Режимы работы асинхронных электродвигателей

Оглавление:

Режимы работы электродвигателей

Возможные режимы работы электроприводов отличаются огромным многообразием по характеру и длительности циклов, значениям нагрузок, условиям охлаждения, соотношения потерь в период пуска и установившегося движения и т.п., поэтому изготовление электродвигателей для каждого из возможных режимов работы электропривода не имеет практического смысла.

На основании анализа реальных режимов выделен специальный класс режимов — номинальные режимы , для которых проектируются и изготавливаются серийные двигатели .

Данные, содержащиеся в паспорте электрической машины , относятся к определенному номинальному режиму и называются номинальными данными электрической машины. Заводы-изготовители гарантируют при работе электродвигателя в номинальном режиме при номинальной нагрузке полное использование его в тепловом отношении.

Различают следующие режимы работы двигателей под нагрузкой в зависимости от ее длительности : продолжительный, кратковременный и повторно-кратковременный.

При продолжительном режиме двигатель работает без перерыва, причем рабочий период настолько велик, что нагрев двигателя достигает установившейся температуры.

Продолжительная нагрузка может быть постоянной или изменяющейся. В первом случае температура не изменяется, во втором — изменяется вместе с изменением нагрузки. С малоизменяющейся нагрузкой в этом режиме работают двигатели конвейеров, лесопильных рам и др., с переменной продолжительной нагрузкой работают двигатели различных металлообрабатывающих и деревообрабатывающих станков.

При кратковременном режиме двигатель не успевает нагреться до установившейся температуры, а в течение паузы охлаждается до температуры окружающей среды. Продолжительность кратковременной работы ГОСТ на электрические машины устанавливает равной 10, 30, 60 и 90 мин.

При повторно-кратковременном режиме двигатель за период работы не успевает нагреться до установившейся температуры, а за время паузы — охладиться до температуры окружающей среды. В этом режиме двигатель действует с непрерывно чередующимися периодами работы под нагрузкой и вхолостую, или паузами.

При повторно-кратковременном режиме двигатель за период работы не успевает нагреться до установившейся температуры, а за время паузы — охладиться до температуры окружающей среды. В этом режиме двигатель действует с непрерывно чередующимися периодами работы под нагрузкой и вхолостую, или паузами.

Продолжительность включения электротехнического изделия (электротехнического устройства, электрооборудования) — отношение времени пребывания во включенном состоянии электротехнического изделия (электротехнического изделия, электрооборудования), работающего в повторно-кратковременном режиме, к длительности цикла (ГОСТ 18311-80).

Повторно-кратковременный режим характеризуется относительной продолжительностью включения ПВ = [tp/(tp + tо)] 100 %, где tp и tо — время работы и паузы при продолжительности цикла ( t ц = t р+ t о) не более 10 мин.

Повторно-кратковременный режим бывает:

с продолжительностью включения ПВ = 1 5, 25, 40 и 60% и продолжительностью цикла 10 мин,

с частыми пусками при ПВ = 15, 25, 40 и 60 % и числом включений в час 30, 60, 120 и 240 при коэффициенте инерции 1,2, 1,6, 2,5 и 4,

с частыми пусками и электроторможением при тех же номинальных ПВ, числе включений и коэффициенте инерции,

перемежающийся с продолжительностью цикла 10 мин при нагрузках ПВ= 15, 25, 40 и 60%,

  • перемежающийся с электроторможением и частыми реверсами, число которых в час составляет 30, 60, 120 и 240 при коэффициенте инерции 1,2, 1,6, 2,5 и 4.
  • Режимы работы электродвигателей по ГОСТ

    Действующим ГОСТ предусматриваются 8 номинальных режимов , которые в соответствии с международной классификацией имеют условные обозначения S1 — S8.

    Продолжительный режим работы S1 — работа машины при неизменной нагрузке достаточно длительное время для достижения неизменной температуры всех ее частей.

    Продолжительный режим работы электродвигателя S1

    Кратковременный режим работы S2 — работа машины при неизменной нагрузке в течение времени, недостаточного для достижения всеми частями машины установившейся температуры, после чего следует остановка машины на время, достаточное для охлаждения машины до температуры, не более чем на 2°С превышающей температуру окружающей среды.

    Для кратковременного режима работы нормируется продолжительность рабочего периода 15, 30, 60, 90 мин.

    Кратковременный режим работы электродвигателя S2

    Повторно-кратковременный режим работы S3 — последовательность идентичных циклов работы, каждый из которых включает время работы при неизменной нагрузке, за которое машина не нагревается до установившейся температуры, и время стоянки, за которое машина не охлаждается до температуры окружающей среды.

    В этом режиме цикл работы таков, что пусковой ток не оказывает заметного влияния на превышение температуры. Продолжительность цикла недостаточна для достижения теплового равновесия и не превышает 10 мин. Режим характеризуется величиной продолжительности включения в процентах:

    ПВ = (t р / ( t р + t п)) х 100%

    Повторно-кратковременный режим работы электродвигателя S3

    Нормируемые значения продолжительности включения: 15, 25, 40, 60 %, или относительные значения продолжительности рабочего периода: 0,15; 0,25; 0,40; 0,60.

    Для режима S3 номинальные данные соответствуют только определенному значению ПВ и относятся к рабочему периоду.

    Режимы S1 — S3 являются в настоящее время основными, номинальные данные на которые включаются отечественными электромашиностроительными заводами в каталоги и паспорт машины.

    Номинальные режимы S4 — S8 введены для того, чтобы впоследствии упростить задачу эквивалентирования произвольного режима номинальным, расширив номенклатуру последних.

    Повторно-кратковременный режим работы с влиянием пусковых процессов S4 — последовательность идентичных циклов работы, каждый из которых включает время пуска, достаточно длительное для того, чтобы пусковые потери оказывали влияние на температуру частей машины, время работы при постоянной нагрузке, за которое машина не нагревается до установившейся температуры, и время стоянки, за которое машина не охлаждается до температуры окружающей среды.

    Перемежающийся режим работы S6 — последовательность идентичных циклов, каждый из которых включает время работы с постоянной нагрузкой и время работы на холостом ходу, причем длительность этих периодов такова, что температура машины не достигает установившегося значения.

    Перемежающийся режим работы S6: to — время холостого хода

    Перемежающийся режим с влиянием пусковых процессов и электрическим торможением S7 — последовательность идентичных циклов, каждый из которых включает достаточно длительный пуск, работу с постоянной нагрузкой и быстрое электрическое торможение. Режим не содержит пауз.

    Перемежающийся режим работы с влиянием пусковых процессов и электрическим торможением S7

    Перемежающийся режим с периодически изменяющейся частотой вращения S8 — последовательность идентичных циклов, каждый из которых включает время работы с неизменной нагрузкой и неизменной частотой вращения, затем следует один или несколько периодов при других постоянных нагрузках, каждой из которых соответствует своя частота вращения (например, этот режим реализуется при переключении числа пар полюсов асинхронного двигателя). Режим не содержит пауз.

    Перемежающийся режим работы с периодически изменяющейся частотой вращения S8

    Учет режима работы имеет большое значение при подборе двигателя. Мощности двигателей, указанные в каталогах, приведены для режима S1 и нормальных условий работы, кроме двигателей с повышенным скольжением.

    Если двигатель работает в режиме S2 или S3, он нагревается меньше, чем в режиме S1, и поэтому он допускает большую мощность на валу.

    При работе в режиме S2 допустимая мощность может быть повышена на 50 % при длительности нагружения 10 мин, на 25 % — при длительности нагружения 30 мин, на 10% — при длительности нагружения 90 мин.

    Режимы работы асинхронных электродвигателей

    Параметры, описывающие режимы работы электродвигателей:

    Возможные комбинации выше приведенных характеристик имеют огромное разнообразие и поэтому изготовление двигателей для каждого из них не целесообразно. По наиболее часто используемым и востребованным характерам работы были выделены номинальные режимы, для которых, собственно, и изготовляются серийные электродвигатели. Параметры электрической машины, которые указаны в паспорте, характеризуют ее работу в одном из номинальных режимов. Изготовитель гарантирует нормальную, безотказную работу эл. двигателя в номинальном режиме при номинальной нагрузке. Необходимо обязательно учитывать режим работы электропривода при выборе двигателя, это обеспечит надежную работу механизма.

    Межгосударственным стандартом ГОСТ 183-74 предусмотрено 8 номинальных режимов для электродвигателей, которые обозначаются как S1-S8, их краткое описание приведено ниже в статье.

    S1 – продолжительный режим работы, характеризуется работой электродвигателя при постоянной нагрузке (Р) и потерях (РV) на протяжении длительного времени, пока все части машины не достигнут неизменной температуры (Ɵmaxнагр).

    S2 – кратковременный режим работы – это работа электродвигателя на протяжении небольшого отрезка времени (Δtp) под постоянной нагрузкой (P). При работе за определенное время (Δtp) составляющие двигателя не успевают нагреваться до установившейся температуры (Ɵmax), после этого машину останавливают и она охлаждается до температуры внешней среды (превышая ее не более чем на 2°С).

    S3 – периодический повторно-кратковременный режим работы, представляет собой последовательность одинаковых циклов, работа в которых происходит при постоянной, неизменной нагрузке. За это время электродвигатель не успевает нагреться до максимальной температуры и при останове не охлаждается до температуры окружающей среды. Не учитываются потери, возникшие при запуске двигателя (пусковой ток не оказывает большого влияния), то есть они не нагревают детали машины. Длительность цикла не превышает десяти минут.

    Продолжительность включения (ПВ) характеризует данный режим работы и находится по формуле:

    Существуют нормированные значения ПВ: 60%, 40%, 25%, 15%.

    S1 – S3 являются основными режимами работы, а S4 — S8 были введены для расширения возможностей первых, и предоставления более широкого ряда электродвигателей под конкретные задачи.

    S4 – повторно-кратковременный режим работы с влиянием пусковых процессов, представляется в виде циклической последовательности, в каждом цикле выполняется пуск двигателя за время (Δtd), работа двигателя при постоянной нагрузке в течении (Δtp), за эти промежутки времени машина не успевает достичь максимальной температуры (установившейся), а за время паузы (ΔtR) не остывает до внешней среды.

    S5 – Повторно-кратковременный режим с электрическим торможением и влиянием пусковых процессов включает в себя те же характерности режима, что и S4, с осуществлением торможения электродвигателя за время (ΔtF). Этот режим работы характерен для электропривода лифтов.

    S6 – перемежающийся режим работы – последовательность циклов, при которой работа происходит в течении времени (Δtр) с нагрузкой, и время (ΔtV) работает на холостом ходу. Двигатель не нагревается до предельной температуры.

    S7 – Перемежающийся режим с влиянием пусковых токов и электрическим торможением, особенностью является отсутствие пауз в работе, что обеспечивает 100% периодичность включения. Описывается работа в данном режиме последовательными циклами с достаточно долгим пуском (Δtd), нормальной работой при неизменной нагрузке и торможением двигателя.

    S8 — Периодический перемежающийся режим с периодически изменяющейся частотой вращения. Так же как и предыдущий режим, этот не содержит пауз, соответственно ПВ=100%. Реализация данного S8 режима происходит в асинхронных двигателях при переключении пар полюсов. Каждый последовательный цикл состоит из времени разгона (Δtd), работы (Δtр) и торможения (ΔtF), но при разных нагрузках, а соответственно при разных скоростях вращения ротора (n).

    Режимы работы асинхронных электродвигателей

    Асинхронная машина — электрическая машина переменного тока, частота вращения ротора которой не эквивалентна частоте вращения электромагнитного поля, создаваемого током медной обмотки статора. Асинхронные машины — это довольно распространённые электрические машины. Асинхронный означает не одновременный, что имеется ввиду, что частота вращения магнитного поля статора всегда больше частоты вращения ротора у асинхронных двигателей. Работают асинхронные двигатели от сети переменного тока.

    Статор обладает цилиндрической формой, собранный из листов стального материала. В пазах сердечника статора уложены обмотки статора, выполненных из обмоточного провода. Оси этих обмоток находятся в пространстве и сдвинуты на угол 120° относительно друг друга. Концы таких обмоток соединяются треугольником или звездой в зависимости от подаваемого напряжения.

    Статор асинхронного электродвигателя имеет невыраженные полюсы, т. е. поверхность статора является абсолютно гладкой изнутри. Для того, чтобы сбавить потери на вихревых токах, сердечник статора собирают из тонких штампованных листов стали. Ранее собранный сердечник статора нужно закрепить в корпусе из стали. В пазах статора укладывают обмотку из проволоки из меди. Начала и концы обмоток выводятся на специальный изоляционный щиток, из-за того, что фазовые обмотки статора электродвигателя соединяются «звездой» или «треугольником». Такое устройство статора является очень удобным, так как его обмотки можно включать на различные стандартные напряжения. Когда осуществляется подача напряжения на обмотку статора, то в каждой фазе создаётся магнитный поток, изменяемый частотой подаваемого напряжения. Эти потоки сдвинуты на 120° относительно друг друга, как во времени, так и в пространстве. Результирующий поток будет при этом вращающимся.

    Своим вращением поток создаёт в проводниках ротора ЭДС. Из-за того, что обмотка ротора входит в замкнутую электрическую цепь, в ней возникает ток, взаимодействующий с магнитным потоком статора, тем самым создавая пусковой момент двигателя, который стремится направить ротор в сторону вращения магнитного поля статора. Ротор начнет вращаться, когда пусковой момент двигателя достигнет значения тормозного момента ротора, а затем превысит его. При этом возникает так называемое скольжение.

    Скольжение является крайне важной величиной. При начальном моменте времени скольжение равно единичному значению, но относительная разность частот становится меньше по мере возрастания частоты вращения ротора, из-за чего в проводниках ротора уменьшаются ЭДС и ток, которые влекут за собой уменьшение вращающего момента. Во время режима холостого хода, т.е. когда двигатель совершает работу без нагрузки на валу, скольжение является минимальным значением, но оно возрастает до величины критического скольжения, путем увеличением статического момента. При превышении данного значения, может произойти опрокидывание двигателя, что, впоследствии, приведет к его нестабильной работе. Значение скольжения лежит в диапазоне от 0 до 1, для двигателей общего назначения в номинальном режиме оно составляет 1 — 8 %.

    При наступлении равновесия между электромагнитным моментом, который вызывает вращение ротора, и тормозным моментом, который создает нагрузку на валу двигателя, процессы изменения величин прекратятся.

    Из этого следует, что принцип работы асинхронного двигателя заключен во взаимодействии токов, наводящимся магнитным полем в роторе и самим вращающимся магнитным полем статора. Когда вращающий момент возникает тогда, когда существует разность частот вращения магнитных полей.

    Ротор асинхронного двигателя, как и статор, собирается из штампованных стальных листов. В пазах ротора укладывается обмотка из медных стержней. Торцы этих стержней соединены при помощи медного кольца. Такая обмотка является обмоткой типа «беличьей клетки». При этом медные стержни в пазах не являются изолированными.

    В зависимости от конструкции ротора асинхронные электродвигатели различаются на 2 типа: с короткозамкнутым ротором и фазным ротором.

    Короткозамкнутый ротор представляет собой сердечник, собранный из стальных листов. В пазах этого сердечника заливается расплавленный алюминий, из-за чего образуются стержни, замкнутые накоротко торцевыми кольцами. Данная конструкция называется «беличьей клеткой». В двигателях с большой мощностью заливаться медь.

    Фазный ротор содержит трёхфазную обмотку, практически не отличающуюся от обмотки на статоре. В большинстве случаев концы обмоток фазного ротора соединены звездой, где свободные концы подводятся к контактным кольцам. При помощи щёток, подключенных к кольцам, можно ввести дополнительный резистор в цепь обмотки ротора. Этот резистор нужен для того, чтобы изменять активное сопротивление в цепи ротора, которое способствует уменьшению больших пусковых токов.

    Асинхронный двигатель с фазным ротором обычно применяется в электродвигателях с большой мощностью и в случаях, во время начала движения с места, электродвигатель создавал большое усилие, когда это необходимо. Достигается это путем включения в обмотки фазного двигателя пускового реостата.

    Короткозамкнутые асинхронные двигатели запускаются двумя способами:

    1) Подключением трехфазного напряжения сети к статору двигателя.

    2) Снижением напряжения, подводимого к обмоткам статора.

    Пуск двигателя в ход происходит с соединения «звездой» обмоток статора, а когда ротор достигает нормального числа оборотов, соединение переключается на форму «треугольника».

    При этом способе ток пуска двигателя в подводящих проводах уменьшается в 3 раза если сравнивать с тем током, что возникал бы во время пуска двигателя прямым включением в сеть с обмотками статора, соединенными «треугольником». Но данный способ пригоден лишь в тех случаях, когда статор предназначен для нормальной работы при его соединении «треугольником».

    Более простым, дешевым и довольно надежным является асинхронный двигатель с короткозамкнутым ротором, правда этот двигатель имеет некоторые недостатки — малое усилие во время трогания с места и большим пусковым током. Данные недостатки в значительной мере можно устранить путем применения фазного ротора, правда такое применение значительно повысит двигатель в его стоимости и будет требовать пусковой реостат.

    Самое большое применение получили машины с трехфазной симметричной разноименно полюсной обмоткой на статоре, которая питается от сети переменного тока. Также применение нашли асинхронные машины с трехфазной или многофазной симметричной разноименно полюсной обмоткой на роторе. Обычно асинхронные машины используются как двигатели, когда как генератор они применяются очень редко.

    Асинхронный двигатель ­­­является самым распространенным типом двигателя переменного тока. Если ротор асинхронной машины находится в неподвижном состоянии, либо же частота вращения ротора меньше синхронной, то вращающееся электромагнитное поле проходит через электрические проводники медной обмотки ротора и соответственно индуцирует в них электродвижущую силу, под воздействием которой по медной обмотке ротора двигателя течёт ток. На электрические проводники с током данной обмотки ротора, находящимся в электромагнитном поле медной обмотки возбужденного состояния, действуют силы магнитного воздействия определённого размера. Из-за прикладываемого усилия порождается магнитный вращающий момент, который тянет ротор за электромагнитным полем [2].

    Смотрите так же:  220 вольт шоссе энтузиастов

    Если данный вращающий момент достаточно велик, то ротор электрической машины приходит в динамическое вращение, и его средняя рабочая частота вращения соответствует равенству имеющегося магнитного момента тормозному, созданного механической нагрузкой на валу электродвигателя, механическими силами вентиляции, трения в подшипниках и т.д. Частота вращения ротора электрической машины не соответствует частоте вращения электромагнитного поля, т.к. в этом случае угловая скорость вращения электромагнитного поля по сравнению с токопроводящей обмоткой ротора становится равна нулю, в следствии этого электромагнитное поле не будет индуцировать в уже доступной обмотке ротора электродвижущую силу и создавать крутящий момент.

    Если ротор электрической машины, которая включена в сеть, вращать при помощи двигателя в направлении вращающегося поля статора, тогда движение ротора по сравнению с полем статора изменится, из-за того, что ротор будет обгонять поле статора.

    Скольжение же при этом станет отрицательным, а направления электродвижущей силы Е1, находящейся на обмотке статора, и тока I1 изменятся на противоположное. В результате этого электромагнитный момент ротора также изменит направление превратившись из вращающего в противодействующий. В этих условиях электрическая машина из двигательного режима переходит в генераторный режим, последствием преобразования механической энергии двигателя в электрическую [3].

    В следствии того, что в режиме генератора электрической машины, условия создания вращающегося поля статора будут такими же, что и в двигательном режиме, и потребление намагничивающего тока I происходит от сети, то электрическая машина в генераторном режиме обладает определенными свойствами: потребление реактивной энергии от сети, которая необходима для создания вращающегося поля статора, но происходит отдача активной энергии в сеть, получаемой во время преобразования механической энергии двигателя [3]. Работа асинхронных генераторов возможна лишь тогда, когда она происходит в совместной работе с синхронными генераторами, необходимыми как источники реактивной энергии.

    В отличие от синхронных генераторов, асинхронные не подвержены опасностям выпадения из синхронизма. Асинхронные генераторы не получили большого распространения. Это объясняется рядом их недостатков в сопоставлении с синхронными генераторами.

    Одним из главных недостатков является то, что асинхронные генераторы обладают большой реактивной мощностью, затрачиваемой ими от сети. Величина этой мощности пропорциональна намагничивающему току и даже может достичь 25 – 45 % от номинальной мощности машины [4]. Следовательно, для работы нескольких асинхронных генераторов нужно использовать один синхронный генератор такой по величине мощности, которая равна мощности одного асинхронного генератора.

    Без включения в общую сеть, асинхронный генератор может работать и в автономных условиях. Но в этом случае, чтобы получить реактивную мощность необходимую для намагничивания генератора, нужно использовать батарею конденсаторов, которые, в свою очередь, включены параллельно нагрузке на выводах генератора.

    Наличие остаточного намагничивания является одним из условий работы асинхронных генераторов, которое необходимо для самовозбуждения генератора. Электродвижущая сила создает небольшой реактивный ток как в обмотке статора, так и в цепи конденсатора, усиливающий остаточный поток. Далее процесс развивается также, как и в генераторе постоянного тока параллельного возбуждения. С помощью изменения емкости конденсаторов можно регулировать величину намагничивающего тока, а также, и величину напряжения генераторов [5]. Из-за чрезмерных величин и высоких стоимостей конденсаторных батарей, асинхронные генераторы с самовозбуждением не получили большого распространения. Следовательно, такие генераторы применяются лишь на вспомогательных электростанциях, в таких как ветросиловые установки.

    Тормозной режим электрической машины применяется лишь при необходимости быстрой остановки момента вращения ротора двигателя. Данный режим создается противовключением двигателя. Чтобы его совершить, нужно направить вращение магнитного поля статора в противоположную сторону. Для этого достаточно переключить любую пару проводов, которые соединяют обмотку статора с сетью, посредством изменения порядка следования фаз на зажимах статора. В начальный период времени, после переключения проводов, инерциальные силы вращающихся частей двигателя и исполнительного механизма продолжают совершать вращение ротора в прежнем направлении, когда вращающееся поле статора начинает вращаться в противоположном направлении [1].

    В итоге получаем, что электромагнитная мощность машины в режиме тормоза составляет лишь малую долю электрических потерь в роторе. Когда большая часть этих потерь уходит на вращающиеся по инерции части двигателя и исполнительного механизма.

    К недостаткам данного способа торможения следует отнести: большие потери энергии, значительные броски тока во время переключения проводов на обмотках статора. Двигатели с контактными кольцами включают сопротивление, чтобы ограничить бросок тока при торможении. Кроме того, во время торможения двигателя данным способом нужно отключить его от сети в момент его остановки, иначе ротор начнет вращаться в другом направлении.

    Таким образом, существуют три режима работы асинхронной машины: движущий режим, генераторный режим и режим тормоза. Каждому из данных режимов соответствует определенный диапазон изменения коэффициента скольжения: когда в двигательном режиме скольжение может изменяться от нуля до единицы, в генераторном – от нуля до минус бесконечности, а в тормозном – от единицы до плюс бесконечности.

    §78. Режимы работы асинхронных двигателей

    Режимы работы асинхронных двигателей. Холостой ход. Если пренебречь трением и магнитными потерями в стали (идеализированная машина), то ротор асинхронного двигателя при холостом ходе вращался бы с синхронной частотой n=n1 в ту же сторону, что и поле статора; следовательно, скольжение было бы равно нулю. Однако в реальной машине частота вращения ротора n при холостом ходе никогда не может стать равной частоте вращения n1, так как в этом случае магнитное поле перестанет пересекать проводники обмотки ротора и в них не возникнет электрический ток. Поэтому двигатель в этом режиме не может развить вращающего момента и ротор его под влиянием противодействующего момента сил трения начнет замедляться. Замедление ротора будет происходить до тех пор, пока вращающий момент, возникший при уменьшенной частоте вращения, не станет равным моменту, создаваемому силами трения. Обычно при холостом ходе двигатель работает со скольжением s = 0,2-0,5 %.

    При холостом ходе в асинхронном двигателе имеют место те же электромагнитные процессы, что и в трансформаторе (обмотка статора аналогична первичной обмотке трансформатора, а обмотка ротора—вторичной обмотке). По обмотке статора проходит ток холостого хода I, однако его значение в асинхронном двигателе из-за наличия воздушного зазора между ротором и статором значительно больше, чем в трансформаторе (20—40 % номинального тока по сравнению с 3—10 % у трансформатора). Для уменьшения тока I в асинхронных двигателях стремятся выполнить минимально возможные по соображениям конструкции и технологии зазоры. Например, у двигателя мощностью 5 кВт зазор между статором и ротором обычно равен 0,2—0,3 мм. Ток холостого хода, так же как и в трансформаторе, имеет реактивную и активную составляющие. Реактивная составляющая тока холостого хода (намагничивающий ток) обеспечивает создание в двигателе требуемого магнитного потока, а активная составляющая — передачу в обмотку статора из сети энергии, необходимой для компенсации потерь мощности в машине в этом режиме.

    Нагрузочный режим. Чем больше нагрузочный момент на валу, тем больше скольжение и тем меньше частота вращения ротора. Увеличение скольжения при возрастании момента объясняется

    Рис. 260. Энергетическая диаграмма асинхронного двигателя

    следующим образом. При увеличении нагрузки на валу ротора он начинает тормозиться и частота его вращения т уменьшается. Но одновременно увеличивается частота n1— n персечения вращающимся полем проводников обмотки ротора, а следовательно, э. д. с. Е2, индуцированная в этой обмотке, ток в роторе I2 и образованный им электромагнитный вращающий момент М. Этот процесс будет продолжаться до тех пор, пока электромагнитный момент двигателя M не сравняется с нагрузочным моментом Мвн. При достижении равенства моментов М = Мвн торможение прекратится и двигатель будет снова вращаться с постоянной частотой вращения, но меньшей, чем до увеличения нагрузки. При уменьшении нагрузочного момента Мвн частота вращения ротора по той же причине будет увеличиваться. Обычно при номинальной нагрузке скольжение для двигателей средней и большой мощности составляет 2—4 %, а для двигателей малой мощности от 5 до 7,5 %.

    При работе двигателя под нагрузкой по обмоткам его статора и ротора проходят токи i1 и i2. Частота тока в обмотках статора f1 и ротора f2 определяется частотой пересечения вращающимся магнитным полем проводников соответствующей обмотки. Обмотка статора пересекается магнитным полем с частотой n1, а обмотка вращающегося ротора — с частотой n1 — n. Следовательно,

    Передача электрической энергии из статора в ротор происходит так же, как и в трансформаторе. Двигатель потребляет из сети электрическую мощность Pэл = 3U1I1cos?1 и отдает приводимому им во вращение механизму механическую мощность Рмх (рис. 260). В процессе преобразования энергии в машине имеют место потери мощности: электрические в обмотках статора ?Рэл1 и ротора ?Рэл2, магнитные ?Рм от гистерезиса и вихревых токов в ферромагнитных частях машины и механические ?Рмх от трения в подшипниках и вращающихся частей о воздух. Из статора в ротор вращающимся электромагнитным полем передается электромагнитная мощность Pэм роторе она превращается в механическую мощность ротора Р’мх. Полезная механическая мощность на валу двигателя Pмх меньше мощности Р’мх на значение потерь мощности на трение ?Рмх.

    При возрастании механической нагрузки на валу двигателя увеличивается ток I2. В соответствии с этим возрастает и ток I1 в обмотке статора.
    Электромагнитный момент М создается в асинхронном двигателе в результате взаимодействия вращающегося магнитного поля с током I2, индуцируемым им в проводниках обмотки статора. Однако в создании его участвует не весь ток I2, а только его активная составляющая I2cos?2 (здесь ?2 — угол сдвига фаз между током I2 и э. д. с. Е2 в обмотке ротора). Поэтому

    Фт — амплитуда магнитного потока, созданного обмоткой статора;

    cм — постоянная, определяемая конструктивными параметрами данной машины и не зависящая от режима ее работы.

    Поясним физический смысл формулы (84). На рис. 261 изображен ротор двухполюсного асинхронного двигателя в развернутом виде, на котором кружками показаны поперечные сечения проводников. Крестики и точки внутри проводников обозначают направление в них тока i2, а под проводниками — направление индуцированных э. д. с. e2, которые пропорциональны индукции В в данной точке воздушного зазора между статором и ротором. Кривая В показывает распределение вдоль окружности ротора индукции, создаваемой вращающимся магнитным полем, кривая i2 — распределение тока в проводниках, а кривая f — распределение электромагнитных сил, возникающих в результате взаимодействия тока (а с вращающимся магнитным полем. Электромагнитный вращающий момент М, создаваемый в результате совместного действия всех сил f, будет пропорционален среднему значению электромагнитной силы fср. Легко заметить, что к проводникам, лежащим на дуге, равной 180° — ?2, приложены силы f, увлекающие ротор за вращающимся магнитным полем, а на дуге ?2 — тормозящие силы. Поэтому при неизменном токе I2 среднее значение электромагнитной силы fср, а следовательно, и электромагнитный момент М будут тем больше, чем меньше угол ?2. Электромагнитный момент М зависит от скольжения s.

    Рис. 261. Распределение индукции В, тока i2 и электромагнитных сил f, действующих на проводники асинхронного двигателя

    Так, при увеличении скольжения возрастает э. д. с. Е2 в обмотке ротора и ток I2. Однако одновременно уменьшается cos?2, так как активное сопротивление обмотки ротора R2 остается неизменным, а реактивное Х2 увеличивается (возрастает частота тока f2 в обмотке ротора).

    Асинхронные машины

    2.1. История создания и область применения асинхронных двигателей

    В настоящее время асинхронные машины используются в основном в режиме двигателя. Машины мощностью больше 0.5 кВт обычно выполняются трёхфазными, а при меньшей мощности – однофазными.

    Впервые конструкция трёхфазного асинхронного двигателя была разработана, создана и опробована нашим русским инженером М. О. Доливо-Добровольским в 1889-91 годах. Демонстрация первых двигателей состоялась на Международной электротехнической выставке во Франкфурте на Майне в сентябре 1891 года. На выставке было представлено три трёхфазных двигателя разной мощности. Самый мощный из них имел мощность 1.5 кВт и использовался для приведения во вращение генератора постоянного тока. Конструкция асинхронного двигателя, предложенная Доливо-Добровольским, оказалась очень удачной и является основным видом конструкции этих двигателей до настоящего времени.

    За прошедшие годы асинхронные двигатели нашли очень широкое применение в различных отраслях промышленности и сельского хозяйства. Их используют в электроприводе металлорежущих станков, подъёмно-транспортных машин, транспортёров, насосов, вентиляторов. Маломощные двигатели используются в устройствах автоматики.

    Широкое применение асинхронных двигателей объясняется их достоинствами по сравнению с другими двигателями: высокая надёжность, возможность работы непосредственно от сети переменного тока, простота обслуживания.

    2.2. Устройство трёхфазной асинхронной машины

    Неподвижная часть машины называется статор, подвижная – ротор. Сердечник статора набирается из листовой электротехнической стали и запрессовывается в станину. На рис. 2.1 показан сердечник статора в сборе. Станина (1) выполняется литой, из немагнитного материала. Чаще всего станину выполняют из чугуна или алюминия. На внутренней поверхности листов (2), из которых выполняется сердечник статора, имеются пазы, в которые закладывается трёхфазная обмотка (3). Обмотка статора выполняется в основном из изолированного медного провода круглого или прямоугольного сечения, реже – из алюминия.

    Обмотка статора состоит из трёх отдельных частей, называемых фазами. Начала фаз обозначаются буквами $c_1,

    Начала и концы фаз выведены на клеммник (рис. 2.2.а), закреплённый на станине. Обмотка статора может быть соединена по схеме звезда (рис. 2.2.б) или треугольник (рис. 2.2.в). Выбор схемы соединения обмотки статора зависит от линейного напряжения сети и паспортных данных двигателя. В паспорте трёхфазного двигателя задаются линейные напряжения сети и схема соединения обмотки статора. Например, 660/380, Y/∆. Данный двигатель можно включать в сеть с $U_л = 660В$ по схеме звезда или в сеть с $U_л =380В$ – по схеме треугольник.

    Основное назначение обмотки статора – создание в машине вращающего магнитного поля.

    Сердечник ротора (рис. 2.3.б) набирается из листов электротехнической стали, на внешней стороне которых имеются пазы, в которые закладывается обмотка ротора. Обмотка ротора бывает двух видов: короткозамкнутая и фазная. Соответственно этому асинхронные двигатели бывают с короткозамкнутым ротором и фазным ротором (с контактными кольцами).


    Рис. 2.3

    Короткозамкнутая обмотка (рис. 2.3) ротора состоит из стержней 3, которые закладываются в пазы сердечника ротора. С торцов эти стержни замыкаются торцевыми кольцами 4. Такая обмотка напоминает “беличье колесо” и называют её типа “беличьей клетки” (рис. 2.3.а). Двигатель с короткозамкнутым ротором не имеет подвижных контактов. За счёт этого такие двигатели обладают высокой надёжностью. Обмотка ротора выполняется из меди, алюминия, латуни и других материалов.

    Доливо-Добровольский первым создал двигатель с короткозамкнутым ротором и исследовал его свойства. Он выяснил, что у таких двигателей есть очень серьёзный недостаток – ограниченный пусковой момент. Доливо-Добровольский назвал причину этого недостатка – сильно закороченный ротор. Им же была предложена конструкция двигателя с фазным ротором.

    На рис. 2.4 приведен вид асинхронной машины с фазным ротором в разрезе: 1 – станина, 2 – обмотка статора, 3 – ротор, 4 – контактные кольца, 5 – щетки.

    У фазного ротора обмотка выполняется трёхфазной, аналогично обмотке статора, с тем же числом пар полюсов. Витки обмотки закладываются в пазы сердечника ротора и соединяются по схеме звезда. Концы каждой фазы соединяются с контактными кольцами, закреплёнными на валу ротора, и через щётки выводятся во внешнюю цепь. Контактные кольца изготавливают из латуни или стали, они должны быть изолированы друг от друга и от вала. В качестве щёток используют металлографитовые щётки, которые прижимаются к контактным кольцам с помощью пружин щёткодержателей, закреплённых неподвижно в корпусе машины. На рис. 2.5 приведено условное обозначение асинхронного двигателя с короткозамкнутым (а) и фазным (б) ротором.

    На рис. 2.6 приведен вид асинхронной машины с короткозамкнутым ротором в разрезе: 1 – станина, 2 – сердечник статора, 3 – обмотка статора, 4 – сердечник ротора с короткозамкнутой обмоткой, 5 – вал.

    На щитке машины, закреплённом на станине, приводятся данные: $P_н,

    n_н$, а также тип машины.

    • $P_н$ – это номинальная полезная мощность (на валу)
    • $U_н$ и $I_н$ – номинальные значения линейного напряжения и тока для указанной схемы соединения. Например, 380/220, Y/∆, $I_н$Y/$I_н$∆.
    • $n_н$ – номинальная частота вращения в об/мин.

    Тип машины, например, задан в виде 4AH315S8. Это асинхронный двигатель (А) четвёртой серии защищённого исполнения. Если буква Н отсутствует, то двигатель закрытого исполнения.

    • 315 – высота оси вращения в мм;
    • S – установочные размеры (они задаются в справочнике);
    • 8 – число полюсов машины.

    2.3. Получение вращающегося магнитного поля

    1. наличие не менее двух обмоток;
    2. токи в обмотках должны отличаться по фазе
    3. оси обмоток должны быть смещены в пространстве.

    В трёхфазной машине при одной паре полюсов ($p=1$) оси обмоток должны быть смещены в пространстве на угол 120°, при двух парах полюсов ($p=2$) оси обмоток должны быть смещены в пространстве на угол 60° и т.д.

    Рассмотрим магнитное поле, которое создаётся с помощью трёхфазной обмотки, имеющей одну пару полюсов ($p=1$) (рис. 2.7). Оси обмоток фаз смещены в пространстве на угол 120° и создаваемые ими магнитные индукции отдельных фаз ($B_A,

    B_C$) смещены в пространстве тоже на угол 120°.

    Магнитные индукции полей, создаваемые каждой фазой, как и напряжения, подведённые к этим фазам, являются синусоидальными и отличаются по фазе на угол 120°.

    Приняв начальную фазу индукции в фазе $A$ ($φ_A$) равной нулю, можно записать:

    Магнитная индукция результирующего магнитного поля определяется векторной суммой этих трёх магнитных индукций.

    .

    Найдём результирующую магнитную индукцию (рис. 2.8) с помощью векторных диаграмм, построив их для нескольких моментов времени.


    Рис. 2.8

    Как следует из рис. 2.8, магнитная индукция $B$ результирующего магнитного поля машины вращается, оставаясь неизменной по величине. Таким образом, трёхфазная обмотка статора создаёт в машине круговое вращающееся магнитное поле. Направление вращения магнитного поля зависит от порядка чередования фаз. Величина результирующей магнитной индукции

    Частота вращения магнитного поля $n_0$ зависит от частоты сети $f$ и числа пар полюсов магнитного поля $p$.

    $n_0= (60 f) / p$, [об/мин].

    Смотрите так же:  Сз-1-1гт распиновка провода

    Обратите внимание, что частота вращения магнитного поля не зависит от режима работы асинхронной машины и её нагрузки.

    При анализе работы асинхронной машины часто используют понятие о скорости вращения магнитного поля $ω_0$, которая определяется соотношением:

    $ω_0 = (2 π f) / p = π n_0 / 30$, [рад/сек].

    2.4. Режимы работы трёхфазной асинхронной машины

    Асинхронная машина может работать в режимах двигателя, генератора и электромагнитного тормоза.

    Режим двигателя

    Этот режим служит для преобразования потребляемой из сети электрической энергии в механическую.


    Рис. 2.9

    Пусть обмотка статора создаёт магнитное поле, вращающееся с частотой $n_0$ в указанном направлении (рис. 2.9). Это поле будет наводить согласно закону электромагнитной индукции в обмотке ротора ЭДС. Направление ЭДС определяется по правилу правой руки и показано на рисунке (силовые линии должны входить в ладонь, а большой палец нужно направить по направлению движения проводника, т.е. ротора, относительно магнитного поля). В обмотке ротора появится ток, направление которого примем совпадающим с направлением ЭДС. В результате взаимодействия обмотки ротора с током и вращающегося магнитного поля возникает электромагнитная сила $F$. Направление силы определяется по правилу левой руки (силовые линии должны входить в ладонь, четыре пальца – по направлению тока в обмотке ротора). В данном режиме (рис. 2.9) электромагнитная сила создаст вращающий момент, под действием которого ротор начнёт вращаться с частотой $n$. Направление вращения ротора совпадает с направлением вращения магнитного поля. Чтобы изменить направление вращения ротора (реверсировать двигатель), нужно изменить направление вращения магнитного поля. Для реверса двигателя нужно изменить порядок чередования фаз подведённого напряжения, т.е. переключить две фазы.

    Пусть под действием электромагнитного момента ротор начал вращаться с частотой вращения магнитного поля ($n=n_0$). При этом в обмотке ротора ЭДС $E_2$ будет равна нулю. Ток в обмотке ротора $I_2=0$, электромагнитный момент $M$ тоже станет равным нулю. За счёт этого ротор станет вращаться медленнее, в обмотке ротора появится ЭДС, ток. Возникнет электромагнитный момент. Таким образом, в режиме двигателя ротор будет вращаться несинхронно с магнитным полем. Частота вращения ротора будет изменяться при изменении нагрузки на валу. Отсюда появилось название двигателя – асинхронный (несинхронный). При увеличении нагрузки на валу двигатель должен развивать больший вращающий момент, а это происходит при снижении частоты вращения ротора. В отличие от частоты вращения ротора частота вращения магнитного поля не зависит от нагрузки. Для сравнения частоты вращения магнитного поля $n_0$ и ротора n ввели коэффициент, который назвали скольжением и обозначили буквой $S$. Скольжение может измеряться в относительных единицах и в процентах.

    $S = (n_0 — n) / n_0$ или $S = [(n_0 — n) / n_0] 100%$.

    При пуске в ход асинхронного двигателя $n=0,

    S=1$. В режиме идеального холостого хода $n=n_0,

    S=0$. Таким образом, в режиме двигателя скольжение изменяется в пределах:

    При работе асинхронных двигателей в номинальном режиме:

    В режиме реального холостого хода асинхронных двигателей:

    Режим генератора

    Этот режим служит для преобразования механической энергии в электрическую, т.е. асинхронная машина должна развивать на валу тормозной момент и отдавать в сеть электрическую энергию. Асинхронная машина переходит в режим генератора, если ротор начинает вращаться быстрее магнитного поля ($n \gt n_0$). Этот режим может наступить, например, при регулировании частоты вращения ротора.

    Пусть $n \gt n_0$. При этом изменится (по сравнению с режимом двигателя) направление ЭДС и тока ротора, а также изменится направление электромагнитной силы и электромагнитного момента (рис. 2.10). Машина начинает развивать на валу тормозной момент (потребляет механическую энергию) и возвращает в сеть электрическую энергию (изменилось направление тока ротора, т.е. направление передачи электрической энергии).


    Рис. 2.10

    Таким образом, в режиме генератора скольжение изменяется в пределах:

    Режим электромагнитного тормоза

    Этот режим работы наступает, если ротор и магнитное поле вращаются в разные стороны. Этот режим работы имеет место при реверсе асинхронного двигателя, когда изменяют порядок чередования фаз, т.е. изменяется направление вращения магнитного поля, а ротор по инерции вращается в прежнем направлении.

    Согласно рис. 2.11 электромагнитная сила будет создавать тормозной электромагнитный момент, под действием которого будет снижаться частота вращения ротора, а затем произойдёт реверс.

    В режиме электромагнитного тормоза машина потребляет механическую энергию, развивая на валу тормозной момент, и одновременно потребляет из сети электрическую энергию. Вся эта энергия идёт на нагрев машины.


    Рис.2.11

    Таким образом, в режиме электромагнитного тормоза скольжение изменяется в пределах:

    2.5. Процессы в асинхронной машине

    2.5.1. Цепь статора

    Магнитное поле, создаваемое обмоткой статора, вращается относительно неподвижного статора с частотой $n_0=60f)/p$ и будет наводить в обмотке статора ЭДС. Действующее значение ЭДС, наводимой этим полем в одной фазе обмотки статора определяется выражением:

    $E_1= 4,44 w_1 k_1 f Φ$,

    где: $k_1=0.92÷0.98$ – обмоточный коэффициент;
    $f_1=f$ – частота сети;
    $w_1$ – число витков одной фазы обмотки статора;
    Φ – результирующее магнитное поле в машине.

    б) Уравнение электрического равновесия фазы обмотки статора.

    Это уравнение составлено по аналогии с катушкой с сердечником, работающей на переменном токе.

    .

    Здесь $Ú$ и $Ú_1$ – напряжение сети и напряжение, подведённое к обмотке статора.
    $R_1$ – активное сопротивление обмотки статора, связанное с потерями на нагрев обмотки.
    $x_1$ – индуктивное сопротивление обмотки статора, связанное с потоком рассеяния.
    $z_1$ – полное сопротивление обмотки статора.
    $İ_1$ – ток в обмотке статора.

    При анализе работы асинхронных машин часто принимают $I_1 z_1 = 0$. Тогда можно записать:

    $U_1 ≈ E_1 = 4,44 w_1 k_1 f Φ$.

    Из этого выражения следует, что магнитный поток Φ в асинхронной машине не зависит от её режима работы, а при заданной частоте сети $f$ зависит только от действующего значения приложенного напряжения $U_1$. Аналогичное соотношение имеет место и в другой машине переменного тока – в трансформаторе.

    2.5.2. Цепь ротора

    а) Частота ЭДС и тока ротора.

    При неподвижном роторе частота ЭДС $f_2$ равна частоте сети $f$.

    $f_2 = f = (n_0 p) / 60$.

    При вращающемся роторе частота ЭДС ротора зависит от частоты вращения магнитного поля относительно вращающегося ротора, которая определяется соотношением:

    Тогда частота ЭДС вращающегося ротора:

    .

    Частота ЭДС ротора изменяется пропорционально скольжению и в режиме двигателя имеет наибольшее значение в момент пуска в ход.

    Пусть при $f=50$Гц, номинальное скольжение $S_н=2$%. Тогда при номинальной частоте вращения ротора $f_2=f×S_н=1$Гц.

    Таким образом, в обмотке ротора асинхронной машины частота наводимой ЭДС зависит от частоты вращения ротора.

    При неподвижном роторе $f_2=f$ и действующее значение ЭДС определяется по аналогии с $E_1$.

    $E_2 = 4,44 w_2 k_2 f Φ$,

    где: $w_2$ и $k_2$ – соответственно число витков и обмоточный коэффициент обмотки ротора.

    Если ротор вращается, то $f_2=f×S_н$ и ЭДС вращающегося ротора определяется соотношением:

    $E_ <2S>= 4,44 w_2 k_2 f_2 Φ = E_2 S$.

    ЭДС, наводимая в обмотке ротора, изменяется пропорционально скольжению и в режиме двигателя имеет наибольшее значение в момент пуска в ход.

    Отношение ЭДС статора к ЭДС неподвижного ротора называется коэффициентом трансформации асинхронной машины.

    Запишем уравнение равновесия для одной фазы короткозамкнутого ротора.

    При неподвижном роторе.

    ,

    где: $x_2=2πfL_2$ – индуктивное сопротивление обмотки неподвижного ротора, связанное с потоком рассеяния;
    $R_2$ – активное сопротивление обмотки ротора, связанное с потерями на нагрев обмотки.

    При вращающемся роторе.

    где: $x_<2S>=2πf_2L_2=2πfL_2S=x_2S$ – индуктивное сопротивление обмотки вращающегося ротора.

    Для тока ротора в общем случае можно получить такое соотношение:

    .

    Отсюда следует, что ток ротора зависит от скольжения и возрастает при его увеличении, но медленнее, чем ЭДС.

    Обмотка ротора, как и обмотка статора, является многофазной и при появлении в ней тока создаёт своё вращающееся магнитное поле. Обозначим через $n_2$ частоту вращения магнитного поля ротора относительно ротора.

    $n_2 = (60 f_2) / p = (60 f S) / p$.

    Здесь $p$ – число пар полюсов обмотки ротора, оно всегда равно числу пар полюсов обмотки статора.

    Относительно статора магнитное поле ротора вращается с частотой

    .

    Из полученного соотношения следует, что магнитное поле ротора относительно статора вращается с той же частотой, что и магнитное поле статора. Таким образом, магнитные поля ротора и статора относительно друг друга неподвижны. Поэтому при анализе работы асинхронной машины можно применить те же соотношения, что и трансформаторе.

    2.5.3. Ток статора

    Так как результирующее магнитное поле асинхронной машины не зависит от её режима работы, можно составить для одной фазы уравнение магнитодвижущих сил, приравняв магнитодвижущую силу в режиме холостого хода к сумме магнитодвижущих сил в режиме нагрузки.

    $İ_0 w_1 k_1 = İ_1 w_1 k_1 + İ_2 w_2 k_2$

    Отсюда $İ_1 = İ_0 + İ’_2$.

    Здесь $I_0$ – ток в обмотке статора в режиме идеального холостого хода, $I’_2=-I_2(w_2k_2)/(w_1k_1)$ – составляющая тока статора, которая компенсирует действие магнитодвижущей силы обмотки ротора. Полученное выражение для тока статора отражает свойство саморегулирования асинхронной машины. Чем больше ток ротора, тем больше ток статора. В режиме холостого хода ток статора минимальный. В режиме нагрузки ток статора возрастает. Ток реального холостого хода асинхронной машины $I_0=(20÷60)%I_<1н>$ и значительно больше по сравнению с номинальным током, чем у трансформатора. Это объясняется тем, что величина тока $I_0$ зависит от магнитного сопротивления среды, в которой создаётся магнитное поле. У асинхронной машины, в отличие от трансформатора, есть воздушный зазор, который создаст большое сопротивление магнитному полю.

    2.6. Электромагнитный момент асинхронной машины

    Электромагнитный момент возникает при наличии магнитного поля, создаваемого обмоткой статора, и тока в обмотке ротора. Можно показать, что электромагнитный момент определяется соотношением:

    $M = C Φ I_2 \cos ψ_2$.

    Здесь: – конструктивный коэффициент;
    $ω_0 = 2 π f / p$ – скорость вращения магнитного поля;
    $ψ_2$ – сдвиг по фазе между ЭДС и током ротора;
    $I_2 \cos ψ_2$ – активная составляющая тока ротора.

    Таким образом, величина электромагнитного момента зависит от результирующего магнитного поля Φ и активной составляющей тока ротора.

    На рис. 2.12 приведено пояснение влияния $\cos ψ_2$ на величину электромагнитного момента: а) $ψ_2=0°$, $(\cos ψ_2=1)$; б) $ψ_2=90°$, $(\cos ψ_2=0)$.


    Рис. 2.12.

    Как следует из рис. 2.12.а, если $ψ_2=0°$, в создании электромагнитного момента участвуют все проводники обмотки ротора, т.е. момент имеет наибольшее значение. Если $ψ_2=90°$ (рис. 2.12.б), результирующая электромагнитная сила и момент равны нулю.

    В режиме двигателя при изменении нагрузки на валу изменяется частота вращения ротора, что приводит к изменению скольжения, частоты тока ротора, индуктивного сопротивления ротора и $\cos ψ_2$. В результате изменяется вращающий момент. На рис. 2.13 приведено пояснение влияния индуктивного сопротивления ротора на угол $ψ_2$: а) при $S=1$ (пуск в ход); б) при $S≤1$ (после разгона). Наибольшие значения ЭДС и частота тока ротора имеют в момент пуска в ход, когда скольжение $S=1$. При этом $f_2=f_1$, $X_2 \gt \gt R_2$, угол $ψ_2$ близок к $90°$ (рис. 2.13.а).


    Рис. 2.13

    За счет малого $\cos ψ_2$ в момент пуска в ход асинхронные двигатели имеют ограниченный пусковой момент. Кратность пускового момента (по сравнению с номинальным) у них составляет

    $M_ <пуск>/ M_н = 0,8 ÷ 1,8$.

    Причем большие цифры относятся к двигателям специальной конструкции с улучшенными пусковыми свойствами.

    По мере разгона ротора двигателя частота тока ротора падает, уменьшается индуктивное сопротивление ротора $X_<2S>$ и угол $ψ_2$ уменьшается (рис. 2.13.б). Это приводит к увеличению вращающего момента и дальнейшему разгону двигателя.

    Подставим в выражение для электромагнитного момента соотношения для $I_2$, $\cos ψ_2$ и Φ, полученные ранее:

    , , .

    где: $k_<тр>$ – коэффициент трансформации асинхронной машины.

    Выразим $E_2=E_1/k_<тр>$, а $E_1$ приравняем к напряжению $U_1$, подведенному к обмотке статора ($E_1≈U_1$). В результате получим другое выражение для электромагнитного момента, которое удобно использовать при анализе работы машины, при построении ее характеристик

    Из полученного выражения для электромагнитного момента следует, что он сильно зависит от подведенного напряжения ($M \sim U_1^2$). При снижении, например, напряжения на 10%, электромагнитный момент снизится на 19% ($M \sim (0,9U_1)^2=0.81U_1^2$). Это является одним из недостатков асинхронных двигателей, так как приводит на производстве к снижению производительности труда и увеличению брака.

    2.7. Зависимость электромагнитного момента от скольжения

    Выражение для электромагнитного момента (*) справедливо для любого режима работы и может быть использовано для построения зависимости момента от скольжения при изменении последнего от $+∞$ до $-∞$ (рис. 2.14).

    Рассмотрим часть этой характеристики, соответствующая режиму двигателя, т.е. при скольжении, изменяющемся от 1 до 0. Обозначим момент, развиваемый двигателем при пуске в ход ($S=1$) как $M_<пуск>$. Скольжение, при котором момент достигает наибольшего значения, называют критическим скольжением $S_<кр>$, а наибольшее значение момента – критическим моментом $M_<кр>$. Отношение критического момента к номинальному называют перегрузочной способностью двигателя

    $M_ <кр>/ M_н = λ = 2 ÷ 3$.

    Из анализа формулы (*) на максимум можно получить соотношения для $M_<кр>$ и $S_<кр>$

    Критический момент не зависит от активного сопротивления ротора, но зависит от подведенного напряжения. При уменьшении $U_1$ снижается перегрузочная способность асинхронного двигателя.

    Из выражения (*), разделив $M$ на $M_<кр>$, можно получить формулу, известную под названием «формула Клосса», удобную для построения $M=f(S)$.

    Если в эту формулу подставить вместо $M$ и $S$ номинальные значения момента и скольжения ($M_н$ и $S_н$), то можно получить соотношение для расчета критического скольжения.

    .

    Участок характеристики (рис. 2.14), на котором скольжение изменяется от 0 до $S_<кр>$, соответствует устойчивой работе двигателя. На этом участке располагается точка номинального режима ($M_н$, $S_н$). В пределах изменения скольжения от 0 до $S_<кр>$ изменение нагрузки на валу двигателя будет приводить к изменению частоты вращения ротора, изменению скольжения и вращающего момента. С увеличением момента нагрузки на валу частота вращения ротора станет меньше, что приведет к увеличению скольжения и электромагнитного (вращающего) момента. Если момент нагрузки превысит критический момент, то двигатель остановится.

    Участок характеристики, на котором скольжение изменяется от $S_<кр>$ до 1, соответствует неустойчивой работе двигателя. Этот участок характеристики двигатель проходит при пуске в ход и при торможении.

    2.8. Механическая характеристика асинхронного двигателя

    Под механической характеристикой принято понимать зависимость частоты вращения ротора в функции от электромагнитного момента $n=f(M)$. Эту характеристику (рис. 2.15) можно получить, используя зависимость $M=f(S)$ и пересчитав частоту вращения ротора при разных значениях скольжения.

    Так как $S=(n_0-n)/n_0$, отсюда $n=n_0(1-S)$. Напомним, что $n_0=(60f)/p$ – частота вращения магнитного поля.

    Участок 1-3 соответствует устойчивой работе, участок 3-4 – неустойчивой работе. Точка 1 соответствует идеальному холостому ходу двигателя, когда $n=n_0$. Точка 2 соответствует номинальному режиму работы двигателя, ее координаты $M_н$ и $n_н$. Точка 3 соответствует критическому моменту $M_<кр>$ и критической частоте вращения $n_<кр>$. Точка 4 соответствует пусковому моменту двигателя $M_<пуск>$. Механическую характеристику можно рассчитать и построить по паспортным данным. Точка 1:

    где: $p$ – число пар полюсов машины;
    $f$ – частота сети.

    Точка 2 с координатами $n_н$ и $M_н$. Номинальная частота вращения $n_н$ задается в паспорте. Номинальный момент рассчитывается по формуле:

    здесь: $P_н$ – номинальная мощность (мощность на валу).

    Точка 3 с координатами $M_<кр>n_<кр>$. Критический момент рассчитывается по формуле $M_<кр>=M_нλ$. Перегрузочная способность λ задается в паспорте двигателя $n_<кр>=n_0(1-S_<кр>)$, , $S_н=(n_0-n_н)/n_0$ – номинальное скольжение.

    Точка 4 имеет координаты $n=0$ и $M=M_<пуск>$. Пусковой момент вычисляют по формуле

    где: $λ_<пуск>$ – кратность пускового момента задается в паспорте.

    Асинхронные двигатели имеют жесткую механическую характеристику, т.к. частота вращения ротора (участок 1–3) мало зависит от нагрузки на валу. Это одно из достоинств этих двигателей.

    2.9. Совместная работа асинхронного двигателя с нагрузкой на валу

    На рис. 2.16 рассматривается совместная работа асинхронного двигателя с нагрузкой на валу. Нагрузочный механизм (рис. 2.16.а) соединяется с валом двигателя и при вращении создает момент сопротивления (момент нагрузки). При изменении нагрузки на валу автоматически изменяется частота вращения ротора, токи в обмотках ротора и статора и потребляемый из сети ток. Пусть двигатель работал с нагрузкой $M_<нагр\,1>$ в точке 1 (рис. 2.16.б). Если нагрузка на валу увеличится до значения $M_<нагр\,2>$, рабочая точка переместится в точку 2. При этом частота вращения ротора снизится ($n_2 \lt n_1$), а возрастет вращающий момент ($M_2 \gt M_1$). Снижение частоты вращения ротора приводит к увеличению скольжения, увеличению токов в обмотках ротора и статора, т.е. к увеличению потребляемого из сети тока.

    2.10. Искусственные механические характеристики

    Построенная по паспортным данным двигателя механическая характеристика называется естественной. Если изменять величину подведенного напряжения, активное сопротивление ротора или другие параметры, то можно получить механические характеристики, отличные от естественной, которые называют искусственными.

    На рис. 2.17 приведены механические характеристики двигателя при разной величине подведенного напряжения.

    Как следует из рис. 2.17 при понижении подведенного напряжения частота вращения магнитного поля $n_0$ остается неизменной, а уменьшается критический $M_<кр>$ и пусковой $M_<пуск>$ моменты, т.е. снижается перегрузочная способность и ухудшаются пусковые свойства двигателя. При понижении подведенного напряжения механическая характеристика становится мягче.

    На рис. 2.18 приведены механические характеристики двигателя при разной величине активного сопротивления ротора.

    Как следует из рис. 2.18 при увеличении активного сопротивления обмотки ротора за счет введения реостата $R_<доб>$ в цепь фазного ротора сохраняется неизменным $M_<кр>$, т.е. сохраняется перегрузочная способность двигателя, но происходит увеличение пускового момента. Частота вращения в режиме идеального холостого хода остается неизменной, равной $n_0$. С увеличением активного сопротивления обмотки ротора механические характеристики становятся мягче, т.е. ухудшается устойчивость работы двигателя.

    2.11. Пуск в ход асинхронного двигателя

    В момент пуска в ход $n=0$, т.е. скольжение $S=1$. Т.к. токи в обмотках ротора и статора зависят от скольжения и возрастают при его увеличении, пусковой ток двигателя в 5 ÷ 8 раз больше его номинального тока

    Как рассматривалось ранее, из-за большой частоты ЭДС ротора асинхронные двигатели имеют ограниченный пусковой момент

    Смотрите так же:  Принципиальная схема сварочного инвертора ресанта 220

    Для пуска в ход двигателя необходимо, чтобы развиваемый им пусковой момент превышая момент нагрузки на валу. В зависимости от мощности источников питания и условий пуска используют разные способы пуска, которые преследуют цели: уменьшение пускового тока и увеличение пускового момента.

    Различают следующие способы пуска в ход асинхронных двигателей: прямое включение в цепь, пуск при пониженном напряжении, реостатный пуск, использование двигателей с улучшенными пусковыми свойствами.

    2.11.1. Прямое включение в сеть

    Это самый простой и самый дешевый способ пуска. На двигатель вручную или с помощью дистанционного управления подается номинальное напряжение. Прямое включение в сеть допускается, если мощность двигателя не превышает 5% от мощности трансформатора, если от него питается и осветительная сеть. Ограничение по мощности объясняется бросками тока в момент пуска, что приводит к снижению напряжения на зажимах вторичных обмоток трансформатора. Если от трансформатора не питается осветительная сеть, то прямое включение в сеть можно применять для двигателей, мощность которых не превышает 25% от мощности трансформатора.

    2.11.2. Пуск при пониженном напряжении

    Этот способ применяют при пуске в ход мощных двигателей, для которых недопустимо прямое включение в сеть. Для понижения подводимого к обмотке статора напряжения используют дроссели и понижающие автотрансформаторы. После пуска в ход на обмотку статора подается напряжение сети.

    Понижение напряжения производят с целью уменьшения пускового тока, но одновременно, как это следует из рис. 2.17 и 2.17.б, происходит уменьшение пускового момента. Если напряжение при пуске понизить в раз, пусковой момент понизится в 3 раза. Поэтому этот способ пуска можно применять только при отсутствии нагрузки на валу, т.е. в режиме холостого хода.

    Если, согласно паспортным данным, двигатель должен включаться в сеть по схеме треугольник, то для снижения пускового тока на время пуска в ход обмотку статора включают по схеме звезда.

    Основные недостатки этого способа пуска: высокая стоимость пусковой аппаратуры и невозможность пуска с нагрузкой на валу.

    2.11.3. Реостатный пуск асинхронных двигателей

    Этот способ применяют при тяжелых условия пуска, т.е. при большой нагрузке на валу. Для реостатного пуска используют асинхронные двигатели с фазным ротором, в цепь ротора включается пусковой реостат. Реостатный пуск служит для увеличения пускового момента. Одновременно происходит уменьшение пускового тока двигателя. По мере разгона двигателя пусковой реостат выводится и после окончания пуска обмотка ротора оказывается замкнутой накоротко.

    На рис. 2.19 приведена схема реостатного пуска (рис. 2.19.а) и механические характеристики (рис 2.19.б) при этом пуске.

    В момент пуска в ход (рис. 2.19.а) в цепь ротора введен полностью пусковой реостат ($R_<пуск3>=R_<пуск1>+R_<пуск2>$), для чего контакты реле $К_1$ и $К_2$ разомкнуты. При этом двигатель будет запускаться по характеристике 3 (рис. 2.19.б) под действием пускового момента $M_<пуск>$. При заданной нагрузке на валу и введенном реостате $R_<пуск3>$ разгон закончится в точке $A$. Для дальнейшего разгона двигателя нужно замкнуть контакты $К_1$, при этом сопротивление пускового реостата снизится до $R_<пуск2>$ и разгон будет продолжаться по характеристике 2 до точки $B$. При замыкании контактов $К_2$, пусковой реостат будет полностью выведен ($R_<пуск>=0$) и окончательный разгон двигателя будет продолжаться по его естественной механической характеристике 1 и закончится в точке $C$.

    Критическое скольжение равно:

    для естественной характеристики $S_<кр1>≈R_2/X_2$;

    для искусственной характеристики $S_<кр3>≈(R_2+R_<пуск3>)/X_2$.

    Пусковой момент для искусственной характеристики можно рассчитать по формуле Клосса

    Задаваясь необходимой величиной пускового момента, можно вычислить $S_<кр3>$ и величину пускового сопротивления

    2.11.4. Использование двигателей с улучшенными пусковыми свойствами

    Стремление совместить достоинства асинхронных двигателей с короткозамкнутым ротором (высокая надежность) и фазным ротором (большой пусковой момент) привело к созданию этих двигателей. Они имеют короткозамкнутую обмотку ротора специальной конструкцией. Различают двигатели с обмоткой ротора в виде двойной «беличьей клетки» (рис. 2.20.а) и с глубоким пазом (рис. 2.20.б).

    На рис. 2.20 показаны конструкции ротора двигателей с улучшенными пусковыми свойствами.

    У двигателя с двойной «беличьей клеткой» на роторе закладывается две короткозамкнутые обмотки. Обмотка 1 выполняет роль пусковой, а обмотка 2 является рабочей. Для получения повышенного пускового момента пусковая обмотка должна обладать большим активным сопротивлением, чем рабочая обмотка. Поэтому обмотка 1 выполняется из материала с повышенным удельным сопротивлением (латунь), чем обмотка 2 (медь). Сечение проводников, образующих пусковую обмотку, меньше, чем у рабочей обмотки. За счет этого повышается активное сопротивление пусковой обмотки.

    Рабочая обмотка, расположенная глубже, охватывается большим магнитным потоком, чем пусковая. Поэтому индуктивное сопротивление рабочей обмотки значительно больше, чем пусковой. За счет этого в момент пуска в ход, когда частота тока ротора имеет наибольшее значение, ток в рабочей обмотке, как следует из закона Ома, будет небольшим и в создании пускового момента будет участвовать в основном пусковая обмотка, имеющая большое активное сопротивление. По мере разгона двигателя частота тока ротора падает, уменьшается и индуктивное сопротивление обмоток ротора, это приводит к увеличению тока в рабочей обмотке, за счет этого в создании вращающего момента будет участвовать, в основном, рабочая обмотка. Т.к. она обладает малым активным сопротивлением, естественная механическая характеристика двигателя будет жесткой.

    Аналогичная картина наблюдается у двигателя с глубоким пазом (рис. 2.20.б). Глубокий стержень обмотки (1) можно представить в виде нескольких проводников, расположенных по высоте паза. За счет высокой частоты тока в обмотке ротора в момент пуска в ход происходит «вытеснение тока к поверхности проводника». За счет этого в создании пускового момента участвует только верхний слой проводников обмотки ротора. Сечение верхнего слоя значительно меньше сечения всего проводника. Поэтому при пуске в ход обмотка ротора обладает повышенным активным сопротивлением, двигатель развивает повышенный пусковой момент. По мере разгона двигателя плотность тока по сечению проводников обмотки ротора выравнивается, сопротивление обмотки ротора снижается.

    В целом эти двигатели имеют жесткие механические характеристики, повышенный пусковой момент и меньшую кратность пускового тока, чем двигатели с короткозамкнутым ротором обычной конструкцией.

    2.12. Регулирование частоты вращения асинхронных двигателей

    При работе многих механизмов, приводящихся во вращение асинхронными двигателями, в соответствии с технологическими требованиями возникает необходимость регулировать скорость вращения этих механизмов. Способы регулирования частоты (скорости) вращения асинхронных двигателей раскрывает соотношение:

    Отсюда следует, что при заданной нагрузке на валу частоту вращения ротора можно регулировать:

    1. изменением скольжения;
    2. изменением числа пар полюсов;
    3. изменением частоты источника питания.

    2.12.1. Изменение скольжения

    Этот способ используют в приводе тех механизмов, где установлены асинхронные двигатели с фазным ротором. Например, в приводе подъемно-транспортных машин. В цепь фазного ротора вводится регулировочный реостат. Увеличение активного сопротивления ротора не влияет на величину критического момента, но увеличивает критическое скольжение (рис. 2.21).

    На рис. 2.21 приведены механические характеристики асинхронного двигателя при разных сопротивлениях регулировочного реостата $R_ <р3>\gt R_ <р2>\gt 0,

    Как следует из рис. 2.21 при этом способе можно получить большой диапазон регулирования частоты вращения в сторону понижения. Основные недостатки этого способа:

    1. Из-за больших потерь на регулировочном реостате снижается коэффициент полезного действия, т.е. способ неэкономичный.
    2. Механическая характеристика асинхронного двигателя с увеличением активного сопротивления ротора становится мягче, т.е. снижается устойчивость работы двигателя.
    3. Невозможно плавно регулировать частоту вращения.

    Из-за перечисленных недостатков этот способ применяют для кратковременного снижения частоты вращения.

    2.12.2. Изменение числа пар полюсов

    Эти двигатели (многоскоростные) имеют более сложную обмотку статора, позволяющую изменять ее число пар полюсов, и короткозамкнутый ротор. При работе асинхронного двигателя необходимо, чтобы обмотки ротора и статора имели одинаковое число пар полюсов. Только короткозамкнутый ротор способен автоматически приобретать то же число пар полюсов, что и поле статора. Многоскоростные двигатели нашли широкое применение в приводе металлорежущих станков. Нашли применение двух, трех и четырех скоростные двигатели.

    На рис. 2.22 показана схема соединения и магнитное поле статора двигателя при последовательном (б) и параллельном (а) соединении полуобмоток.

    У двухскоростного двигателя обмотка каждой фазы состоит из двух полуобмоток. Включая их последовательно или параллельно можно в 2 раза изменять число пар полюсов.

    У четырехскоростного двигателя на статоре должно размещаться две независимые обмотки с разным числом пар полюсов. Каждая из обмоток позволяет в два раза изменять число пар полюсов. Например, у двигателя, работающего от сети c частотой $f=50$ Гц, со следующими частотами вращения 3000/1500/1000/500 [об/мин] с помощью одной из обмоток статора можно получить частоту вращения 3000 об/мин и 1500 об/мин (при этом $p=1$ и $p=2$). С помощью другой из обмоток можно получить частоту вращения 1000 об/мин и 500 об/мин (при этом $p=3$ и $p=6$).

    При переключении числа пар полюсов изменяется и магнитный поток в зазоре, что приводит к изменению критического момента $M_<кр>$ (рис. 2.23.б). Если при изменении числа пар полюсов одновременно изменять и подведенное напряжение, то критический момент может остаться неизменным (рис. 2.23.а). Поэтому при этом способе регулирования могут быть получены два вида семейства механических характеристик (рис. 2.23).

    Достоинства этого способа регулирования: сохранение жесткости механических характеристик, высокий К.П.Д. Недостатки: ступенчатое регулирование, большие габариты и большая стоимость двигателя.

    2.12.3. Изменение частоты источника питания

    В качестве таких источников питания в настоящее время начали находить применение преобразователи частоты (ПЧ), выполняемые на мощных полупроводниковых приборах – тиристорах. Из уравнения трансформаторной ЭДС $U_1=4,44w_1k_1fΦ$ следует, что для сохранения неизменным магнитного потока, т.е. для сохранения перегрузочной способности двигателя, необходимо вместе с частотой изменять и действующее значение подведенного напряжения. При выполнении соотношения $U_1/f_1=U’_1/f’_1$, критический момент не изменяется и получается семейство механически характеристик, представленное на рис. 2.24.

    Рис. 2.24. Механические характеристики при частотном регулировании

    Достоинства этого способа: плавное регулирование, возможность повышать и понижать частоту вращения, сохранение жесткости механических характеристик, экономичность. Основной недостаток – требуется преобразователь частоты, т.е. дополнительные капитальные вложения.

    2.13. Тормозные режимы асинхронных машин

    При работе многих производственных механизмов возникает необходимость в быстрой остановке (торможении) двигателя. Для этой цели широко используются механические тормоза, но асинхронная машина может сама выполнять функции тормозного устройства, работая в одном из тормозных режимов. При этом механические тормоза используются как запасные или аварийные, а также для удержания механизма в неподвижном состоянии.

    Различают следующие тормозные режимы асинхронных машин:

    1. генераторное торможение;
    2. динамическое торможение;
    3. торможение противовключением.

    2.13.1. Генераторное торможение

    Машина переходит в режим генератора, если $n \gt n_0$, т.е. если ротор вращается быстрее магнитного поля. Этот режим может наступить при регулировании скорости вращения увеличением числа пар полюсов или уменьшением частоты источника питания, а также в подъемно-транспортных машинах при опускании груза, когда под действием силы тяжести груза ротор начинает вращаться быстрее магнитного поля.

    В режиме генератора изменяется направление электромагнитного момента, т.е. он становится тормозным, под действием чего происходит быстрое снижение скорости вращения. Одновременно изменяется фаза тока в обмотке статора, что приводит к изменению направления передачи электрической энергии. В режиме генератора происходит возврат энергии в сеть.

    На рис. 2.25 представлены механические характеристики при генераторном торможении за счет опускания груза (а) и понижении частоты источника питания (б).


    Рис. 2.25

    Пусть двигатель с заданной нагрузкой на валу работал в точке $A$ (рис. 2.25.а). Если под действием опускаемого груза ротор начнет вращаться быстрее магнитного поля и рабочая точка попадает в точку $B$, то $n_в \gt n_0$, машина будет развивать тормозной момент и частота вращения снизится до величины меньшей $n_0$. Одно из достоинств генераторного торможения у асинхронных машин заключается в том, что переход в режим генератора происходит автоматически, как только ротор начинает вращаться быстрее магнитного поля. Это защищает асинхронные двигатели от аварийной ситуации, которая может наступить у двигателей постоянного тока. Асинхронные двигатели не могут пойти в разнос. Максимальная частота вращения ротора ограничивается частотой вращения магнитного поля.

    Пусть двигатель работает с заданной нагрузкой на валу в точке $A$ характеристики 1 (рис. 2.25.б). При снижении частоты источника питания рабочая точка должна перейти в точку $C$ характеристики 2. Но если $n_А$ окажется больше новой пониженной частоты вращения магнитного поля $n_<02>$, то машина из точки $A$ переходит в точку $B$, работая на участке $B–n_<02>$ в режиме генератора. За счет этого происходит быстрое снижение частоты вращения. На участке $n_<02>–C$ машина работает в режиме двигателя, но происходит дальнейшее уменьшение частоты вращения ротора, пока вращающий момент не станет равным моменту нагрузки (т. $C$). Новое состояние равновесия с заданной нагрузкой наступает в точке $C$. Генераторное торможение является самым экономичным режимом, т.к. происходит преобразование механической энергии в электрическую и возврат энергии в сеть. Одним из достоинств этого тормозного режима является его самопроизвольное появление, т.е. не требуется никакая контролирующая аппаратура.

    2.13.2. Динамическое торможение

    Этот тормозной режим используется для точной остановки мощных двигателей. На время торможения обмотка статора отключается от сети переменного напряжения и подключается и источнику с постоянным напряжением. При этом обмотка статора будет создавать постоянное неподвижное магнитное поле. При вращении ротора относительно этого магнитного поля изменяется направление ЭДС и тока ротора, что приведет к изменению направления электромагнитного момента, т.е. он станет тормозным. Под действием этого момента происходит торможение. Изменяя величину подведенного к обмотке статора напряжения, можно регулировать время торможения. Основным достоинством этого тормозного режима является точная остановка. Постоянное напряжение можно подводить к обмотке статора только на время торможения. После остановки двигатель нужно отключить от сети постоянного тока.

    На рис. 2.26 показаны схемы включения асинхронного двигателя и механические характеристики при динамическом торможении.

    Пусть двигатель работает с нагрузкой в точке $A$. При подаче на обмотку статора постоянного напряжения рабочая точка перейдет из точки $A$ в точку $B$ тормозной характеристики 2.

    Под действием тормозного электромагнитного момента будет происходить снижение частоты вращения до полной остановки (точка 0).

    Основные недостатки динамического торможения: необходим источник постоянного тока и неэкономичность.

    2.13.3. Торможение противовключением

    Этот тормозной режим возникает при реверсе двигателя, а также широко используется для быстрой остановки двигателя.

    На рис. 2.27 представлены механические характеристики асинхронного двигателя при торможении противовключении для прямого (1) и обратного (2) порядка чередования фаз.

    Пусть двигатель с нагрузкой на валу работал в точке $A$. Для торможения двигателя нужно изменить порядок чередования фаз, т.е. переключить две фазы. При этом рабочая точка перейдет в точку $B$ (рис. 2.27). На участке $B–C$ машина работает в режиме электромагнитного тормоза, развивая тормозной момент, под действием которого происходит быстрое снижение скорости до нуля. В точке $C$ двигатель нужно отключить от сети, иначе произойдет реверс.

    Достоинством этого тормозного режима является быстрое торможение, т.к. тормозной момент действует на всем тормозном пути. Недостатки: большие токи и потери в обмотках при торможении, необходима аппаратура, контролирующая скорость вращения и отключающая двигатель от сети при его остановке. Если в приводе механизма двигатель часто работает в режиме реверса, приходится завышать его мощность из-за больших потерь мощности.

    2.14. Коэффициент мощности асинхронного двигателя и его зависимость от нагрузки на валу

    Коэффициент мощности определяется соотношением

    ,

    S_1$ – активная, реактивная и полная мощность двигателя.

    где: $P_2$ – мощность на валу (полезная мощность;
    $∆P$ – мощность потерь.

    где: $∆P_<эл>$ – электрические потери (потери на нагрев обмоток);
    $∆P_<ст>$ – потери в стали (потери на нагрев сердечника);
    $∆P_<мех>$ – механические потери.

    Электрические потери $∆P_<эл>$ зависят от токов в обмотках и возрастают при увеличении нагрузки на валу. Потери в стали не зависят от нагрузки на валу, а зависят от подведенного к обмотке статора напряжения.

    Механические потери относятся к постоянным потерям.

    В номинальном режиме $\cos φ_н=0,75÷0,95,

    Снижение $\cos φ_<хх>$ объясняется тем, что активная мощность мала ($P_<1хх>=∆P_<эл>+∆P_<ст>+∆P_<мех>$), а реактивная мощность $Q_1$ остается такой же, как и в номинальном режиме.

    На рис. 2.28 показана зависимость коэффициента мощности асинхронного двигателя от нагрузки на валу.

    При большой недогрузке асинхронного двигателя он имеет низкий коэффициент мощности, что экономически невыгодно.

    Для повышения $\cos φ$ при малой нагрузке рекомендуется понижать подведенное к двигателю напряжение. При этом уменьшается реактивная мощность, а коэффициент мощности повышается.

    Похожие статьи:

    • Отличие провода пунп от ввг Чем отличается ВВГ от ПУНП? Чем отличается ВВГ от ПУНП? Вроде сечение одинаковое, изоляция двойная. Можно ли проводку делать ПУНПом, если она заштукатуривается? Сырьём для ПВХ, методикой испытаний. Этот кабель выпускается по ГОСТ, а […]
    • Можно ли подключить узо без заземления Подключение УЗО без заземления Специальные устройства защитного отключения (УЗО) рекомендуют устанавливать там, где существует высокая вероятность поражения током. Задачей устройства является оперативное отключение всего электрического […]
    • Заземление гру Заземление гру п. 2.2.19 ПБ 12-529-03: 2.2.19. Надземные газопроводы при пересечении высоковольтных линий электропередачи, должны иметь защитные устройства, предотвращающее падение на газопровод электропроводов в случае их обрыва. […]
    • Как подсоединить провода к лампочке Как правильно подключить патрон для лампочки к проводам. Такая казалось бы простая и незамысловатая процедура, как подключение патрона для лампочки, имеет свои нюансы, не всегда знакомые для людей далеких от электричества. Да что […]
    • Заземление этажного щита Этажный щиток. Заземление. дом 9-ти этажный, 7-ми подъездный, 87 года выпуска (сделан из блок-комнат). 2 ввода. от ТП идет два кабеля 4-х жильного. щитки на этажах на 4-ре квартиры. к этажным щиткам идет 4 кабеля: 3 фазы, ноль. в этижном […]
    • Электро провода марки Как правильно выбрать электрический кабель или провода для электропроводки дома, гаража или квартиры. Любая замена или ремонт электропроводки начинается с покупки электрического кабеля! В своей практике Я столкнулся с тем, что люди при […]