Расчёт ёмкости провода

Оглавление:

Расчёт ёмкости провода

В связи измерение ёмкости относится к измерениям постоянным током. У меня всегда это обстоятельство вызывало улыбку. Всё-таки радиотехническое образование мешает понять, как связисты заставили течь постоянный ток через конденсатор, который такой ток пропускать не должен вовсе. В некоторых книгах описан баллистический метод. По сути это тот же метод, что используется для проверки конденсаторов обычным тестером. По скачку стрелки в момент переключения конденсатора судят о его ёмкости.

На практике все приборы, специально предназначенные для измерения ёмкости, используют генераторы переменного тока. В старых ПКП использовалось специальное реле, которое при включении издавало характерный писк. Сейчас приборы уже не «писчат», вместо реле используются полупроводниковые схемы. Но ток на выходе прибора всё-таки переменный.

Чтобы лучше понять суть измерений полезно вспомнить о физике и конденсаторе.

Чем больше площадь пластин S тем больше ёмкость. И наоборот, чем больше расстояние между пластинами, тем ёмкость меньше. Имеет значение так же то, что находится между пластинами и температура этого диэлектрика, но сползать дальше в физику не буду (читайте классиков).

В кабеле такими пластинами являются жилы кабеля. Чем они длиннее, тем больше площадь S и, соответственно ёмкость. И наоборот, чем больше расстояние между пластинами d, тем ёмкость меньше.

Если мерить этот параметр между жилами многопарного кабеля максимальные значения будут между жилами правильно скрученных пар, ведь они всю длину идут вместе. Эту особенность можно использовать для поиска «разнопарки» или разбитости пар. (Измерения переменным током)

Официально учитывается рабочая ёмкость и ёмкость к земле. Причём нормируется только рабочая ёмкость (измеряется между жилами пары). Для протокола заносится ещё и ёмкость к земле т.е. ёмкость между жилой и экраном. Норм на второй параметр не встречал, но как правило она на 40-50% больше рабочей. (Экран кабеля при этом измерении должен быть заземлён)

Поиск обрывов жил кабеля

Поиск повреждений. С помощью измерения ёмкости довольно неплохо ищутся обрывы. Действительно, если целая пара 78 нФ, а обрывная 16 нФ можно просто разделить второе на первое получим 0,205 или 20,5% от длины целой пары.

В новых приборах есть функции расчёта длины по типу кабеля и мостовая схема сравнения. Так что ответ они выдают сразу в метрах. Казалось бы, только отмеряй, но. Погрешность измерения по ёмкости намного больше измерений по шлейфу и всё это работает при хорошей изоляции измеряемого кабеля.

Меня жизнь научила подходить к этому методу очень осторожно. В поисках обрывов лучше использовать импульсный метод т.е. рефлектометр.

Тем, у кого только ПКП могут посетить эту страницу с методикой работы с ПКП-5

Поиск разбитости пар (разнопарки)

Разбитость, разнопарка, место перепутывания жил. Поиск места разбитости пар измерением ёмкости.

Разбивка пар, разнопарка, битость пар, прослушка. Пониженное переходное затухание. Это ещё один тип повреждений, который можно искать измерением ёмкости. Для поиска места, где спайщики «начудили» с муфтой, а именно оттуда берётся это повреждение, придётся ввести ещё один параметр: ёмкость искусственно разбитой пары. Мерится она так же, как и рабочая ёмкость только жилы берутся от разных пар.

Рабочая ёмкость правильно скрученной пары всегда больше ёмкости искусственно разбитой. Неудивительно, ведь жилы в паре идут всю длину вплотную друг к другу, величина d из рисунка минимальна, значит, ёмкость максимальна.

1. Мерим рабочую ёмкость хорошей пары этого кабеля. Предположим 81 нФ. Обозначу Снорм.

2. Мерим ёмкость искусственно битой, пары. Причём лучше не одной, а нескольких с усреднением. Предположим получилось 62 нФ. Обозначим Сбит.

3. Мерим рабочую ёмкость повреждённой пары. Пускай она будет 70 нФ (у разбитой пары она всегда меньше). И назовётся Сповр.

4. Далее формула:

Этот же метод заложен в некоторых ИРК-ПРО. Довольно большая погрешность и хорош если точно известны все муфты. Часть инструкции к ИРК-ПРО Альфа от «Связьприбор»

РАЗБИТОСТЬ ПАР

Расстояние до разбитости пары (перепутывания жил) проводится стандартным методом сравнения емкостей.
Только для кабеля без вставок!

Лично я всё же предпочитаю рефлектометр, получается точнее.

P.S. Тем, кому приходится заниматься приёмкой линий связи в эксплуатацию я бы рекомендовал не забывать про ёмкость. Знаю электромехаников, которые предпочитают измерить в кабале 100% пар на ёмкость, вместо 100% изоляции. Считаю это вполне оправданным. При измерении ёмкости сразу выплывают и сообщения, и «разбитости», и короткие. А изоляции экрана вполне достаточно, чтобы убедиться, что кабель целый.

Тема разбитости пар (разнопарки, битости, прослушки), расстояний до неё, измерений переходных затуханий и теории защищённости пар от шумов и наводок:

ЭЛЕКТРИЧЕСКАЯ ЕМКОСТЬ

Емкость одножильного и отдельных экранированных жил много­жильного кабеля, включая радиочастотные кабели (рис. 2-6),

Емкость кабелей измеряют и нормируют в микрофарадах

(10–6 ф), нанофарадах (10–9 ф) и пикофарадах (10–12 ф) на 1 км или 1 м.

Емкость радиочастотных коаксиальных кабелей с многопрово­лочным внутренним проводником

где k3=0,98/0,99—коэффициент, учитывающий форму внешнего про­водника и представляющий собой отношение емкости кабеля с внеш­ним (Проводником в форме оплетки к емкости кабеля с.внешним про­водником в форме сплошной трубы; dэ — эквивалентный диаметр, мм. Емкость одной жилы двухжильного кабеля в общей металличе­ской оболочке и одной жилы симметричного экранированного радиочастотного кабеля (обе жилы имеют равные по величине, но противоположные по знаку потенциалы)

Если же оба провода находятся под одним и тем же потенциалом

Емкость двухжильного кабеля в общих металлической оболочке или экране может быть определена из частичных емкостей (рис. 1-14) по формуле:

где С1 — емкость между жилами А и В, соединенными с оболочкой или экраном; С12 — емкость жил А и В, соединенных вместе против оболочки и экрана; l — длина кабеля, м.

Емкость неэкранированного двухжильного (симметричного) ка­беля

Рабочая емкость жилы трехжильного кабеля (рис. 2-6):

Емкость трехжильных кабелей с секторными жилами может быть приближенно определена по этим же формулам с заменой сек­торных жил круглыми, но с сечением, увеличенным на 50% при той же толщине изоляции.

Емкость трехжильного кабеля с поясной изоляцией в общей ме­таллической оболочке или в экране выражается через частичные емкости между жилами и каждой жилы относительно оболочки кабеля (рис. 2-6). Вследствие симметрии жил С10=С20=С30 и С12 = C23 = C13. Емкость каждой жилы относительно двух других жил, соединенных с оболочкой (или экраном):

Емкость двух жил, соединенных вместе, относительно третьей жилы, соединенной с оболочкой (или экраном):

Емкость всех трех соединенных вместе жил относительно обо­лочки (или экрана):

Рабочая емкость трехжильного кабеля при трехфазном токе

Частичные емкости: между двумя жилами

между жилой и оболочкой (или экраном)

Емкостное реактивное сопротивление кабеля

где С — емкость кабеля, ф/км.

Емкость групп кабелей связи в общем виде с учетом системы скрутки и величины укрутки жил:

ψ — поправочный коэффициент, характеризующий удаление жил от заземленной оболочки или экрана (табл. 2-4), при большом удалении, ψ =1. Численные значения поправочного коэффициента ψ в зависимости от отношения диаметров жилы по изоляции (d1) к диаметру жилы (d) приведены в табл. 2–5.

Значения α и ψ для расчета рабочей емкости кабелей связи

Численные значения коэффициента ψ для парной, четверочной и двойной парной скруток

Эквивалентное значение диэлектрической проницаемости слож­ной (комбинированной) изоляции определяют по соотношениям объемов составных ее частей. При непрерывной и одинаковой по длине изоляции соотношение объемов можно заменить соотноше­нием площадей поперечного сечения. Для комбинированной двух­слойной изоляции

Для изоляции комбинированной в радиальном направлении

Расчет емкости опоры линии электропередачи с учетом подходящих проводов Текст научной статьи по специальности «Общие и комплексные проблемы естественных и точных наук»

Похожие темы научных работ по общим и комплексным проблемам естественных и точных наук , автор научной работы — Герасимова Т.Н., Петропавловская И.Г.,

Текст научной работы на тему «Расчет емкости опоры линии электропередачи с учетом подходящих проводов»

Считаем, что пиксели, принадлежащие ячейкам сетки, имеют одно значение цвета, принадлежащие разделительным линиям — другое. Глубина цвета изображения — 1 бит на точку.

Для начала необходимо определить для каждой ячейки сетки, какие пиксели в нее входят. Для этого организуем последовательное сканирование строк изображения. Записываем начальные и конечные пиксели в строке, принадлежащие определенной ячейке, в строку массива результатов; номер строки выходного массива берем равным номеру ячейки. Таким образом, получаем массив, в каждой строке которого содержатся «отрезки», принадлежащие одной ячейке. Попутно очень просто можно организовать подсчет площадей ячеек при помощи простого суммирования «отрезков».

Далее необходимо определить соседние ячейки. Можно предложить множество процедур, различающихся как по сложности реализации, так и по достоверности определения соседства, вплоть до нейросетевых. В данном случае в целях простоты в качестве критерия использовалось расстояние от одной ячейки до другой. При расстоянии ниже заданного порога (подбирается в каждом случае опытным путем) ячейки считаются соседними. Очевидно, минимальным будет расстояние между пикселями, принадлежащими границам ячеек. Поэтому в отдельной процедуре реализовано вычисление координат пикселей, принадлежащих границам ячеек. Границами являются крайние элементы всех «отрезков» ячейки плюс разница «отрезков» в любых двух соседних строках изображения, соответствующих ячейке. В результате получаем массив, в каждой строке которого находятся координаты (х,у) всех точек границы одной ячейки.

Смотрите так же:  Электропроводка на иж планета 5

Для определения соседства ячеек организуется цикл, в котором перебираются последовательно все пиксели границ ячеек. Для уменьшения времени перебора можно наложить ограничение сверху на расстояние, при превышении которого перебор прекращается, а ячейки считаются удаленными. Для этого необходимо знать максимальный диаметр ячейки в данном изображении. Кроме того, для корректного построения ДГК необходимо определить не только соседство, но и соблюсти порядок, в котором следуют «соседи». С этой целью перебор пикселей границы происходит в определенном направлении (по или против часовой стрелки; для всех ячеек одинаково). Получаем матрицу, в которой отмечены все «соседи» всех ячеек. Очевидно, такая матрица имеет симметричную структуру, поэтому вычисляется только половина значений. Отметим, что из-за большого числа вычислений время расчета такой матрицы является весьма значительным.

Теперь, имея для изображения матрицу смежностей (соседств, инциденций) фрагментов, можно получить ДГК, начинающийся в любой ячейке. Для этого необходимо организовать иерархию уровней, определить номера ячеек в новой системе отсчета и записать полученный ДГК в новую матрицу. Если на изображении необходимо реализовать большое число экспериментов, то будет удобнее рассчитать один раз структуру глобальной матрицы смежностей (МС) и применять ее многократно. В том случае, когда проводится единичный расчет, проще рассчитать один ДГК.

В заключение можно отметить, что качество обработки напрямую зависит от качества изображения, а также свойств самого объекта, с которого получено изображение. Например, может возникнуть такая ситуация, что ширина границы между ячейками окажется шире, чем ячейка. В этом случае при использовании критерия расстояния в зависимости от выбранного порога может возникнуть либо неправильное определение соседней ячейки, либо ее пропуск. Указанные погрешности в рассматриваемом случае можно уменьшить до приемлемой величины, подбирая пороговое расстояние.

1. Юдин В.В., Любченко Е.А., Писаренко Т.А. Информодинамика сетевых структур. Вероятность. Древесные графы. Фракталы. Владивосток.: ДВГУ, 2003. — 244с.

Г.Н. Герасимова, И.Г. Петропавловская

РАСЧЕТ ЕМКОСТИ ОПОРЫ ЛИНИИ ЭЛЕКТРОПЕРЕДАЧИ С УЧЕТОМ ПОДХОДЯЩИХ ПРОВОДОВ

При решении задач диагностирования параметров ЛЭП в условии гололеда для построения адекватной модели требуется учет не только распределенных параметров, но и сосредоточенных параметров, таких, например, как емкость опоры.

Для упрощения алгоритма расчета емкости опоры, с учетом подходящих к ней проводов, заданная система объектов рассматривается, как система трубчатых проводников конечных размеров

Рис. 1. Зеркальное изображение опоры и проводов

цилиндрической формы с известными радиусами. Провода линии — цилиндры конечного радиуса Кпр, находящиеся под заданными напряжениями, опора — цилиндр, радиуса К0 и высотой Н, расположенный перпендикулярно плоскости земли потенциал которого равен нулю. Каждый отдельный проводник разобьем по периметру на конечное число участков, в пределах каждого из которых распределение зарядов по длине принимается равномерным. Пусть р — количество участков, на которые разбиты проводники, с1 — количество участков опоры. Общее количество элементарных участков равно т=2р+с1.

Для учета влияния земли на распределение параметров, воспользуемся методом зеркальных изображений. Таким образом, поставленная задача формулируется как задача определения частичных емкостей между к-тыми участками опоры и ¡-ми участками скрещивающихся проводников.

Уравнения в матричной форме, связывающие потенциалы проводников и заряды в системе тел, имеют вид:

Определение частичных емкостей проводников проведем в соответствии с /1/. Если разбиение объектов произведено на достаточно большое количество участков, линейные размеры которых существенно превышают расстояния между ними, можно предположить, что заряд каждого участка является сферическим, имеющим диаметр равным диаметру соответствующего цилиндрического объекта. Положение центра сферического заряда отнесем к концу каждого элементарного отрезка.

В этом случае для определения взаимных потенциальных коэффициентов возможно использование простейших соотношений, полученных для точечных зарядов, собственные потенциальные коэффициенты возможно определить по формулам, полученным для прямолинейных отрезков трубчатых проводников соответствующего диаметра. В таком случае взаимный потенциальный коэффициент а Ьп между точкой наблюдения В и элементарным п-ным участком можно определить по формулам:

— расстояние между точкой наблюдения В и элементарным п-ным участком;

— расстояние между точкой наблюдения В и зеркальным изображением элементарного

Собственный потенциальный коэффициент И ьь вычисляется по формуле:

гДе гъъ — радиус условного точечного заряда, равный радиусу соответствующего цилиндрического объекта;

— расстояние между точкой наблюдения В и ее зеркальным изображением .

При расчете потенциальных коэффициентов матрицы а, точка наблюдения В должна пройти через все элементарные участки, на которые разбиты опора и провода.

Для расчета частичных емкостей опоры вычисляем матрицу коэффициентов электростатической индукции р по формуле:

При выборе количества участков 0 . При этом с1

Свидетельство о регистрации СМИ Эл № ФС77-52970

Расчёт ёмкости провода

Ещё не начав читать статью, попробуйте подумать над вопросом: побежит ли ток, если подключить к батарейке очень длинный провод(более чем 300 тысяч километров, сверхпроводник), если противоположные концы провода никуда не подключены? Сколько Ампер?

Прочитав эту статью, вы поймёте в чём смысл волнового сопротивления. Из лекций по теории волн я вынес только то, что волновое сопротивление — это сопротивление волнам. Большая часть студентов, кажется, поняла ровно то же самое. То есть ничего.

Эта статья — весьма вольный перевод этой книги: Lessons In Electric Circuits
Статьи по теме: На Хабре: Контакт есть, сигнала нет
Трэш в Википедии: Длинная линия

50-омный кабель?

В начале моего увлечения электроникой я часто слышал про волновое сопротивление коаксиального кабеля 50Ω. Коаксиальный кабель – это два провода. Центральный провод, изолятор, оплётка, изолятор. Оплётка полностью закрывает центральный проводник. Такой провод используется для передачи слабых сигналов, а оплётка защищает сигнал от помех.

Я был озадачен этой надписью – 50 Ω. Как могут два изолированных проводника иметь сопротивление друг с другом 50 Ω? Я измерил сопротивление между проводами и увидел, как и ожидалось, обрыв. Сопротивление кабеля с одной стороны до другой — ноль. Как бы я не подключал омметр, я так и не смог получить сопротивление 50 Ом.

То, что я не понимал в то время – так это как кабель реагирует на импульсы. Конечно, омметр работает с постоянным током, и показывает, что проводники не соединены друг с другом. Тем не менее, кабель, из-за влияния ёмкости и индуктивности, распределённой по всей длине, работает как резистор. И так же, как и в обычном резисторе, ток пропорционален напряжению. То, что мы видим как пара проводников – важный элемент цепи в присутствии высокочастотных сигналов.

В этот статье вы узнаете что такое линия связи. Многие эффекты линий связи не проявляются при работе с постоянным током или на сетевой частоте 50 Гц. Тем не менее, в высокочастотных схемах эти эффекты весьма значительны. Практическое применение линий передач – в радиосвязи, в компьютерных сетях, и в низкочастотных схемах для защиты от перепадов напряжения или ударов молний.

Провода и скорость света

Рассмотрим следующую схему. Цепь замкнута – лампа зажигается. Цепь разомкнута – лампа гаснет. На самом деле лампа зажигается не мгновенно. Ей как минимум надо раскалиться. Но я хочу заострить внимание не на этом. Хотя электроны двигаются очень медленно, они взаимодействуют друг с другом гораздо быстрее – со скоростью света.

Что произойдёт, если длина проводов будет 300 тысяч км? Так как электроэнергия передаётся с конечной скоростью, очень длинные провода внесут задержку.

Пренебрегая временем на разогрев лампы, и сопротивлением проводов, лампа зажжётся примерно через 1 секунду после включения выключателя. Несмотря на то, что строительство сверхпроводящих ЛЭП такой длины создаст огромные практические проблемы, теоретически это возможно, поэтому наш мысленный эксперимент реален. Когда переключатель выключается, лампа будет продолжать получать питание ещё 1 секунду.
Один из способов представить движение электронов в проводнике – это вагоны поезда. Сами вагоны движутся медленно, только начинают движение, и волна сцеплений передаётся гораздо быстрее.

Другая аналогия, возможно более подходящая – волны в воде. Объект начинает движение горизонтально вдоль поверхности. Создастся волна из-за взаимодействия молекул воды. Волна будет перемещаться гораздо быстрее, чем двигаются молекулы воды.

Электроны взаимодействуют со скоростью света, но движутся гораздо медленнее, подобно молекуле воды на рисунке выше. При очень длинной цепи становится заметна задержка между нажатием на выключатель и включением лампы.

Волновое сопротивление

Предположим, у нас есть два параллельных провода бесконечной длины, без лампочки в конце. Потечёт ли ток при замыкании выключателя?

Несмотря на то, что наш провод — сверхпроводник, мы не можем пренебречь ёмкостью между проводами:

Подключим питание к проводу. Ток заряда конденсатора определяется формулой: I = C(de/dt). Соответственно, мгновенный рост напряжения должен породить бесконечный ток.
Однако ток не может быть бесконечным, так как вдоль проводов есть индуктивность, ограничивающая рост тока. Падение напряжения в индуктивности подчиняется формуле: E = L(dI/dt). Это падение напряжения ограничивает максимальную величину тока.

Смотрите так же:  Электропроводка alpha



Поскольку электроны взаимодействуют со скоростью света, волна будет распространяться с той же скоростью. Таким образом, нарастание тока в индуктивностях, и процесс зарядки конденсаторов будет выглядеть следующим образом:




В результате этих взаимодействий, ток через батарею будет ограничен. Так как провода бесконечны, распределённая емкость никогда не зарядится, а индуктивность не даст бесконечно нарастать току. Другими словами, провода будут вести себя как постоянная нагрузка.
Линия передачи ведёт себя как постоянная нагрузка так же, как и резистор. Для источника питания нет никакой разницы, куда бежит ток: в резистор, или в линию передачи. Импеданс (сопротивление) это линии называют волновым сопротивлением, и оно определяется лишь геометрией проводников. Для параллельных проводов с воздушной изоляцией волновое сопротивление рассчитывается так:

Для коаксиального провода формула расчёта волнового сопротивления выглядит несколько иначе:

Если изоляционный материал – не вакуум, скорость распространения будет меньше скорости света. Отношение реальной скорости к скорости света называется коэффициентом укорочения.
Коэффициент укорочения зависит только от свойств изолятора, и рассчитывается по следующей формуле:


Волновое сопротивление известно также как характеристическое сопротивление.
Из формулы видно, что волновое сопротивление увеличивается по мере увеличения расстояния между проводниками. Если проводники отдалить друг от друга, становится меньше их ёмкость, и увеличивается распределённая индуктивность (меньше эффект нейтрализации двух противоположных токов). Меньше ёмкость, больше индуктивность => меньше ток => больше сопротивление. И наоборот, сближение проводов приводит к большей ёмкости, меньшей индуктивности => больше ток => меньше волновое сопротивление.
Исключая эффекты утечки тока через диэлектрик, волновое сопротивление подчиняется следующей формуле:

Линии передачи конечной длины

Линии бесконечной длины – интересная абстракция, но они невозможны. Все линии имеют конечную длину. Если бы тот кусок 50 Ом кабеля RG-58/U, который я измерял с помощью омметра несколько лет назад, был бесконечной длины, я бы зафиксировал сопротивление 50 Ом между внутренним и внешним проводом. Но эта линия не была бесконечной, и она измерялась как открытая, с бесконечным сопротивлением.

Тем не менее, волновое сопротивление важно также и при работе с проводом ограниченной длины. Если к линии приложить переходное напряжение, потечёт ток, который равен отношению напряжения к волновому сопротивлению. Это всего лишь закон Ома. Но он будет действовать не бесконечно, а ограниченное время.

Если в конце линии будет обрыв, то в этой точке ток будет остановлен. И это резкое прекращение тока повлияет на всю линию. Представьте себе поезд, идущий вниз по рельсам, имеющий слабину в муфтах. Если он врежется в стенку, он остановится он не весь сразу: сначала первый, потом второй вагон, и т.д.

Сигнал, распространяющийся от источника, называют падающей волной. Распространение сигнала от нагрузки обратно к источнику называют отражённой волной.

Как только нагромождение электронов в конце линии распространяется обратно к батарее, ток в линии прекращается, и она ведёт себя как обычная открытая схема. Всё это происходит очень быстро для линий разумной длины так, что омметр не успевает померить сопротивление. Не успевает поймать тот промежуток времени, когда схема ведёт себя как резистор. Для километрового кабеля с коэффициентом укорочения 0,66 сигнал распространяется всего 5.05мкс. Отражённая волна идёт обратно к источнику ещё столько же, то есть в сумме 10,1 мкс.

Высокоскоростные приборы способны измерить это время между посылкой сигнала и приходом отражения для определения длины кабеля. Этот метод может быть применён также для определения обрыва одного или обоих проводов кабеля. Такие приборы называются рефлектометры для кабельных линий. Основной принцип тот же, что и у ультразвуковых гидролокаторов: генерация импульса и замер времени до эха.

Аналогичное явление происходит и в случае короткого замыкания: когда волна достигает конца линии, она отражается обратно, так как напряжение не может существовать между двумя соединёнными проводами. Когда отражённая волна достигает источника, источник видит, что произошло короткое замыкание. Всё это происходит за время распространения сигнала туда + время обратно.

Простой эксперимент иллюстрирует явление отражения волн. Возьмите верёвку, как показано на рисунке, и дёрните её. Начнёт распространяться волна, пока она полностью не погасится за счёт трения.

Это похоже на длинную линию с потерями. Уровень сигнала будет падать по мере продвижения по линии. Однако, если второй конец закрепить на твёрдую стенку, возникнет отражённая волна:

Как правило, назначением линии передачи является передача электрического сигнала от одной точки к другой.

Отражения могут быть исключены, если терминатор на линии в точности равен волновому сопротивлению. Например, разомкнутая или короткозамкнутая линия будет отражать весь сигнал обратно к источнику. Но если на конце линии включить резистор 50 Ом, то вся энергия будет поглощена на резисторе.

Это всё имеет смысл, если мы вернёмся к нашей гипотетической бесконечной линии. Она ведёт себя как постоянный резистор. Если мы ограничим длину провода, то он будет себя вести как резистор лишь некоторое время, а потом – как короткое замыкание, или открытая цепь. Однако, если мы поставим резистор 50 Ом на конец линии, она вновь будет себя вести как бесконечная линия.



В сущности, резистор на конце линии, равный волновому сопротивлению, делает линию бесконечной с точки зрения источника, потому что резистор может вечно рассеивать энергию так же, как и бесконечные линии могут поглощать энергию.

Отражённая волна, вернувшись обратно к источнику, может вновь отразиться, если волновое сопротивление источника не равно в точности волновому сопротивлению. Этот тип отражений особенно опасен, он делает вид, что источник передал импульс.

Короткие и длинные линии передачи

В цепях постоянного тока волновое сопротивление, как правило, игнорируется. Даже коаксиальный кабель в таких цепях применяется лишь для защиты от помех. Это связано с короткими промежутками времени распространения по сравнению с периодом сигнала. Как мы узнали в предыдущей главе, линия передачи ведёт себя как резистор до тех пор, пока отражённая волна на вернётся обратно к источнику. По истечении этого времени (10,1 мкс для километрового кабеля), источник видит полное сопротивление цепи.

В случае, если цепь передаётся низкочастотный сигнал, источник на какое-то время видит волновое сопротвление, а потом – полное сопротивление линии. Мы знаем, что величина сигнала не равна по всей длине линии из-за распространения со скоростью света(почти). Но фаза низкочастотного сигнала изменяется незначительно за время распространения сигнала. Так, мы можем считать, что напряжение и фаза сигнала во всех точках линии равна.

В этом случае мы можем считать что линия является короткой, потому что время распространения гораздо меньше периода сигнала. В противовес, длинная линия это такая, где за время распространения форма сигнала успевает измениться на большую часть фазы, либо даже передать несколько периодов сигнала. Длинными линиями считаются такие, когда фаза сигнала меняется более чем на 90 градусов за время распространения. До этого в данной книге мы рассматривали лишь короткие линии.

Чтобы определить тип линии(длинная, короткая), мы должны сравнить её длину и частоту сигнала. Например, период сигнала с частотой 60Гц равен 16,66мс. При распространении со скоростью света(300 тысяч км/с) сигнал пройдёт 5000км. Если коэффициент укорочения будет меньше 1, то и скорость будет меньше 300 тысяч км/с, и расстояние меньше во столько же раз. Но даже если использовать коэффициент укорочения коаксиального кабеля(0,66), расстояние всё равно будет велико — 3300км! Независимо от длины кабеля это называется длиной волны.

Простая формула позволяет вычислить длину волны:


Длинная линия – такая, где хотя бы умещается ¼ длины волны в длину. И теперь вы можете понять, почему все линии прежде относятся к коротким. Для систем питания переменного тока 60Гц длина кабеля должна превышать 825 км, чтобы эффекты распространения сигнала стали значительными. Кабели от аудио усилителя к колонкам должны быть более 7,5 км в длину, чтобы существенно повлиять на 10кГц звуковой сигнал!

Когда имеешь дело с радиочастотными системами, задача с длиной линии передачи является далеко не такой тривиальной. Рассмотрим 100МГц радиосигнал: его длина волны 3 метра даже на скорости света. Линия передачи должна быть более 75 см в длину, чтобы считаться длинной. С коэффициентом укорочения 0,66 эта критическая длина составит всего 50 см.

Когда электрический источник подключен к нагрузке через короткую линию передачи, доминирует импеданс нагрузки. То есть, когда линия короткая, волновое сопротивление не влияет на поведение схемы. Мы можем это увидеть при тестировании коаксиального кабеля омметром: мы видит разрыв. Хотя линия ведёт себя как резистор 50Ом (RG/58U кабель) на короткое время, после этого времени мы увидим обрыв. Так как время реакции омметра значительно больше времени распространения сигнала, мы видим обрыв. Эта очень большая скорость распространения сигнала не позволяет нам обнаружить 50Ом переходное сопротивление омметром.

Если мы будем использовать коаксиальный кабель для передачи постоянного тока, кабель будет считаться коротким, и его волновое сопротивление не будет влиять на работу схемы. Обратите внимание, что короткой линией будет называться любая линия, где изменение сигнала происходит медленнее, чем сигнал распространяется по линии. Почти любая физическая длина кабеля может являться короткой с точки зрения волнового сопротивления и отражённых волн. Используя же кабель для передачи высокочастотного сигнала, можно по разному оценивать длину линии.

Смотрите так же:  Преобразователь с 36 вольт на 220 вольт

Если источник подключен к нагрузке через длинные линии передачи, собственное волновое сопротивление доминирует над сопротивлением нагрузки. Иными словами, электрически длинная линия выступает в качестве основного компонента в цепи, и её свойства доминируют над свойствами нагрузки. С источник, подключенным к одному концу кабеля и передаёт ток на нагрузку, но ток в первую очередь идёт не в нагрузку, а в линию. Это становиться всё более верным, чем длиннее у нас линия. Рассмотрим наш гипотетический 50Ом бесконечный кабель. Независимо от того, какую нагрузку мы подключаем на другой конец, источник будет видеть лишь 50Ом. В этом случае сопротивление линии является определяющим, а сопротивление нагрузки не будет иметь значения.

Наиболее эффективный способ свести к минимуму влияние длины линии передачи – нагрузить линию сопротивлением. Если сопротивление нагрузки равно волновому сопротивлению, то любой источник будет видеть то же самое сопротивление, независимо от длины линии. Таким образом, длина линии будет влиять только на задержку сигнала. Тем не менее, полное совпадение сопротивления нагрузки и волнового сопротивления не всегда возможно.

В следующем разделе рассматриваются линии передачи, особенно когда длина линии равна дробной части волны.

Надеюсь, вы прояснили для себя основные физические принципы работы кабелей
К сожалению, следующая глава очень большая. Книга читается на одном дыхании, и в какой-то момент надо остановиться. Для первого поста, думаю, этого хватит. Спасибо за внимание.

1. Электроемкость проводника.

Емкость определяется геометрическими размерами проводника, его формой и электрическими свойствами окружающей среды. Она не зависит от материала, от агрегатного состояния, от полостей внутри проводника (так как все избыточные заряды снаружи). Наличие вблизи проводника других тел изменяет его емкость, так как потенциал проводника зависит от расположения всех зарядов в пространстве.

2. Единица электроемкости.

Единицей электроемкости является 1 Фарад (Ф).

3. Koнденсатор [1] .

Как правило, конденсатор состоит из двух проводящих тел (обкладок), разделенных диэлектриком. Причем его устройство обычно таково, что электрическое поле почти полностью сосредоточено между обкладками. Собственные емкости обкладок малы по сравнению с емкостью конденсатора, которая по определению равна

, (15.3)

где Q— положительный заряд одной из обкладок (на другой обкладке заряд отрицательный), а Dj — разность (или изменение) потенциалов между обкладками.

Если между обкладками не вакуум, а диэлектрик с проницаемостью e , то понятно, что напряженность поля в e раз меньше, разность потенциалов во столько же раз меньше, а емкость, соответственно, больше.

где С -емкость вакуумного конденсатора.

4. Плоский конденсатор.

Он представляет собой две бесконечные параллельные пластины площадью S, находящиеся на расстоянии d друг от друга (рис.15.1). Разность потенциалов в этом случае была определена ранее (7.14). Заряд на пластине Q= s S. Тогда емкость

, (15.6)

5. Сферический конденсатор.

Он представляет собой две проводящие концентрические сферы с радиусами R1 ,

.

, (15.9)

Если внешнюю сферу удалить на бесконечность (R2 ®¥ ), то емкость уединенной сферы

Отсюда понятно, почему электрическая постоянная измеряется в Фарадах/метр.

Для примера рассчитаем емкость земного шара, приняв его за проводящий шар радиусом Rз=6370 км. Тогда в соответствии с (15.10) емкость Земли Сз=700 мкФ. Очень скромная величина для современных конденсаторов.

Если размеры сфер близки, т.е. R2-R1=d (15.11)

Это и понятно. В этом случае сферический конденсатор вырождается в набор плоских.

6. Цилиндрический конденсатор.

Он представляет две проводящие концентрические очень длинные цилиндрические поверхности с радиусами R1 , (15.12)

Если размеры цилиндров близки, т.е. R2-R1=d , (15.13)

и емкость конденсатора

, (15.14)

Цилиндрический конденсатор вырождается в набор плоских.

7. Потенциал тонких проводников.

Рассмотрим два бесконечно тонких бесконечно длинных проводника разноименно заряженных с линейной плотностью t , находящихся на расстоянии друг от друга (рис.15.4). Проводники перпендикулярны плоскости рисунка. Потенциал в произвольной точке в соответствии с (7.22) вычисляется как

тогда эквипотенциальные линии описываются уравнением

, m>0 (15.16)

Заметим, что для такого же по модулю, но противоположного по знаку потенциала получается обратная величина. В декартовых координатах

, (15.17)

Мы это уже получали в лк. №7 п.11. Разрешая (15.17), получаем уравнение

, (15.18)

С осью ОХ (y=0) эта кривая пересекается в точках

и находится между ними. Легко показать, что уравнение (15.18) описывает окружность с центром в точке

, (15.20)

, (15.21)

Таким образом, все эквипотенциальные поверхности такой системы — это цилиндры. Сечения двух таких цилиндров одинакового по модулю, но разного по знаку потенциала показаны на рис.15.5 для m=3 (справа) и m=1/3 (слева). Расстояние между центрами цилиндров равно d=|2x|.

8. Двухпроводная линия.

А теперь решим обратную задачу. Заданы радиусы очень длинных параллельных проводов R, и расстояние между их центрами d, причем d>2R (рис.15.6). Из (15.20) и (15.21) легко находится

, (15.22)

и согласно (15.16) потенциал

Следовательно, разность потенциалов равна

а емкость проводов длиной l

, (15.25)

Если провода очень тонкие по сравнению с расстоянием между ними d>>R, то m=d/R, и

, (15.26)

9. Телеграфная линия.

Один провод над землей (рис.15.7). Используем метод зеркальных изображений и формулу (15.26). Ясно, что d=2h, а разность потенциалов между проводом и землей в два раза меньше, чем в предыдущей задаче о двух проводах, следовательно, емкость в два раза больше.

, (15.27)

Если высота 5 м, радиус провода 0,5 см, то на 1 м длины провода приходится емкость 7,3 пФ.

10. Последовательное и параллельное соединения конденсаторов.

Соединяя различным образом конденсаторы, можно получить большую емкость или способность выдерживать высокие напряжения. Расчет емкости при соединениях давно и хорошо известен, поэтому ограничимся формулами и схемами.

11. Лейденская банка.

В середине XVII в. в Голландии, в Лейденском университете, ученые под руководством Мушенброка нашли способ накопления электрических зарядов. Таким накопителем электричества была лейденская банка (по названию университета) — стеклянный сосуд, стенки которого снаружи и изнутри оклеены свинцовой фольгой (разрез и общий вид на рис.15.10). Фотография одной из первых лейденских банок на рисунке 15.10а

Лейденская банка, подключенная обкладками к электрической машине, могла накапливать и долго сохранять значительное количество электричества. Если ее обкладки соединяли отрезком толстой проволоки, то в месте замыкания проскакивала сильная искра, и накопленный электрический заряд мгновенно исчезал. Если же обкладки заряженного прибора соединяли тонкой проволокой, она быстро нагревалась, вспыхивала и плавилась, т.е. перегорала, как мы часто говорим сейчас. Вывод мог быть один: по проволоке течет электрический ток, источником которого является электрически заряженная лейденская банка. Это прообраз конденсатора, рассчитанного на очень высокое напряжение. Емкость незначительна, поэтому их часто соединяют в батареи (рис.15.11).

Опишем поучительный опыт с лейденской банкой. Наружная обкладка — металлическая трубка. В нее вставляется диэлектрическая трубка из кварца, а в последнюю — металлический стержень. Заземлив наружную обкладку, банку заряжают от электростатической машины, затем отсоединяют от нее и разбирают. Внутренний стержень вытягивается за изолирующую ручку, вынимается кварцевая трубка, и обе металлические обкладки приводят в соприкосновение друг с другом. Теперь на обкладках зарядов нет. Если банку собрать снова, то она опять окажется заряженной. Это доказывает, что кварцевая трубка поляризована даже тогда, когда она не окружена заряженными обкладками.

12. Конденсатор конечных размеров.

Для реального конденсатора поле не полностью сосредоточено между обкладками (рис.15.12). На краях пластины наблюдается дополнительная концентрация заряда, что приводит к увеличению емкости. Если пластины представляют собой окружности (рис.15.1) радиуса R, то емкость вычисляется по формуле Кирхгофа, полученной при R>>d.(см. Ландау, т.8 стр 38).

Данную зависимость можно переписать как

, (15.35)

Похожие статьи:

  • Провода на свечи бмв е34 БМВ 5 (Е34). Свечи зажигания Свеча зажигания состоит из центрального электрода, изолятора, корпуса и бокового электрода (электрода массы). Центральный электрод герметично закреплен в изоляторе, а изолятор жестко связан с корпусом. Между […]
  • Белый и черный провода где плюс какого цвета провод плюс и минус? в зарядном устройстве 2 провода черный и белый . где плюс где минус? какого цвета провод плюс и минус? в зарядном устройстве 2 провода черный и белый . где плюс где минус? можно определить с помощью […]
  • Электрические схемы микроволновых печей самсунг Электрические схемы микроволновых печей Микроволновые печи с электромеханическим управлением обычно имеют стандартную электрическую схему. Отличия между различными моделями незначительны и не носят принципиального характера. Силовая часть […]
  • Отличие провода пунп от ввг Чем отличается ВВГ от ПУНП? Чем отличается ВВГ от ПУНП? Вроде сечение одинаковое, изоляция двойная. Можно ли проводку делать ПУНПом, если она заштукатуривается? Сырьём для ПВХ, методикой испытаний. Этот кабель выпускается по ГОСТ, а […]
  • Физик заземление Физика для Детей: З - значит Заземление (6 выпуск) 8 комментариев это скорее для даунов, чтоле -_- смотреть вообще не приятно Чувырла уж прям вполне отталкивающая Глупо как-то рассказано. Да и татух у ведущей нет и в носу без кольца. А […]
  • Гибкие провода гост ПВС 4х4 провод гибкий ГОСТ ПВС-это гибкий провод с медными многопроволочными скрученными жилами в ПВХ изоляции и ПВХ оболочке. ПО последней букве в маркировке "С"-что обозначает соединительный, ясно что кабель в основном используется для […]