Рассчитать сопротивление провода онлайн

База знаний -> Онлайн расчет длины нихромовой, фехралевой проволоки (спирали) для нагревателя

Для одного знакомого связиста расчет длины проволоки для нагревателя было мегазадачей. Он вообще не парился этим вопросом, а просто сопел и замерял сопротивление проволоки спирали омметром каждые двадцать-тридцать витков, весь окутанный сигаретным дымом от «Примы». И матерился, если наматывал слишком мало или много. Впрочем, мужик и специалист в телефонии он был классный.

На данном этапе жизни намотка обогревателей для меня не особо актуальна, но я все равно решила написать этот онлайн калькулятор расчета длины проволоки. Может кому-то будет полезен.

Для использования калькулятора вводим необходимые параметры обогревателя или электроплиты в соответствующие поля и нажимаем кнопку «Рассчитать длину проволоки для спирали нагревателя«.

Полученные результаты не учитывают рост электрического сопротивления проводника с ростом его температуры. Поэтому фактическая мощность (как и потребляемый ток от сети) всегда несколько ниже расчетных величин.

Требуемая мощность обогревателя или электроплиты
Вт

Напряжение питания
В

Выберете материал проволоки для намотки спирали

Выберете диаметр проволоки из стандартных промышленных размеров. Не забываем, что сечение и диаметр проволоки — разные понятия. Если не знаем диаметра — пользуемся микрометром или штангельциркулем. Интересно, для чего нужен нихром диаметром в 10 мм, что им вообще такое мотать? Наверно, детонатор для термоядерного реактора.

Онлайн расчет нихромовой проволоки для нагревателя

Применение нихромовых проволок в качестве нагревательных элементов обусловлено сочетанием следующих характеристик этих сплавов:

— высоких показателей жаростойкости сплавов никеля с хромом;
— высоким удельным электрическим сопротивлением;
— хорошей пластичностью;
— низким температурным коэффициентом электрического сопротивления.

Предложенный калькулятор может быть использован для подсчета и примерной оценки необходимой длины нихромовой проволоки наиболее распространенных в настоящее время марок Х20Н80, Х20Н80-Н и Х15Н60 для нагревателей.

Для расчета потребуются следующие данные: желаемая мощность нагревателя. питающее напряжение и стандартное значение диаметра используемой проволоки.

Вначале, исходя из заданных параметров определяется сила тока (I=P/U). Далее, производится расчет сопротивления всего нагревательного элемента (R=U/I).

Затем, используя данные удельного электрического сопротивления (ρ) упомянутых выше марок проволоки находим ее необходимую длину (l=SR/ρ), которая обеспечит сопротивление нагревателя R.

После проведения расчета рекомендуется убедиться в соответствии полученного расчетного тока его допустимому значению из приведенной ниже таблицы:

Если полученный ток превышает допустимый, необходимо повторить расчет, выбрав большее значение диаметра нихромовой проволоки или снизив мощность нагревательного элемента.

Обязательно следует учесть, что допустимые значения тока в зависимости от выбранного диаметра проволоки и температуры нагрева, приведенные в таблице стоит рассматривать для нагревателей, закрепленных в горизонтальном состоянии в воздушной среде.

Так, в случае если спираль погружена в нагреваемую жидкость, то допустимый ток может быть увеличен в 1,1-1,5 раза, а закрытое расположение спирали в связи с гораздо худшим охлаждением наоборот, предполагает уменьшение допустимого тока в 1,2-1,5 раза.

Расчет сопротивления электрической цепи

1.1. Электрическая цепь и ее элементы

В электротехнике рассматривается устройство и принцип действия основных электротехнических устройств, используемых в быту и промышленности. Чтобы электротехническое устройство работало, должна быть создана электрическая цепь, задача которой передать электрическую энергию этому устройству и обеспечить ему требуемый режим работы.

Электрической цепью называется совокупность устройств и объектов, образующих путь для электрического тока, электромагнитные процессы в которых могут быть описаны с помощью понятий об электрическом токе, ЭДС (электродвижущая сила) и электрическом напряжении.

ООО «Технолог» — оптовая (мин. заказ 5 000 руб) продажа и поставки электромонтажного, электротехнического и светотехнического оборудования.

Звоните (495) 740-42-64 Ждем. Скидки. Доставка.

Для анализа и расчета электрическая цепь графически представляется в виде электрической схемы, содержащей условные обозначения ее элементов и способы их соединения. Электрическая схема простейшей электрической цепи, обеспечивающей работу осветительной аппаратуры, представлена на рис. 1.1.

Все устройства и объекты, входящие в состав электрической цепи, могут быть разделены на три группы:

1) Источники электрической энергии (питания).

Общим свойством всех источников питания является преобразование какого-либо вида энергии в электрическую. Источники, в которых происходит преобразование неэлектрической энергии в электрическую, называются первичными источниками. Вторичные источники – это такие источники, у которых и на входе, и на выходе – электрическая энергия (например, выпрямительные устройства).

2) Потребители электрической энергии.

Общим свойством всех потребителей является преобразование электроэнергии в другие виды энергии (например, нагревательный прибор). Иногда потребители называют нагрузкой.

3) Вспомогательные элементы цепи: соединительные провода, коммутационная аппаратура, аппаратура защиты, измерительные приборы и т.д., без которых реальная цепь не работает.

Все элементы цепи охвачены одним электромагнитным процессом.

В электрической схеме на рис. 1.1 электрическая энергия от источника ЭДС E, обладающего внутренним сопротивлением r, с помощью вспомогательных элементов цепи передаются через регулировочный реостат R к потребителям (нагрузке): электрическим лампочкам EL1 и EL2.

1.2. Основные понятия и определения для электрической цепи

Для расчета и анализа реальная электрическая цепь представляется графически в виде расчетной электрической схемы (схемы замещения). В этой схеме реальные элементы цепи изображаются условными обозначениями, причем вспомогательные элементы цепи обычно не изображаются, а если сопротивление соединительных проводов намного меньше сопротивления других элементов цепи, его не учитывают. Источник питания показывается как источник ЭДС E с внутренним сопротивлением r, реальные потребители электрической энергии постоянного тока заменяются их электрическими параметрами: активными сопротивлениями R1, R2, …, Rn. С помощью сопротивления R учитывают способность реального элемента цепи необратимо преобразовывать электроэнергию в другие виды, например, тепловую или лучистую.

При этих условиях схема на рис. 1.1 может быть представлена в виде расчетной электрической схемы (рис. 1.2), в которой есть источник питания с ЭДС E и внутренним сопротивлением r, а потребители электрической энергии: регулировочный реостат R, электрические лампочки EL1 и EL2 заменены активными сопротивлениями R, R1 и R2.

Смотрите так же:  Узо на 300 ма

Источник ЭДС на электрической схеме (рис. 1.2) может быть заменен источником напряжения U, причем условное положительное направление напряжения U источника задается противоположным направлению ЭДС.

При расчете в схеме электрической цепи выделяют несколько основных элементов.

Ветвь электрической цепи (схемы) – участок цепи с одним и тем же током. Ветвь может состоять из одного или нескольких последовательно соединенных элементов. Схема на рис. 1.2 имеет три ветви: ветвь bma, в которую включены элементы r, E, R и в которой возникает ток I; ветвь ab с элементом R1 и током I1; ветвь anb с элементом R2 и током I2.

Узел электрической цепи (схемы) – место соединения трех и более ветвей. В схеме на рис. 1.2 – два узла a и b. Ветви, присоединенные к одной паре узлов, называют параллельными. Сопротивления R1 и R2 (рис. 1.2) находятся в параллельных ветвях.

Контур – любой замкнутый путь, проходящий по нескольким ветвям. В схеме на рис. 1.2 можно выделить три контура: I – bmab; II – anba; III – manbm, на схеме стрелкой показывают направление обхода контура.

Условные положительные направления ЭДС источников питания, токов во всех ветвях, напряжений между узлами и на зажимах элементов цепи необходимо задать для правильной записи уравнений, описывающих процессы в электрической цепи или ее элементах. На схеме (рис. 1.2) стрелками укажем положительные направления ЭДС, напряжений и токов:

а) для ЭДС источников – произвольно, но при этом следует учитывать, что полюс (зажим источника), к которому направлена стрелка, имеет более высокий потенциал по отношению к другому полюсу;

б) для токов в ветвях, содержащих источники ЭДС – совпадающими с направлением ЭДС; во всех других ветвях произвольно;

в) для напряжений – совпадающими с направлением тока в ветви или элемента цепи.

Все электрические цепи делятся на линейные и нелинейные.

Элемент электрической цепи, параметры которого (сопротивление и др.) не зависят от тока в нем, называют линейным, например электропечь.

Нелинейный элемент, например лампа накаливания, имеет сопротивление, величина которого увеличивается при повышении напряжения, а следовательно и тока, подводимого к лампочке.

Следовательно, в линейной электрической цепи все элементы – линейные, а нелинейной называют электрическую цепь, содержащую хотя бы один нелинейный элемент.

1.3. Основные законы цепей постоянного тока

Расчет и анализ электрических цепей производится с использованием закона Ома, первого и второго законов Кирхгофа. На основе этих законов устанавливается взаимосвязь между значениями токов, напряжений, ЭДС всей электрической цепи и отдельных ее участков и параметрами элементов, входящих в состав этой цепи.

Закон Ома для участка цепи

Соотношение между током I, напряжением UR и сопротивлением R участка аb электрической цепи (рис. 1.3) выражается законом Ома


Рис. 1.3

или UR = RI.

В этом случае UR = RI – называют напряжением или падением напряжения на резисторе R, а – током в резисторе R.

При расчете электрических цепей иногда удобнее пользоваться не сопротивлением R, а величиной обратной сопротивлению, т.е. электрической проводимостью:

.

В этом случае закон Ома для участка цепи запишется в виде:

Закон Ома для всей цепи

Этот закон определяет зависимость между ЭДС Е источника питания с внутренним сопротивлением r (рис. 1.3), током I электрической цепи и общим эквивалентным сопротивлением RЭ = r + R всей цепи:

.

Сложная электрическая цепь содержит, как правило, несколько ветвей, в которые могут быть включены свои источники питания и режим ее работы не может быть описан только законом Ома. Но это можно выполнить на основании первого и второго законов Кирхгофа, являющихся следствием закона сохранения энергии.

Первый закон Кирхгофа

В любом узле электрической цепи алгебраическая сумма токов равна нулю

,

где m – число ветвей подключенных к узлу.

При записи уравнений по первому закону Кирхгофа токи, направленные к узлу, берут со знаком «плюс», а токи, направленные от узла – со знаком «минус». Например, для узла а (см. рис. 1.2) I — I1 — I2 = 0.

Второй закон Кирхгофа

В любом замкнутом контуре электрической цепи алгебраическая сумма ЭДС равна алгебраической сумме падений напряжений на всех его участках

,

где n – число источников ЭДС в контуре;
m – число элементов с сопротивлением Rк в контуре;
Uк = RкIк – напряжение или падение напряжения на к-м элементе контура.

Для схемы (рис. 1.2) запишем уравнение по второму закону Кирхгофа:

Если в электрической цепи включены источники напряжений, то второй закон Кирхгофа формулируется в следующем виде: алгебраическая сумма напряжений на всех элементах контру, включая источники ЭДС равна нулю

.

При записи уравнений по второму закону Кирхгофа необходимо:

1) задать условные положительные направления ЭДС, токов и напряжений;

2) выбрать направление обхода контура, для которого записывается уравнение;

3) записать уравнение, пользуясь одной из формулировок второго закона Кирхгофа, причем слагаемые, входящие в уравнение, берут со знаком «плюс», если их условные положительные направления совпадают с обходом контура, и со знаком «минус», если они противоположны.

Запишем уравнения по II закону Кирхгофа для контуров электрической схемы (рис. 1.2):

В действующей цепи электрическая энергия источника питания преобразуется в другие виды энергии. На участке цепи с сопротивлением R в течение времени t при токе I расходуется электрическая энергия

Скорость преобразования электрической энергии в другие виды представляет электрическую мощность

.

Из закона сохранения энергии следует, что мощность источников питания в любой момент времени равна сумме мощностей, расходуемой на всех участках цепи.

.

Это соотношение (1.8) называют уравнением баланса мощностей. При составлении уравнения баланса мощностей следует учесть, что если действительные направления ЭДС и тока источника совпадают, то источник ЭДС работает в режиме источника питания, и произведение E I подставляют в (1.8) со знаком плюс. Если не совпадают, то источник ЭДС работает в режиме потребителя электрической энергии, и произведение E I подставляют в (1.8) со знаком минус. Для цепи, показанной на рис. 1.2 уравнение баланса мощностей запишется в виде:

При расчете электрических цепей используются определенные единицы измерения. Электрический ток измеряется в амперах (А), напряжение – в вольтах (В), сопротивление – в омах (Ом), мощность – в ваттах (Вт), электрическая энергия – ватт-час (Вт-час) и проводимость – в сименсах (См)

Смотрите так же:  Как произвести измерение сопротивления

Кроме основных единиц используют более мелкие и более крупные единицы измерения: миллиампер (1мA = 10–3А), килоампер (1кA = 103А), милливольт (1мВ = 10–3В), киловольт (1кВ = 103В), килоом (1кОм = 103Ом), мегаом (1мОм = 106Ом), киловатт (1кВт = 103Вт), киловатт-час (1кВт-час = 103 ватт-час).

1.4. Способы соединения сопротивлений и расчет эквивалентного
сопротивления электрической цепи

Сопротивления в электрических цепях могут быть соединены последовательно, параллельно, по смешанной схеме и по схемам «звезда», «треугольник». Расчет сложной схемы упрощается, если сопротивления в этой схеме заменяются одним эквивалентным сопротивлением Rэкв, и вся схема представляется в виде схемы на рис. 1.3, где R=Rэкв, а расчет токов и напряжений производится с помощью законов Ома и Кирхгофа.

Электрическая цепь с последовательным соединением элементов

Последовательным называют такое соединение элементов цепи, при котором во всех включенных в цепь элементах возникает один и тот же ток I (рис. 1.4).

На основании второго закона Кирхгофа (1.5) общее напряжение U всей цепи равно сумме напряжений на отдельных участках:

Таким образом, при последовательном соединении элементов цепи общее эквивалентное сопротивление цепи равно арифметической сумме сопротивлений отдельных участков. Следовательно, цепь с любым числом последовательно включенных сопротивлений можно заменить простой цепью с одним эквивалентным сопротивлением Rэкв (рис. 1.5). После этого расчет цепи сводится к определению тока I всей цепи по закону Ома

,

и по вышеприведенным формулам рассчитывают падение напряжений U1, U2, U3 на соответствующих участках электрической цепи (рис. 1.4).

Недостаток последовательного включения элементов заключается в том, что при выходе из строя хотя бы одного элемента, прекращается работа всех остальных элементов цепи.

Электрическая цепь с параллельным соединением элементов

Параллельным называют такое соединение, при котором все включенные в цепь потребители электрической энергии, находятся под одним и тем же напряжением (рис. 1.6).

В этом случае они присоединены к двум узлам цепи а и b, и на основании первого закона Кирхгофа (1.3) можно записать, что общий ток I всей цепи равен алгебраической сумме токов отдельных ветвей:

I = I1 + I2 + I3, т.е. ,

откуда следует, что

.

В том случае, когда параллельно включены два сопротивления R1 и R2, они заменяются одним эквивалентным сопротивлением

.

Из соотношения (1.6), следует, что эквивалентная проводимость цепи равна арифметической сумме проводимостей отдельных ветвей:

По мере роста числа параллельно включенных потребителей проводимость цепи gэкв возрастает, и наоборот, общее сопротивление Rэкв уменьшается.

Напряжения в электрической цепи с параллельно соединенными сопротивлениями (рис. 1.6)

Отсюда следует, что

,

т.е. ток в цепи распределяется между параллельными ветвями обратно пропорционально их сопротивлениям.

По параллельно включенной схеме работают в номинальном режиме потребители любой мощности, рассчитанные на одно и то же напряжение. Причем включение или отключение одного или нескольких потребителей не отражается на работе остальных. Поэтому эта схема является основной схемой подключения потребителей к источнику электрической энергии.

Электрическая цепь со смешанным соединением элементов

Смешанным называется такое соединение, при котором в цепи имеются группы параллельно и последовательно включенных сопротивлений.

Для цепи, представленной на рис. 1.7, расчет эквивалентного сопротивления начинается с конца схемы. Для упрощения расчетов примем, что все сопротивления в этой схеме являются одинаковыми: R1=R2=R3=R4=R5=R. Сопротивления R4 и R5 включены параллельно, тогда сопротивление участка цепи cd равно:

.

В этом случае исходную схему (рис. 1.7) можно представить в следующем виде (рис. 1.8):

На схеме (рис. 1.8) сопротивление R3 и Rcd соединены последовательно, и тогда сопротивление участка цепи ad равно:

.

Тогда схему (рис. 1.8) можно представить в сокращенном варианте (рис. 1.9):

На схеме (рис. 1.9) сопротивление R2 и Rad соединены параллельно, тогда сопротивление участка цепи аb равно

.

Схему (рис. 1.9) можно представить в упрощенном варианте (рис. 1.10), где сопротивления R1 и Rab включены последовательно.

Тогда эквивалентное сопротивление исходной схемы (рис. 1.7) будет равно:

.

В результате преобразований исходная схема (рис. 1.7) представлена в виде схемы (рис. 1.11) с одним сопротивлением Rэкв. Расчет токов и напряжений для всех элементов схемы можно произвести по законам Ома и Кирхгофа.

Соединение элементов электрической цепи по схемам «звезда» и «треугольник»

В электротехнических и электронных устройствах элементы цепи соединяются по мостовой схеме (рис. 1.12). Сопротивления R12, R13, R24, R34 включены в плечи моста, в диагональ 1–4 включен источник питания с ЭДС Е, другая диагональ 3–4 называется измерительной диагональю моста.

В мостовой схеме сопротивления R13, R12, R23 и R24, R34, R23 соединены по схеме «треугольник». Эквивалентное сопротивление этой схемы можно определить только после замены одного из треугольников, например треугольника R24 R34 R23 звездой R2 R3 R4 (рис. 1.13). Такая замена будет эквивалентной, если она не вызовет изменения токов всех остальных элементов цепи. Для этого величины сопротивлений звезды должны рассчитываться по следующим соотношениям:

; ; .

Для замены схемы «звезда» эквивалентным треугольником необходимо рассчитать сопротивления треугольника:

; ; .

После проведенных преобразований (рис. 1.13) можно определить величину эквивалентного сопротивления мостовой схемы (рис. 1.12)

.

1.5. Источник ЭДС и источник тока в электрических цепях

При расчете и анализе электрических цепей реальный источник электрической энергии с конечным значением величины внутреннего сопротивления r заменяют расчетным эквивалентным источником ЭДС или источником тока.


Рис. 1.14

Источник ЭДС (рис. 1.14) имеет внутреннее сопротивление r, равное внутреннему сопротивлению реального источника. Стрелка в кружке указывает направление возрастания потенциала внутри источника ЭДС.

Для данной цепи запишем соотношение по второму закону Кирхгофа

Эта зависимость напряжения U на зажимах реального источника от тока I определяется его вольт-амперной или внешней характеристикой (рис. 1.15). Уменьшение напряжения источника U при увеличении тока нагрузки I объясняется падением напряжения на его внутреннем сопротивлении r.

У идеального источника ЭДС внутреннее сопротивление r >Rн. В этом случае можно считать, что при изменении сопротивления нагрузки Rн потребителя Iо » 0, а I » Iк. Тогда из выражения (1.11) следует, что вольт-амперная характеристика I(U) идеального источника тока представляет прямую линию, проведенную параллельно оси абсцисс на уровне I = Iк = E/r (рис. 1.19).

При сравнении внешних характеристик источника ЭДС (рис. 1.15) и источника тока (рис. 1.18) следует, что они одинаково реагируют на изменение величины сопротивления нагрузки. Покажем, что в обоих случаях ток I в нагрузке определяется одинаковым соотношением.

Смотрите так же:  Мощный стабилизатор напряжения 220 вольт

Ток в нагрузке Rн для схем источника ЭДС (рис. 1.14) и источника тока (рис. 1.17) одинаков и равен .

Для схемы (рис. 1.14) это следует из закона Ома, т.к. при последователь-ном соединении сопротивления r и Rн складываются. В схеме (рис. 1.17) ток распределяется обратно пропорционально сопротивлениям r и Rн двух параллельных ветвей. Ток в нагрузке Rн

,

т.е. совпадает по величине с током при подключении нагрузки к источнику ЭДС. Следовательно, схема источника тока (рис. 1.17) эквивалентна схеме источника ЭДС (рис. 1.14) в отношении энергии, выделяющейся в сопротивлении нагрузки Rн, но не эквивалентна ей в отношении энергии, выделяющейся во внутреннем сопротивлении источника питания.

Каким из двух эквивалентных источников питания пользоваться, не играет существенной роли. Однако на практике, особенно при расчете электротехнических устройств, чаще используется в качестве источника питания источник ЭДС с внутренним сопротивлением r и величиной электродвижущей силы Е.

В тех случаях, когда номинальное напряжение или номинальный ток и мощность источника электрической энергии оказываются недостаточными для питания потребителей, вместо одного используют несколько источников. Существуют два основных способа соединения источников питания: последовательное и параллельное.

Последовательное включение источников питания (источников ЭДС) применяется тогда, когда требуется создать напряжение требуемой величины, а рабочий ток в цепи меньше или равен номинальному току одного источника ЭДС (рис. 1.20).

Для этой цепи на основании второго закона Кирхгофа можно записать

.

Таким образом, электрическая цепь на рис. 1.20 может быть заменена цепью с эквивалентным источником питания (рис. 1.21), имеющим ЭДС Eэ и внутреннее сопротивление rэ.

При параллельном соединении источников (рис. 1.22) соединяются между собой положительные выводы всех источников, а также их отрицательные выводы. Характерным для параллельного соединения является одно и то же напряжение U на выводах всех источников. Для электрической цепи на рис. 1.22 можно записать следующие уравнения:

Как видно, при параллельном соединении источников ток и мощность внешней цепи равны соответственно сумме токов и мощностей источников. Параллельное соединение источников применяется в первую очередь тогда, когда номинальные ток и мощность одного источника недостаточны для питания потребителей. На параллельную работу включают обычно источники с одинаковыми ЭДС, мощностями и внутренними сопротивлениями.

1.6. Режимы работы электрической цепи

При подключении к источнику питания различного количества потребителей или изменения их параметров будут изменяться величины напряжений, токов и мощностей в электрической цепи, от значений которых зависит режим работы цепи и ее элементов.

Реальная электрическая цепь может быть представлена в виде активного и пассивного двухполюсников (рис. 1.23).

Двухполюсником называют цепь, которая соединяется с внешней относительно нее частью цепи через два вывода а и b – полюса.

Активный двухполюсник содержит источники электрической энергии, а пассивный двухполюсник их не содержит. Для расчета цепей с двухполюсниками реальные активные и пассивные элементы цепи представляются схемами замещения. Схема замещения пассивного двухполюсника П представляется в виде его входного сопротивления

.

Схема замещения активного двухполюсника А представляется эквивалентным источником с ЭДС Eэ и внутренним сопротивлением r, нагрузкой для которого является входное сопротивление пассивного двухполюсника Rвх = Rн.

Режим работы электрической цепи (рис. 1.23) определяется изменениями параметров пассивного двухполюсника, в общем случае величиной сопротивления нагрузки Rн. При анализе электрической цепи рассматривают следующие режимы работы: холостого хода, номинальный, короткого замыкания и согласованный.

Работа активного двухполюсника под нагрузкой Rн определяется его вольт-амперной (внешней) характеристикой, уравнение которой (1.10) для данной цепи запишется в виде

Эта вольт-амперная характеристика строится по двум точкам 1 и 2 (рис. 1.24), соответствующим режимам холостого хода и короткого замыкания.

1. Режим холостого хода

В этом режиме с помощью ключа SA нагрузка Rн отключается от источника питания (рис. 1.23). В этом случае ток в нагрузке становится равным нулю, и как следует из соотношения (1.12) напряжение на зажимах ab становится равным ЭДС Eэ и называется напряжением холостого хода Uхх

2. Режим короткого замыкания

В этом режиме ключ SA в схеме электрической цепи (рис. 1.23) замкнут, а сопротивление Rн=0. В этом случае напряжение U на зажимах аb становится равным нулю, т.к. U = IRн, а уравнение (1.12) вольт-амперной характеристики можно записать в виде

.

Значение тока короткого замыкания Iк.з соответствует т.2 на вольт-амперной характеристике (рис. 1.24).

Анализ этих двух режимов показывает, что при расчете электрических цепей параметры активного двухполюсника Eэ и r могут быть определены по результатам режимов холостого хода и короткого замыкания:

Eэ = Uхх; .

При изменении тока в пределах активной двухполюсник (эквивалентный источник) отдает энергию во внешнюю цепь (участок I вольт-амперной характеристики на рис. 1.24). При токе I

Похожие статьи:

  • Вилка с заземлением с узо тип а 30ма 16а 220в ip30 УЗО 25 А, 30 мА, тип А, 4 полюса, CD425J Hager Внимание! Раздаем скидки всем желающим! Розетки и выключатели Legrand, Hager -20% от цен сайта, теплый пол и обогреватели -15% от цен сайта и др. Подробнее здесь.. Внешний вид и описание […]
  • Пускатель магнитный нереверсивный без теплового реле Магнитный пускатель ПМЛ-1220 220В Наличие: от 10 до 100 Магнитный пускатель ПМЛ-1220 используется для дистанционного пуска непосредственным подключением к сети, отключения и реверсирования трехфазных асинхронных электродвигателей с […]
  • Установка розеток в самаре Заказать установку розеток и выключателей в Самаре Заказать установку, замену или перенос розеток в Самаре - просто! Позвоните нам по т. 8-927-205-92-92,опишите фронт работ и удобное время выполнения заказа. Наше отличие от […]
  • Провода хромель капель Кратчайшие сроки изготовления Широкий ассортимент продукции на складе в Уфе Термоэлектродный и компенсационный провод марки ПТВ, ПТВО изготавливается в поливинилхлоридной изоляции с токопроводящими жилами ХК, ХА, М, МК, П Термоэлектродный […]
  • Lwa 10 3 фазы Дизельный генератор Lister Petter LWA 10 3 фазы в кожухе с АВР Узнать о скидке на эту модель можно по номеру 8 (495) 215-07-48 Компания «ЭнергоПлаза» предлагает профессиональные решения для энергосбережения – дизельные генераторы мировых […]
  • Подключение трансформатора напряжения нами-1 НАМИ-10 антирезонансный трансформатор напряжения УДК 621.314.222.8 ОКП 34 1451 РГАСНТИ 45.33.29.31.49 Общие сведения а - общий вид трансформатора напряжения; б - электрическая схема Трансформатор напряжения антирезонансный типа НАМИ – 10 […]