко найти фазные токи нагрузокÍab,Íbc,Íca:

(67)

Токи в линейных проводах определяются по первому закону Кирхгофа для узлов a,b,c:

Если на выводах несимметричной трёхфазной нагрузки, соединённой треугольником, заданы фазные напряжения источника ÚA,ÚB,ÚC, обмотки которого соединены в звезду, то линейные напряжения на выводах нагрузки находятся как разности соответствующих фазных напряжений:

Далее задача сводится к только что рассматриваемому случаю.

Расчёт трёхпроводной трёхфазной схемы, когда в линейных проводах включены сопротивления

Когда между генератором и нагрузкой большое расстояние, то необходимо учитывать сопротивления линейных проводов. Линейные провода обладают активным и индуктивным сопротивлениями.

Рассмотрим расчёт схемы соединений треугольник – треугольник (рис. 24).

Рис. 24. Схема соединения треугольник — треугольник

Будем считать, что нагрузка неравномерная. На схеме рис. 24 обозначено:R– активное сопротивление линейного провода,L– индуктивность линейного провода.

Ни один из выше рассмотренных методов расчёта напрямую не подходит для расчёта данной схемы.

Перед расчётом известны все линейные ЭДС генератора Е́АВ, Е́ВС, Е́СА, комплексные сопротивления нагрузок и линейных проводов.

Расчёт любой трёхфазной цепи начинается с написания систем трёх линейных и трёх фазных напряжений генератора. Предположим, что Е́АВ= 380В. Что бы не ошибиться, желательно строить векторную диаграмму линейных и фазных напряжений.

Вектор Е́АВнаправлен по вещественной оси комплексной плоскости (рис. 25)

Рис. 25. Векторная диаграмма

Вектор Е́ВСотстаёт от вектора Е́АВна 120°. В результате получилась следующая система:

Е́ВС= 380 — j 120° = -190 –j329,09 В (72)

Е́СА = 380 j 120° = -190 –j329,09 В

Теперь запишем систему трёх фазных ЭДС генератора. Из векторной диаграммы рис. 25 видно, что ЭДС Е́Аотстаёт от Е́АВ ­на 30°. Треугольник линейных ЭДС равносторонний, все углы по 60°. Фазные ЭДС делят эти углы пополам. Кроме того известно, что фазные ЭДС в раз меньше линейных:

Поэтому для фазной ЭДС генератора можно записать:

Е́А= 220 — j 30° = 190,526 –j100 В

Фазная ЭДС Е́В отстает от Е́А на 120°:

Е́В= 220 — j 150° = -190,526 –j100 В

Фазная ЭДС Е́С опережает от Е́А на 120°:

Е́С= 220 j 90° =j220 В

Запишем теперь систему трёх фазных ЭДС генератора:

Е́А= 220 — j 30° = 190,526 –j100 В

Е́В= 220 — j 150° = -190,526 –j100 В (73)

Е́С= 220 j 90° =j220 В

Пользуемся ли мы системой трёх линейных ЭДС или трёх фазных ЭДС генератора, потенциалы точек А, В, С одинаковый в обоих случаях.

Для расчёта схемы рис. 24 воспользуемся системой трёх фазных ЭДС (73).

Далее следует преобразовать треугольник нагрузок в эквивалентную звезду. Обозначим через Z­a,Z­b,Z­cсопротивления эквивалентной звезды. Формулы для расчёта точно такие же, как и на постоянном токе, только расчёт ведётся в комплексных числах. На рис. 26 показана эквивалентная схема.

Рис. 26. Эквивалентная схема

Эквивалентные сопротивления звезды рассчитываются по следующим формулам:

(74)

(75)

(76)

В результате от исходной схемы рис. 24 треугольник – треугольник мы перешли к эквивалентной схеме звезда – звезда без нулевого провода, расчёт которой выше рассмотрен. Эта эквивалентная схема нужна, что бы найти линейные токи ÍA,ÍВ,ÍС.

(80)

А потом найдем линейные токи:

; (81)

; (82)

; (83)

Теперь надо вернуться к исходной схеме рис. 24 и найти потенциалы точек a,b,c:

Далее в схеме рис. 24 найдем фазные токи нагрузок

(87)

(88)

(89)

Балансы активных и реактивных мощностей и векторную диаграмму следует делать по исходной схеме рис. 24.

Векторная диаграмма начинается с построения системы трёх линейных ЭДС генератора Е́АВ, Е́ВС, Е́СА. Далее следует построить векторы токов, чтобы на диаграмме выполнялись следующие соотношения:

Далее следует посчитать падения напряжений на всех элементах схемы и построить их на диаграмме, чтобы выполнялись следующие соотношения

Смотрите так же:  Узо какой фирмы выбрать

Так будет построена полная векторная диаграмма трёхфазной цепи

Расчёт схемы звезда – звезда без нулевого провода

Расчёт такой же, как и для схемы звезда — звезда с нулевым проводом. Только будет отсутствовать комплексная проводимость нулевого провода Y, так как нет нулевого провода (рис. 21).

Рис. 21. Схема соединений звезда – звезда без нулевого провода

(47)

Если нагрузка неравномерная , то и на фазах нагрузки будут разные напряжения:

А токи в фазах нагрузки будут найдены:

; (49)

; (50)

; (51)

Линейные токи по отношению друг к другу могут находиться под любым углом, т. е. образуют несимметричную систему векторов. По первому закону Кирхгофа их сумма должна равняться нулю:

Если нагрузка равномерная , то:

(53)

так как 1 + а­ 2 + а = 0

В этом случае линейные токи ÍA, ÍB, ÍC образуют симметричную систему векторов:

; ; ; (54)

Расчёт схемы, когда нагрузка соединена звездой и известны линейные напряжения (рис. 22)

Сюда подходят схемы соединений треугольник – звезда и звезда – звезда без нулевого провода.

Рис. 22. Электрическая схема

По первому закону Кирхгофа можно записать:

Токи в фазах нагрузки можно записать через фазные напряжения нагрузок ÚA, ÚB, ÚC и комплексные проводимости нагрузок:

Подставим (57) в (56):

Фазные напряжения ÚВ и ÚС могут быть выражены через ÚА и заданные линейные напряжения ÚАВ и ÚСА:

Подставим (59) и (60) в (58):

(61)

Теперь фазные напряжения ÚА и ÚС выразим через ÚВ и заданные линейные напряжения ÚАВ и ÚВС:

Подставим (62) и (63) в (61):

(64)

Аналогично выразим ÚА и ÚВ выразим через ÚС и заданные линейные напряжения ÚСА и ÚВС:

Подставим (66) и (65) в (64):

(67)

Расчёт схемы, когда нагрузка соединена треугольником и известны линейные напряжения (рис. 23)

Сюда подходят схемы соединений треугольник – треугольник и звезда – треугольник.

Рис. 23. Электрическая схема

Так как заданные линейные напряжения ÚAB, Ú, ÚСА напрямую подключаются к сопротивлениям нагрузки ab, bc, ca, то легко найти фазные токи нагрузок Íab, Íbc, Íca:

(67)

Токи в линейных проводах определяются по первому закону Кирхгофа для узлов a, b, c:

Если на выводах несимметричной трёхфазной нагрузки, соединённой треугольником, заданы фазные напряжения источника ÚA, ÚB, ÚC, обмотки которого соединены в звезду, то линейные напряжения на выводах нагрузки находятся как разности соответствующих фазных напряжений:

Далее задача сводится к только что рассматриваемому случаю.

Дата добавления: 2015-07-30 ; просмотров: 1571 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Расчет нулевого провода

Сообщение mastervictor » 13 сен 2016, 15:46

Греется ноль?

Сообщение Леопольд » 13 сен 2016, 15:58

Греется ноль?

Сообщение ПАВ » 13 сен 2016, 16:08

Греется ноль?

Сообщение mastervictor » 13 сен 2016, 16:21

Греется ноль?

Сообщение Константин » 13 сен 2016, 18:25

Греется ноль?

Сообщение ПАВ » 13 сен 2016, 18:28

Греется ноль?

Сообщение Константин » 13 сен 2016, 18:32

Греется ноль?

Сообщение elalex » 13 сен 2016, 20:24

При больших токах, близких к КЗ, провода не просто греются, а горят и плавятся, и в ноле, и в фазе.

При 100%-загрузке нулевого провода 3-фазной сети третьими гармониками (нелинейные нагрузки типа импульсных источников питания) его ток в √3 больше фазных. Причем это бывает при симметричной 3-фазной нагрузке — такая особенность сложения третьих гармоник всех фаз в нулевом проводе — они взаимно не уничтожаются, и их сумма больше составляющих.
На Западе есть соответствующие нормы и защита в нулевом проводе, а в США, по данным Schneider Electric, сечение нулевого провода в два раза больше фазных. В некоторых марках нашего СИП ( СИП-1 3х16+1х25, СИП-2 3х16+1х25) — то же самое увеличение.

Греется ноль?

Сообщение Леопольд » 14 сен 2016, 07:12

Расчет сопротивления петли «фаза-ноль»

Контур, состоящий из фазы трансформатора и цепи фазного и нулевого проводников. Сопротивление петли фаза-ноль определяет ток такого короткого замыкания.

Если сопротивление петли фаза-ноль велико, то может оказаться, что ток короткого замыкания не достаточен для быстрого срабатывания защиты от короткого замыкания. И защита или вообще не отключает короткое замыкание, или отключает через длительное время. Все это время на корпусе электроаппарата присутствует опасное напряжение.

В электроустановках до 1000 В с заземлением нейтрали безопасность обслуживания электрооборудования при пробое на корпус обеспечивается отключением поврежденного участка с минимальным временем. При замыкании фазного провода на соединенный с нейтралью трансформатора (или генератора) нулевой провод или корпус оборудования образуется контур, состоящий из фазы трансформатора и цепи фазного и нулевого проводников. Этот контур принято называть петлей «фаза-ноль»

Проверка надежности и быстроты отключения поврежденного участка сети состоит в следующем:

Определяется ток короткого замыкания на корпус Iкз. Этот ток сопоставляется с расчетным током срабатывания защиты испытуемого участка сети. Если возможный в данном участке сети ток аварийного режима превышает ток срабатывания защиты с достаточной кратностью, надежность отключения считается обеспеченной.

Произведем расчет сопротивления петли фаза-ноль

Рис.5 Схема для расчета петли «Фаза-ноль»

Rт, Хт— активное и индуктивное сопротивление вторичной обмотки силового трансформатора

Rк — переходное сопротивление контактного соединения

Rа — сопротивление аппаратов защиты и коммутации

Rтт, Хтт— активное и индуктивное сопротивление вторичной обмотки трансформатора тока

Rпр, Хтпр— активное и индуктивное сопротивление провода (длину провода в обоих случаях принимаем 80м.)

Индуктивное и активное сопротивление обмотки трансформатора (мОм)

Сопротивления контактов определяются по следующей формуле

Полное сопротивление петли фаза-ноль

Поученный расчетный ток к.з. сравниваем с током срабатывания защитной аппаратуры. Если выполняется условие, то аппарат защиты сработает и его выбор произведен верно

Произведем расчет сопротивления петли фаза-ноль

В качестве трансформатора принимаем следующий

Определяем сначала индуктивное и активное сопротивление обмотки трансформатора (мОм) по формулам (6.1) и (6.2)

Смотрите так же:  Деревянные катушки для провода

Сопротивления контактов определяются по формуле

Fк=50 Н (сила нажатия в контакте)

K=4 (коэффициент, зависящий от материала контактов и состояния их поверхности; определяется по сводной таблице)

m=1,0 (коэффициент, зависящий от типа контакта)

По таблицам определяем остальные параметры

Полное сопротивление петли фаза-ноль

Так как 2084 А>630 А то при к.з. защитная аппаратура сработает.

Разработка системы «Человек-Машина-Среда» в условиях действия вредного производственного фактора – повышенного напряжения в сети. Расчет повторного заземления нулевого провода либо расчет зануления, сечения провода. Правильное размещения рабочих мест.

Соглашение об использовании материалов сайта

Просим использовать работы, опубликованные на сайте, исключительно в личных целях. Публикация материалов на других сайтах запрещена.
Данная работа (и все другие) доступна для скачивания совершенно бесплатно. Мысленно можете поблагодарить ее автора и коллектив сайта.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Подобные документы

Условия труда человека и описаниен системы «человек – машина – среда». Повторное заземление нулевого защитного проводника, уменьшающее опасность поражения людей током. Расчет заземляющего устройства исходя из его максимально допустимого сопротивления.

контрольная работа [167,3 K], добавлен 23.08.2010

Опасность воздействия на людей электрического тока. Защитное заземление как основная мера защиты металлоконструкции. Состав заземления, обозначения системы заземления на схемах. Виды систем заземления. Принцип действия зануления, системы зануления.

реферат [150,0 K], добавлен 19.11.2010

Анализ условий труда в лаборатории, возможные вредные факторы в системе «человек–машина–среда». Обеспечение электробезопасности в рассматриваемом помещении. Расчет заземления нулевого провода. Производственная санитария, гигиена и пожарная безопасность.

контрольная работа [313,9 K], добавлен 30.01.2011

Теоретическое обоснование проведения защитных заземлений и занулений. Необходимость проведения защитного заземления и зануления. Расчет защитного заземления подстанций, зануления двигателя. Устройства, применяемые в данных процессах, их применение.

курсовая работа [451,7 K], добавлен 28.03.2011

Опасные и вредные факторы производства. Система «человек – машина – среда» с выделением доминирующего вредного фактора. Расчет одиночного заземления и искусственного освещения. Схема пожароэвакуации, оснащение средствами предупреждения и тушения пожаров.

контрольная работа [76,7 K], добавлен 27.08.2010

Анализ опасных и вредных производственных факторов. Методы и этапы составления системы ЧМС с выделением доминирующего фактора. Расчет повторного заземления и кондиционирования. Правила оснащения помещений средствами пожаропредупреждения и пожаротушения.

контрольная работа [63,6 K], добавлен 04.09.2010

Анализ состояния системы «человек-машина-среда». Расчет параметров электробезопасности. Проектирование и расчет системы искусственной (механической) вентиляции. Оценка уровня травматизма на предприятии. Расчет освещения в производственных помещениях.

курсовая работа [932,8 K], добавлен 03.06.2015

Вычисление заземляющих устройств в отсутствии или при обрыве нулевого провода при соприкосновении человека с токоведущими частями. Расчет кратности воздухообмена по избыткам тепла, выделений газа и пыли. Устройства защиты от электромагнитных излучений.

методичка [345,6 K], добавлен 14.07.2015

Методы определения загазованности и запыленности производственных помещений. Особенности действия лучистой теплоты на организм человека. Активная и пассивная виброизоляция. Устройство и принцип действия зануления. Расчет площади световых проемов.

контрольная работа [765,4 K], добавлен 21.10.2014

Этапы проведения аттестации рабочих мест. Оценка микроклимата, световой среды, шума, вибрации, химического фактора, тяжести трудового процесса, травмобезопасности. Расчет платы за выбросы в атмосферу. Работа инерционных пылеуловительных устройств.

дипломная работа [745,3 K], добавлен 23.09.2013

Повторное заземление нулевого провода

Повторное заземление нейтрали — защитная мера безопасности, заземление РЕ- или PEN-проводника, выполняемая в ЭУ с глухозаземлённой нейтралью напряжением до 1 кВ по всей протяженности нулевого проводника в определенных местах и через нормируемые расстояния.

Повторным его называют потому, что в сетях с этой системой заземления TN нулевой проводник понижающего питающего трансформатора в подстанции уже присоединен к заземляющему устройству.

Для чего нужно повторное заземление

Основным назначением повторного заземления (далее ПЗ) является уменьшение напряжения прикосновения на открытых токопроводящих металлических корпусах электрооборудования в случае возникновения на них замыкания фазы.

Кроме того, соответствующее нормам ПЗ на вводе способно исключить возможность заноса в ЭУ опасного для электрооборудования потенциала, наведенного по внешним инженерным коммуникациям.

Так, при наличии ПЗ на вводе при возникновении замыкания на проводящий корпус электроприбора ток замыкания будет протекать не только по PEN-проводнику, но уже и по «земле» — протекая через сопротивления заземляющего устройства питающего трансформатора и ПЗ.

Таким образом, фазный потенциал на корпусе поврежденного электрооборудования относительно земли будет снижен, а напряжение нейтрали питающего трансформатора повысится. Их соотношение будет пропорционально соотношению сопротивлений ЗУ нейтрали трансформатора и ПЗ.

При возникновении аналогичного повреждения электрооборудования в случае отсутствия ПЗ на вводе опасный близкий к фазному потенциал может сохраняться на проводящих корпусах всех электроприборов довольно длительное время и не вызвать защитного срабатывания автоматического выключателя.

Требования к повторному заземлению

Согласно требованию ПУЭ-7 (п. 1.7.61) ПЗ РЕ- или PEN-проводников должно быть выполнено на вводе в ЭУ здания. Рекомендательный характер этого требования в отношении выполнения ПЗ можно отнести к случаям, когда при наличии своей основной системы уравнивания потенциалов, использующей конструкции как естественные заземлители (присоединение проводника нейтрали к ГЗШ).

Требования к ПВ ВЛ (и ВЛИ) и их ответвлений определены в п. 1.7.102. Оно в обязательном порядке должно быть выполнено на концах линий и их ответвлениях протяженностью свыше 200 м с использованием по возможности имеющихся естественных заземлителей (подземных частей опор ВЛ и ЗУ для атмосферных перенапряжений).

Сопротивление растеканию электрического тока (собственно, сопротивление ПЗ). Безусловно, является качественным показателем любой системы заземления. Максимальные значения общего сопротивления воздушной линии приведены в п. 1.7.102; это 5, 10 и 20 Ом при линейных напряжениях 660, 380 и 220 В трехфазного тока или 380, 220 и 127 В однофазного (см. таблицу).

При этом, максимальное сопротивление заземлителя каждой «повторки» составляет 15, 30 и 60 Ом соответственно приведенным выше напряжениям.

Реализация электроснабжения нескольких ЭУ, в которых система ПЗ выполнена на естественных заземлителях может быть организована от одной питающей подстанции. В таких случаях вряд ли представляется возможным учесть сопротивление заземлителей, поэтому, согласно Правил не нормируется.

  • Главная
  • Электроснабжение
  • Повторное заземление нулевого провода
Смотрите так же:  Обжать провода интернета

Информация

Данный сайт создан исключительно в ознакомительных целях. Материалы ресурса носят справочный характер.

При цитировании материалов сайта активная гиперссылка на l220.ru обязательна.

Документ, определяющий правила устройства, регламентирующий принципы построения и требования как к отдельным системам, так и к их элементам, узлам и коммуникациям ЭУ, условиям размещения и монтажа.

Требования и обязанности потребителей, ответственность за выполнение, требования к персоналу, осуществляющему эксплуатацию ЭУ, управление, ремонт, модернизацию, ввод в эксплуатацию ЭУ, подготовке персонала.

Правила по охране труда при эксплуатации электроустановок — документ, созданный на основе недействующих в настоящее время Межотраслевых правил по охране труда (ПОТ Р М-016-2001, РД 153-34.0-03.150).

Роль нулевого провода

а) Нулевой провод необходим, чтобы напряжения на фазах нагрузки оставалось одинаковыми в случае неравномерной нагрузки (не было перекоса фаз);

б) Нулевой провод необходим на случай аварийного режима:

— Короткое замыкание фазы. Если нет нулевого провода, то на оставшихся фазах нагрузки, вместо фазного напряжения будет действовать линейное напряжение (в корень из 3 раз большее), что приведет к выходу оборудования из строя. Если нулевой провод подключен, напряжение на нагрузках не изменится.

— Обрыв фазы. При отсутствии нулевого провода оставшиеся фазы оказываются соединены последовательно и включены на линейное напряжение, следовательно, напряжение на них уменьшится. Если нулевой провод подключен, напряжение на нагрузках не изменится.

Практически ток в нулевом проводе в 2 – 3раза меньше тока в линейных проводах, поэтому нулевой провод выполняется меньшим сечением. Обрыв нулевого провода крайне нежелателен, поэтому предохранители в него не ставят.

Пример:

Нагрузка соединена звездой,

Характер нагрузки индуктивный. Определить: IФ, IЛ, RФ, P, S, Q.

Ток в нулевом проводе равен 0, следовательно, нагрузка равномерная.

Определим мощности цепи:

Построим векторную диаграмму:

37.112.108.63 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

Расчёт схемы звезда – звезда без нулевого провода

Расчёт такой же, как и для схемы звезда — звезда с нулевым проводом. Только будет отсутствовать комплексная проводимость нулевого провода Y, так как нет нулевого провода (рис. 21).

Рис. 21. Схема соединений звезда – звезда без нулевого провода

(47)

Если нагрузка неравномерная , то и на фазах нагрузки будут разные напряжения:

А токи в фазах нагрузки будут найдены:

; (49)

; (50)

; (51)

Линейные токи по отношению друг к другу могут находиться под любым углом, т. е. образуют несимметричную систему векторов. По первому закону Кирхгофа их сумма должна равняться нулю:

Если нагрузка равномерная , то:

(53)

так как 1 + а­ 2 + а = 0

В этом случае линейные токи ÍA, ÍB, ÍC образуют симметричную систему векторов:

; ; ; (54)

Расчёт схемы, когда нагрузка соединена звездой и известны линейные напряжения (рис. 22)

Сюда подходят схемы соединений треугольник – звезда и звезда – звезда без нулевого провода.

Рис. 22. Электрическая схема

По первому закону Кирхгофа можно записать:

Токи в фазах нагрузки можно записать через фазные напряжения нагрузок ÚA, ÚB, ÚC и комплексные проводимости нагрузок:

Подставим (57) в (56):

Фазные напряжения ÚВ и ÚС могут быть выражены через ÚА и заданные линейные напряжения ÚАВ и ÚСА:

Подставим (59) и (60) в (58):

(61)

Теперь фазные напряжения ÚА и ÚС выразим через ÚВ и заданные линейные напряжения ÚАВ и ÚВС:

Подставим (62) и (63) в (61):

(64)

Аналогично выразим ÚА и ÚВ выразим через ÚС и заданные линейные напряжения ÚСА и ÚВС:

Подставим (66) и (65) в (64):

(67)

Расчёт схемы, когда нагрузка соединена треугольником и известны линейные напряжения (рис. 23)

Сюда подходят схемы соединений треугольник – треугольник и звезда – треугольник.

Рис. 23. Электрическая схема

Так как заданные линейные напряжения ÚAB, Ú, ÚСА напрямую подключаются к сопротивлениям нагрузки ab, bc, ca, то легко найти фазные токи нагрузок Íab, Íbc, Íca:

(67)

Токи в линейных проводах определяются по первому закону Кирхгофа для узлов a, b, c:

Если на выводах несимметричной трёхфазной нагрузки, соединённой треугольником, заданы фазные напряжения источника ÚA, ÚB, ÚC, обмотки которого соединены в звезду, то линейные напряжения на выводах нагрузки находятся как разности соответствующих фазных напряжений:

Далее задача сводится к только что рассматриваемому случаю.

Похожие статьи:

  • Штыревое заземление схема Заземление. Монтаж модульно-штыревой системы заземления В этой статье я расскажу о более новой и передовой системе заземления - модульной штыревой системе. Вы ознакомитесь с условиями и способами монтажа такого очага заземления и […]
  • Автомат шнайдер с узо Специализированный магазин электротехнической продукции Schneider Интернет-магазин Schneider.spb.ru – это полный каталог выключателей, розеток, автоматических выключателей, диф. автоматов, УЗО и щитового оборудования мирового лидера […]
  • Электрическая варочная панель 220 вольт Подключение варочной панели Фолклиг от Икеа на 380В Уважаемые форумчане, Здравствуйте! Не кидайте камней, поиском пользовался знакомых опрашивал. Задача в следующем: дом новостройка - ввод в квартиру 380, соответственно на кухню к […]
  • Катушки пускателя пм 220 вольт Советы электрика Пускатель электромагнитный ПМ 12 для чего он предназначен? А необходим он главным образом в стационарных электроустановках для дистанционного пуска, остановки и реверсирования трехфазных ассинхронных движков естественно […]
  • Диаметр провода алюминиевого Диаметр провода алюминиевого 37. ЗАМЕНА МЕДНЫХ ОБМОТОЧНЫХ ПРОВОДОВ АЛЮМИНИЕВЫМИ Электрическое сопротивление алюминия в 1,63 раза больше, чем меди. При замене медного провода алюминиевым того же сечения номинальный ток должен быть снижен […]
  • Lwa 10 3 фазы Дизельный генератор Lister Petter LWA 10 3 фазы в кожухе с АВР Узнать о скидке на эту модель можно по номеру 8 (495) 215-07-48 Компания «ЭнергоПлаза» предлагает профессиональные решения для энергосбережения – дизельные генераторы мировых […]