Расчет трехфазных цепей соединение звездой

Расчёт трёхфазных цепей

Цепь трехфазного переменного тока состоит из трехфазного источника питания, трехфазного потребителя и проводников линии связи между ними.

Симметричный трехфазный источник питания можно представить в виде трех однофазных источников, работающих на одной частоте с одинаковым напряжением и имеющих временной угол сдвига фаз 120˚. Эти источники могут соединяться звездой или треугольником.

При соединении звездой условные начала фаз используют для подключения трех линейных проводников A, B, C, а концы фаз объединяют в одну точку, называемую нейтральной точкой источника питания (трехфазного генератора или трансформатора). К этой точке может подключаться нейтральный провод N. Схема соединения фаз источника питания звездой приведена на рисунке 1, а.

Рис. 1. Схемы соединения фаз источника питания: а – звездой; б – треугольником

Напряжение между линейным и нейтральным проводами называется фазным, а между линейными проводами – линейным (подробнее смотрите здесь — Линейное и фазное напряжение).

В комплексной форме записи выражения для фазных напряжений имеют вид:

Соответствующие им линейные напряжения при соединении звездой:

Здесь Uф – модуль фазного напряжения источника питания, а Uл – модуль линейного напряжения. В симметричной трёхфазной системе, при соединении фаз источника звездой, между этими напряжениями есть взаимосвязь:

При включении фаз треугольником фазные источники питания соединяют последовательно в замкнутый контур (рисунок 1, б).

Из точек объединения источников между собой выводятся три линейных провода A, B, C, идущие к нагрузке. Из рисунка 1, б видно, что выводы фазных источников подключены к линейным проводникам, а следовательно, при соединении фаз источника треугольником фазные напряжения равны линейным. Нейтральный провод в этом случае отсутствует.

К трехфазному источнику может подключаться нагрузка. По величине и характеру трёхфазная нагрузка бывает симметричной и несимметричной.

В случае симметричной нагрузки комплексные сопротивления всех трёх фаз одинаковы, а если эти сопротивления различны, то нагрузка несимметричная. Фазы нагрузки могут соединяться между собой звездой или треугольником (рисунок 2), независимо от схемы соединения источника.

Рис. 2. Схемы соединения фаз нагрузки

Соединение звездой может быть с нейтральным проводом (см. рисунок 2, а) и без него. Отсутствие нейтрального провода устраняет жёсткую привязку напряжения на нагрузке к напряжению источника питания, и в случае несимметричной нагрузки по фазам эти напряжения не равны между собой. Чтобы их отличить, условились в индексах буквенных обозначений напряжений и токов источника питания применять прописные буквы, а в параметрах, присущих нагрузке, – строчные.

Алгоритм анализа трёхфазной цепи зависит от схемы соединения нагрузки, исходных параметров и цели расчёта.

Для определения фазных напряжений при несимметричной нагрузке, соединённой звездой без нейтрального провода, используют метод двух узлов. В соответствии с этим методом расчёт начинают с определения напряжения UN между нейтральными точками источника питания и нагрузки, называемого напряжением смещения нейтрали:

где ya , yb , yc – полные проводимости соответствующих фаз нагрузки в комплексной форме

Напряжения на фазах несимметричной нагрузки находят из выражений:

В частном случае несимметрии нагрузки, когда при отсутствии нейтрального провода происходит короткое замыкание одной из фаз нагрузки, напряжение смещения нейтрали равно фазному напряжению источника питания той фазы, в которой произошло короткое замыкание.

Напряжение на замкнутой фазе нагрузки равно нулю, а на двух других оно численно равно линейному напряжению. Например, пусть произошло короткое замыкание в фазе В. Напряжение смещения нейтрали для этого случая UN = UB. Тогда фазные напряжения на нагрузке:

Фазные токи в нагрузке, они же и токи линейных проводов при любом характере нагрузки:

В задачах при проведении расчётов трёхфазных цепей рассматривают три варианта соединения трёхфазных потребителей звездой: соединение с нейтральным проводом при наличии потребителей в трёх фазах, соединение с нейтральным проводом при отсутствии потребителей в одной из фаз и соединение без нейтрального провода с коротким замыканием в одной из фаз нагрузки.

В первом и втором вариантах на фазах нагрузки находят соответствующие фазные напряжения источника питания и фазные токи в нагрузке определяются по приведенным выше формулам.

В третьем варианте напряжение на фазах нагрузки не равно фазному напряжению источника питания и определяется с помощью зависимостей

Токи, в двух незакороченных фазах, определяют по закону Ома, как частное от деления фазного напряжения на полное сопротивление соответствующей фазы. Ток в закороченной фазе определяют с помощью уравнения на основании первого закона Кирхгофа, составленного для нейтральной точки нагрузки.

Для рассмотренного выше примера с коротким замыканием фазы В:

При любом характере нагрузки трёхфазная активная и реактивная мощности равны соответственно сумме активных и реактивных мощностей отдельных фаз. Для определения этих мощностей фаз можно воспользоваться выражением

где U ф, I ф, – комплекс напряжения и сопряжённый комплекс тока на фазе нагрузки; Pф, Qф – активная и реактивная мощности в фазе нагрузки.

Трёхфазная активная мощность: P = P а + Pb + P с

Трёхфазная реактивная мощность: Q = Q а + Qb + Q с

Трёхфазная полная мощность:

При подключении потребителей треугольником схема приобретает вид, изображённый на рисунке 2, б. В этом режиме схема соединения фаз симметричного источника питания не играет роли.

На фазах нагрузки находят линейные напряжения источника питания. Фазные токи в нагрузке определяют с помощью закона Ома для участка цепи I ф = U ф/ z ф, где U ф – фазное напряжение на нагрузке (соответствующее линейное напряжение источника питания); z ф – полное сопротивление соответствующей фазы нагрузки.

Токи в линейных проводах определяют через фазные на основании первого закона Кирхгофа для каждого узла (точки a,b,c) схемы, изображённой на рисунке 2, б:

Расчет трехфазной цепи, соединенной звездой

Трехфазную цепь, соединенную звездой, удобнее всего рассчитать методом двух узлов.
На рис. 5 изображена трехфазная цепь при соединении звездой. В общем случае сопротивления фаз нагрузки неодинаковы (ZA ≠ ZB ≠ ZC )

Нейтральный провод имеет конечное сопротивление ZN .
В схеме между нейтральными точками источника и нагрузки возникает узловое напряжение или напряжение смещения нейтрали.
Это напряжение определяется по формуле (2).

(2)

Фазные токи определяются по формулам (в соответствии с законом Ома для активной ветви):

(3)

Ток в нейтральном проводе

(4)

1. Симметричная нагрузка. Сопротивления фаз нагрузки одинаковы и равны некоторому активному сопротивлению ZA = ZB = ZC = R.
Узловое напряжение

Смотрите так же:  Схема подключения 2 ламп на один выключатель

,

потому что трехфазная система ЭДС симметрична, .

Напряжения фаз нагрузки и генератора одинаковы:

Фазные токи одинаковы по величине и совпадают по фазе со своими фазными напряжениями. Ток в нейтральном проводе отсутствует

В трехфазной системе, соединенной звездой, при симметричной нагрузке нейтральный провод не нужен.

На рис. 6 изображена векторная диаграмма трехфазной цепи для симметричной нагрузки.

2. Нагрузка несимметричная, RA

7. Трехфазные цепи

7.1. Основные определения

Трехфазная цепь является совокупностью трех электрических цепей, в которых действуют синусоидальные ЭДС одинаковой частоты, сдвинутые относительно друг друга по фазе на 120 o , создаваемые общим источником. Участок трехфазной системы, по которому протекает одинаковый ток, называется фазой.

Трехфазная цепь состоит из трехфазного генератора, соединительных проводов и приемников или нагрузки, которые могут быть однофазными или трехфазными.

Трехфазный генератор представляет собой синхронную машину. На статоре генератора размещена обмотка, состоящая из трех частей или фаз, пространственно смещенных относительно друг друга на 120 o . В фазах генератора индуктируется симметричная трехфазная система ЭДС, в которой электродвижущие силы одинаковы по амплитуде и различаются по фазе на 120 o . Запишем мгновенные значения и комплексы действующих значений ЭДС.

Сумма электродвижущих сил симметричной трехфазной системы в любой момент времени равна нулю.

Соответственно

На схемах трехфазных цепей начала фаз обозначают первыми буквами латинского алфавита ( А, В, С ), а концы — последними буквами ( X, Y, Z ). Направления ЭДС указывают от конца фазы обмотки генератора к ее началу.
Каждая фаза нагрузки соединяется с фазой генератора двумя проводами: прямым и обратным. Получается несвязанная трехфазная система, в которой имеется шесть соединительных проводов. Чтобы уменьшить количество соединительных проводов, используют трехфазные цепи, соединенные звездой или треугольником.

7.2. Соединение в звезду. Схема, определения

Если концы всех фаз генератора соединить в общий узел, а начала фаз соединить с нагрузкой, образующей трехлучевую звезду сопротивлений, получится трехфазная цепь, соединенная звездой. При этом три обратных провода сливаются в один, называемый нулевым или нейтральным. Трехфазная цепь, соединенная звездой, изображена на рис. 7. 1.

Провода, идущие от источника к нагрузке называют линейными проводами, провод, соединяющий нейтральные точки источника Nи приемника N’ называют нейтральным (нулевым) проводом.
Напряжения между началами фаз или между линейными проводами называют линейными напряжениями. Напряжения между началом и концом фазы или между линейным и нейтральным проводами называются фазными напряжениями.
Токи в фазах приемника или источника называют фазными токами, токи в линейных проводах — линейными токами. Так как линейные провода соединены последовательно с фазами источника и приемника, линейные токи при соединении звездой являются одновременно фазными токами.

ZN — сопротивление нейтрального провода.

Линейные напряжения равны геометрическим разностям соответствующих фазных напряжений

(7.1)

На рис. 7.2 изображена векторная диаграмма фазных и линейных напряжений симметричного источника.

Из векторной диаграммы видно, что

При симметричной системе ЭДС источника линейное напряжение больше фазного
в √3 раз.

7.3. Соединение в треугольник. Схема, определения

Если конец каждой фазы обмотки генератора соединить с началом следующей фазы, образуется соединение в треугольник. К точкам соединений обмоток подключают три линейных провода, ведущие к нагрузке.
На рис. 7.3 изображена трехфазная цепь, соединенная треугольником. Как видно
из рис. 7.3, в трехфазной цепи, соединенной треугольником, фазные и линейные напряжения одинаковы.

Линейные и фазные токи нагрузки связаны между собой первым законом Кирхгофа для узлов а, b, с.

Линейный ток равен геометрической разности соответствующих фазных токов.
На рис. 7.4 изображена векторная диаграмма трехфазной цепи, соединенной треугольником при симметричной нагрузке. Нагрузка является симметричной, если сопротивления фаз одинаковы. Векторы фазных токов совпадают по направлению с векторами соответствующих фазных напряжений, так как нагрузка состоит из активных сопротивлений.

Из векторной диаграммы видно, что

,

Трехфазные цепи, соединенные звездой, получили большее распространение, чем трехфазные цепи, соединенные треугольником. Это объясняется тем, что, во-первых, в цепи, соединенной звездой, можно получить два напряжения: линейное и фазное. Во-вторых, если фазы обмотки электрической машины, соединенной треугольником, находятся в неодинаковых условиях, в обмотке появляются дополнительные токи, нагружающие ее. Такие токи отсутствуют в фазах электрической машины, соединенных по схеме «звезда». Поэтому на практике избегают соединять обмотки трехфазных электрических машин в треугольник.

7.4. Расчет трехфазной цепи, соединенной звездой

Трехфазную цепь, соединенную звездой, удобнее всего рассчитать методом двух узлов.
На рис. 7.5 изображена трехфазная цепь при соединении звездой. В общем случае сопротивления фаз нагрузки неодинаковы (ZA ≠ ZB ≠ ZC )

Нейтральный провод имеет конечное сопротивление ZN .
В схеме между нейтральными точками источника и нагрузки возникает узловое напряжение или напряжение смещения нейтрали.
Это напряжение определяется по формуле (7.2).

(7.2)

Фазные токи определяются по формулам (в соответствии с законом Ома для активной ветви):

(7.3)

Ток в нейтральном проводе

(7.4)

1. Симметричная нагрузка. Сопротивления фаз нагрузки одинаковы и равны некоторому активному сопротивлению ZA = ZB = ZC = R.
Узловое напряжение

,

потому что трехфазная система ЭДС симметрична, .

Напряжения фаз нагрузки и генератора одинаковы:

Фазные токи одинаковы по величине и совпадают по фазе со своими фазными напряжениями. Ток в нейтральном проводе отсутствует

В трехфазной системе, соединенной звездой, при симметричной нагрузке нейтральный провод не нужен.

На рис. 7.6 изображена векторная диаграмма трехфазной цепи для симметричной нагрузки.

2. Нагрузка несимметричная, RA

po_temam / Расчет трехфазных цепей

6. Расчёт трёхфазных цепей.

Многофазной системой электрических цепей называют совокупность электрических цепей, в которых действуют синусоидальные ЭДС одной и той же частоты, сдвинутые друг относительно друга по фазе, создаваемые общими источником энергии (ГОСТ 19880-74).

Многофазной цепью называют многофазную систему электрических цепей в которой отдельные фазы электрически соединены друг с другом (ГОСТ 19880-74). В частности при числе фаз многофазной системы равной 3 будем иметь трехфазную цепь.

Различают симметричную и несимметричную многофазную систему. Симметричной многофазной системой токов называют многофазную систему электрических токов в которой отдельные электрические токи равны по амплитуде и отстают по фазе относительно друг друга на углы равные , гдеm – число фаз. (ГОСТ 19880-74).

Несимметричной многофазной системой электрических токов называют систему не удовлетворяющую любому из вышеуказанных признаков (ГОСТ 19880-74).

6.1. Трехфазная система ЭДС.

Под трёхфазной симметричной системой ЭДС понимают совокупность трех синусоидальных ЭДС одинаковой частоты и амплитуды, сдвинутых по фазе относительно друг друга на 120°.

, ,.

Соответственно, для действующих ЭДС в комплексной форме можно записать

, ,

и изобразить на комплексной плоскости

6.2. Общие положения и допущения при расчете трехфазных цепей.

Трехфазные цепи являются разновидностью цепей синусоидального тока и поэтому их расчет производится теми же методами и приёмами, которые присущи цепям однофазного синусоидального тока. Для анализа трехфазных цепей применим комплексный (символический) метод расчета, могут строиться векторные и топографические диаграммы.

Смотрите так же:  Узо для тэна

Для анализа трехфазных цепей введем два допущения, которые сводятся к тому, что синусоидальное напряжение на зажимах трехфазного генератора симметричны при любой нагрузке:

система ЭДС трехфазного генератора, симметрична;

все источники ЭДС имеют бесконечно большую мощность.

6.3.Расчет соединения звезда-звезда с нулевым проводом.

Предположим сейчас и в дальнейшем, что сопротивление проводов, соединяющих источник с нагрузкой, равно нулю. В этом случае в схеме образуются три обособленных контура. Токи в них

, ,,

где ,и— линейные токи, а,и— фазные токи, токи в нагрузке, соответственно, фазыa, b, c.

Ток в нулевом проводе равен . Напряжение между линейным проводом и нулевым узлом— фазное напряжение:,и. Напряжение между линейными проводами— линейное напряжение: , и .

При соединении звезда-звезда с нулевым проводом, справедливы следующие соотношения для токов: ,и; или для модулей:; для напряжений:,,и,,; или для модулей:.

Симметричная цепь (нагрузка).

Симметричная многофазная (трёхфазная) цепь – это цепь, в которой комплексные сопротивления, составляющих её фаз, одинаковы (ГОСТ 19880-74). На рисунке представлена векторная диаграмма напряжений на источнике и нагрузке. Векторная диаграмма токов построена для симметричной цепи ак-тивного характера. При этом и, следовательно, нулевой провод может быть устранён из цепи без изме-нения режима её работы. Аннало-гичная ситуация наблюдается и для симметрич-ной цепи с ак-тивно-реактивной нагрузкой, когда.

Несимметричная цепь (нагрузка).

Если нагрузка несимметрична, то есть , то появляется ток в нулевом проводе:.

Как это, например, показано на векторной диаграмме, когда сопротивления фаз равны по величине, но имеют различный характер: в фазе — активная нагрузка, в фазе— индуктивная нагрузка, а в фазе— емкостная нагрузка.

Расчет трехфазных цепей соединение звездой

ω = 2πf = 2 ∙ 3,14 ∙ 50 = 314 1/с .

Реактивное индуктивное сопротивление

Реактивное емкостное сопротивление

В общем случае полное сопротивление каждой из фаз в комплексной форме определяют с помощью выражения, которое использовалось в однофазных цепях,

.

Применяем эту формулу для нашего конкретного случая и получаем полные сопротивления фаз в следующем виде:

Комплексные сопротивления фаз различны, следовательно, нагрузка несимметричная.

Токи в линейных проводах (фазные токи нагрузки) определяем с помощью закона Ома:

Ток в нейтральном проводе находим по первому закону Кирхгофа

Полные мощности фаз:

Так как вещественная часть полной мощности есть активная мощность цепи, а мнимая часть – реактивная, то, просуммировав отдельно вещественные, а затем мнимые части мощностей трех фаз, определяем трехфазную активную и реактивную мощности.

Активная трехфазная мощность

Реактивная трехфазная мощность

Полная мощность

Активная трехфазная мощность нагрузки может быть определена суммой активных мощностей потребителей каждой из фаз

Относительная ошибка вычислений для активной мощности

Реактивная трехфазная мощность нагрузки также определяется суммой реактивных мощностей потребителей каждой из фаз

Суммарная реактивная мощность всех потребителей

Относительная ошибка вычислений для активной мощности

Ошибка менее одного процента допускается. Таким образом, баланс активных и реактивных мощностей соблюдается, значит токи определены правильно.

Векторную диаграмму размещаем на комплексной плоскости с осями +1 и + j, рисунок 3.21. Выбираем масштаб векторов тока равным 10 А/деление, а векторов напряжения – 40 В/деление. Строим векторы фазных напряжений, а затем векторы токов. Длина вектора соответствует в масштабе модулю показательной формы соответствующего выражения тока или напряжения, а угол, под которым этот вектор строится к вещественной оси, равен аргументу комплексного значения величины.

Рисунок 10 – Векторная диаграмма при соединении

потребителей звездой с нейтральным проводом

2. Расчёт трёхфазной цепи при соединении потребителей треугольником.

Нарисуем схему трёхфазной цепи, причем элементы из фазы A, B, C соединения потребителей звездой подключим соответственно между точками ab, bc, ca при соединении потребителей треугольником (рисунок 11).

В комплексной форме записи линейные напряжения на нагрузке:

Рисунок 11 – Схема трёхфазной цепи при соединении потребителей

Сопротивления фаз нагрузки в комплексной форме:

Фазные токи определяем по закону Ома:

Для определения линейных токов используем первый закон Кирхгофа для точек a,в,cсхемы (рисунок 11)

А,

А,

А.

Полные комплексные мощности

Трехфазная активная мощность

Вт.

Трехфазная реактивная мощность

Трехфазная полная мощность

Векторную диаграмму токов для нагрузки, соединенной треугольником,строим в масштабе на комплексной плоскости относительно осей +1 и + j (рисунок12).На векторной диаграмме линейные токи получены на основании первого закона Кирхгофа, путем вычитания одного вектора фазного тока из соответствующего другого.

Расчет трехфазных цепей.

Расчет трехфазных цепей

Трехфазные цепи являются разновидностью цепей синусоидального тока, и, следовательно, все рассмотренные ранее методы расчета и анализа в символической форме в полной мере распространяются на них. Анализ трехфазных систем удобно осуществлять с использованием векторных диаграмм, позволяющих достаточно просто определять фазовые сдвиги между переменными. Однако определенная специфика многофазных цепей вносит характерные особенности в их расчет, что, в первую очередь, касается анализа их работы в симметричных режимах.

Расчет симметричных режимов работы трехфазных систем

Многофазный приемник и вообще многофазная цепь называются симметричными, если в них комплексные сопротивления соответствующих фаз одинаковы, т.е. если . В противном случае они являются несимметричными. Равенство модулей указанных сопротивлений не является достаточным условием симметрии цепи. Так, например трехфазный приемник на рис. 1,а является симметричным, а на рис. 1,б – нет даже при условии: .

Если к симметричной трехфазной цепи приложена симметричная трехфазная система напряжений генератора, то в ней будет иметь место симметричная система токов. Такой режим работы трехфазной цепи называется симметричным. В этом режиме токи и напряжения соответствующих фаз равны по модулю и сдвинуты по фазе друг по отношению к другу на угол . Вследствие указанного расчет таких цепей проводится для одной – базовой – фазы, в качестве которой обычно принимают фазу А. При этом соответствующие величины в других фазах получают формальным добавлением к аргументу переменной фазы А фазового сдвига при сохранении неизменным ее модуля.

Так для симметричного режима работы цепи на рис. 2,а при известных линейном напряжении и сопротивлениях фаз можно записать

,

где определяется характером нагрузки .

Тогда на основании вышесказанного

;

.

Комплексы линейных токов можно найти с использованием векторной диаграммы на рис. 2,б, из которой вытекает:

При анализе сложных схем, работающих в симметричном режиме, расчет осуществляется с помощью двух основных приемов:

Все треугольники заменяются эквивалентными звездами. Поскольку треугольники симметричны, то в соответствии с формулами преобразования «треугольник-звезда» .

Так как все исходные и вновь полученные звезды нагрузки симметричны, то потенциалы их нейтральных точек одинаковы. Следовательно, без изменения режима работы цепи их можно (мысленно) соединить нейтральным проводом. После этого из схемы выделяется базовая фаза (обычно фаза А), для которой и осуществляется расчет, по результатам которого определяются соответствующие величины в других фазах.

Смотрите так же:  Найти длину провода не зная диаметр

Пусть, например, при заданном фазном напряжении необходимо определить линейные токи и в схеме на рис. 3, все сопротивления в которой известны.

В соответствии с указанной методикой выделим расчетную фазу А, которая представлена на рис. 4. Здесь , .

Тогда для тока можно записать

,

и соответственно .

Расчет несимметричных режимов работы трехфазных систем

Если хотя бы одно из условий симметрии не выполняется, в трехфазной цепи имеет место несимметричный режим работы. Такие режимы при наличии в цепи только статической нагрузки и пренебрежении падением напряжения в генераторе рассчитываются для всей цепи в целом любым из рассмотренных ранее методов расчета. При этом фазные напряжения генератора заменяются соответствующими источниками ЭДС. Можно отметить, что, поскольку в многофазных цепях, помимо токов, обычно представляют интерес также потенциалы узлов, чаще других для расчета сложных схем применяется метод узловых потенциалов. Для анализа несимметричных режимов работы трехфазных цепей с электрическими машинами в основном применяется метод симметричных составляющих, который будет рассмотрен далее.

При заданных линейных напряжениях наиболее просто рассчитываются трехфазные цепи при соединении в треугольник. Пусть в схеме на рис. 2,а . Тогда при известных комплексах линейных напряжений в соответствии с законом Ома

; ; .

По найденным фазным токам приемника на основании первого закона Кирхгофа определяются линейные токи:

.

Обычно на практике известны не комплексы линейных напряжений, а их модули. В этом случае необходимо предварительное определение начальных фаз этих напряжений, что можно осуществить, например, графически. Для этого, приняв , по заданным модулям напряжений, строим треугольник (см. рис.5), из которого (путем замера) определяем значения углов a и b .

Тогда

Искомые углы a и b могут быть также найдены аналитически на основании теоремы косинусов:

При соединении фаз генератора и нагрузки в звезду и наличии нейтрального провода с нулевым сопротивлением фазные напряжения нагрузки равны соответствующим напряжениям на фазах источника. В этом случае фазные токи легко определяются по закону Ома, т.е. путем деления известных напряжений на фазах потребителя на соответствующие сопротивления. Однако, если сопротивление нейтрального провода велико или он отсутствует, требуется более сложный расчет.

Рассмотрим трехфазную цепь на рис. 6,а. При симметричном питании и несимметричной нагрузке ей в общем случае будет соответствовать векторная диаграмма напряжений (см. рис. 6,б), на которой нейтральные точки источника и приемника занимают разные положения, т.е. .

Разность потенциалов нейтральных точек генератора и нагрузки называется напряжением смещения нейтральной точки (обычно принимается, что ) или просто напряжением смещения нейтрали. Чем оно больше, тем сильнее несимметрия фазных напряжений на нагрузке, что наглядно иллюстрирует векторная диаграмма на рис. 6,б.

Для расчета токов в цепи на рис. 6,а необходимо знать напряжение смещения нейтрали. Если оно известно, то напряжения на фазах нагрузки равны:

.

Тогда для искомых токов можно записать:

.

Соотношение для напряжения смещения нейтрали, записанное на основании метода узловых потенциалов, имеет вид

При наличии нейтрального провода с нулевым сопротивлением , и из (1) . В случае отсутствия нейтрального провода . При симметричной нагрузке с учетом того, что , из (1) вытекает .

В качестве примера анализа несимметричного режима работы цепи с использованием соотношения (1) определим, какая из ламп в схеме на рис. 7 с прямым чередованием фаз источника будет гореть ярче, если .

Запишем выражения комплексных сопротивлений фаз нагрузки:

Тогда для напряжения смещения нейтрали будем иметь

Напряжения на фазах нагрузки (здесь и далее индекс N у фазных напряжений источника опускается)

Таким образом, наиболее ярко будет гореть лампочка в фазе С.

В заключение отметим, что если при соединении в звезду задаются линейные напряжения (что обычно имеет место на практике), то с учетом того, что сумма последних равна нулю, их можно однозначно задать с помощью двух источников ЭДС, например, и . Тогда, поскольку при этом , соотношение (1) трансформируется в формулу

Литература

  1. Основы теории цепей: Учеб. для вузов /Г.В.Зевеке, П.А.Ионкин, А.В.Нетушил, С.В.Страхов. –5-е изд., перераб. –М.: Энергоатомиздат, 1989. -528с.
  2. Бессонов Л.А. Теоретические основы электротехники: Электрические цепи. Учеб. для студентов электротехнических, энергетических и приборостроительных специальностей вузов. –7-е изд., перераб. и доп. –М.: Высш. шк., 1978. –528с.

Контрольные вопросы и задачи

  1. Какой многофазный приемник является симметричным?
  2. Какой режим работы трехфазной цепи называется симметричным?
  3. В чем заключается специфика расчета симметричных режимов работы трехфазных цепей?
  4. С помощью каких приемов трехфазная симметричная схема сводится к расчетной однофазной?
  5. Что такое напряжение смещения нейтрали, как оно определяется?
  6. Как можно определить комплексы линейных напряжений, если заданы их модули?
  7. Что обеспечивает нейтральный провод с нулевым сопротивлением?
  8. В цепи на рис. 6,а ; ; ; . Линейное напряжение равно 380 В.

Определить ток в нейтральном проводе.

Ответ: .

В схеме предыдущей задачи ; . Остальные параметры те же.

Определить ток в нейтральном проводе.

Ответ: .

В задаче 8 нейтральный провод оборван.

Определить фазные напряжения на нагрузке.

Ответ: ; ; .

В задаче 9 нейтральный провод оборван.

Определить фазные напряжения на нагрузке.

Ответ: ; ; .

Похожие статьи:

  • Однофазный двигатель переменного тока с конденсатором Конденсаторный двигатель В ГОСТ 27471-87 [1] дано следующее определение:Конденсаторный двигатель - двигатель с расщепленной фазой, у которого в цепь вспомогательной обмотки постоянно включен конденсатор. Конденсаторный двигатель, хотя и […]
  • Фотосинтез где происходит световая фаза Световая фаза фотосинтеза Фотосинтез – это сложный процесс, происходящий на свету в хлоропластах растительной клетки. В процессе фотосинтеза различают два цикла реакций – две его фазы, последовательно и непрерывно идущие друг за другом, – […]
  • Соединение фаз обмотки звездой Соединение обмоток генератора и потребителей электрической энергии звездой Для уменьшения количества проводов между генератором и потребителем фазные обмотки должны быть соединены между собой определённым образом, как в генераторе, так и […]
  • Чему равна сила натяжения провода трение в осях блоков мало Что такое блок? Блок представляет собой колесо с желобом по окружности, вращающееся вокруг своей оси. Через колесо обычно перекинута веревка. Ось блока бывает "намертво" прикреплена к неподвижному предмету (например, потолку). Тогда это […]
  • Преобразователь из 220 в 120 вольт Преобразователь из 220 в 120 вольт +380442339466 +380632339466 +380958920021 +380979796526 Вас может заинтересовать! Преобразователи 220-110 Вольт от производителя Понижающие автотрансформаторы предназначены для питания переменным […]
  • Подключение трансформатора звезда-треугольник Трехфазные трансформаторы Трехфазные трансформаторы применяются для питания от 3х-фазной сети. Обмотки трехфазных трансформаторов соединяются звездой или треугольником. Они позволяют обеспечить питание достаточно мощной нагрузки. Обычно […]