Схема электронного электрического счетчика

Как устроен и работает электронный счетчик электроэнергии

Основное назначение этого прибора сводится к постоянному измерению потребляемой мощности контролируемого участка электрической схемы и отображению ее величины в удобном для человека виде. Элементная база использует твердотельные электронные компоненты, работающие на полупроводниках или микропроцессорных конструкциях.

Такие приборы выпускают для работы с цепями тока:

1. постоянной величины;

2. синусоидальной гармонической формы.

Приборы учета электроэнергии постоянного тока работают только на промышленных предприятиях, эксплуатирующих мощное оборудование с большим потреблением постоянной мощности (электрифицированный железнодорожный транспорт, электромобили…). В бытовых целях они не используются, выпускаются ограниченными партиями. Поэтому в дальнейшем материале этой статьи их рассматривать не будем, хотя принцип их работы отличается от моделей, работающих на переменном токе, в основном конструкцией датчиков тока и напряжения.

Электронные счетчики мощности переменного тока изготавливаются для учета энергии электрических устройств:

1. с однофазной системой напряжения;

2. в трехфазных цепях.

Конструкция электронного счетчика

Вся элементная база располагается внутри корпуса, снабженного:

клеммной колодкой для подключения электрических проводов;

панелью ЖКИ дисплея;

органами управления работой и передачи информации от прибора;

печатной платой с твердотельными элементами;

Внешний вид и основные пользовательские настройки одной из многочисленных моделей подобных устройств, выпускаемых на предприятиях республики Беларусь, представлен на картинке.

Работоспособность такого электросчетчика подтверждается:

нанесенным клеймом поверителя, подтверждающим прохождение метрологической поверки прибора на испытательном стенде и оценке его характеристик в пределах заявленного производителем класса точности;

ненарушенной пломбой предприятия энергонадзора, ответственного за правильное подключение счетчика к электрической схеме.

Внутренний вид плат подобного прибора показан на картинке.

Здесь нет никаких движущихся и индукционных механизмов. А наличие трех встроенных трансформаторов тока, используемых в качестве датчиков с таким же количеством явно просматриваемых каналов на монтажной плате, свидетельствуют о трехфазной работе этого устройства.

Электротехнические процессы, учитываемые электронным счетчиком

Работа внутренних алгоритмов трехфазных или однофазных конструкций происходит по одним и тем же законам, за исключением того, что в 3-х фазном, более сложном устройстве, идет геометрическое суммирование величин каждого из трех составляющих каналов.

Поэтому принципы работы электронного счетчика будем преимущественно рассматривать на примере однофазной модели. Для этого вспомним основные законы электротехники, связанные с мощностью.

Ее полная величина определяется составляющими:

реактивной (суммы индуктивной и емкостной нагрузок).

Ток, протекающий по общей цепи однофазной сети, одинаков на всех участках, а падение напряжения на каждом ее элементе зависит от вида сопротивления и его величины. На активном сопротивлении оно совпадает с вектором проходящего тока по направлению, а на реактивном отклоняется в сторону. Причем на индуктивности оно опережает ток по углу, а на емкости — отстает.

Электронные счетчики способны учитывать и отображать полную мощность и ее активную и реактивную величину. Для этого производятся замеры векторов тока с напряжением, подведенных на его вход. По значению отклонения угла между этими входящими величинами определяется и рассчитывается характер нагрузки, предоставляется информация обо всех ее составляющих.

В различных конструкциях электронных счетчиков набор функций неодинаков и может значительно отличаться своим назначением. Этим они кардинально выделяются от своих индукционных аналогов, которые работают на основе взаимодействия электромагнитных полей и сил индукции, вызывающих вращение тонкого алюминиевого диска. Конструктивно они способны замерять только активную или реактивную мощность в однофазной либо трехфазной цепи, а значение полной — приходится вычислять отдельно вручную.

Принцип измерения мощности электронным счетчиком

Схема работы простого прибора учета с выходными преобразователями показана на рисунке.

В нем для замера мощности используются простые датчики:

тока на основе обычного шунта, через который пропускается фаза цепи;

напряжения, работающего по схеме широко известного делителя.

Сигнал, снимаемый таким датчиками, мал и его увеличивают с помощью электронных усилителей тока и напряжения, после которых происходит аналогово-цифровая обработка для дальнейшего преобразования сигналов и их перемножения с целью получения величины, пропорциональной значению потребляемой мощности.

Далее производится фильтрация оцифрованного сигнала и вывод на устройства:

Применяемые в этом схеме входные датчики электрических величин не обеспечивают измерения с высоким классом точности векторов тока и напряжения, а, соответственно, и расчет мощности. Эта функция лучше реализуется измерительными трансформаторами.

Схема работы однофазного электронного счетчика

В ней измерительный ТТ включен в разрыв фазного провода потребителя, а ТН подключен к фазе и нулю.

Сигналы с обоих трансформаторов не нуждаются в усилении и направляются по своим каналам на блок АЦП, осуществляющий преобразование их в цифровой код мощности и частоты. Дальнейшие преобразования выполняет микроконтроллер, осуществляющий управление:

ОЗУ — оперативным запоминающим устройством.

Через ОЗУ выходной сигнал может передаваться дальше в канал информации, например, с помощью оптического порта.

Функциональные возможности электронных счетчиков

Низкая погрешность измерения мощности, оцениваемая классом точности 0,5 S или 02 S разрешает эксплуатировать эти приборы в целях коммерческого учета использованной электроэнергии.

Конструкции, предназначенные для замеров в трехфазных схемах, могут работать в трех или четырехпроводных электрических цепях.

Электронный счетчик может непосредственно подключаться к действующему оборудованию или иметь конструкцию, позволяющую использовать промежуточные, например, высоковольтные измерительные трансформаторы. В последнем случае, как правило, осуществляется автоматический перерасчет измеряемых вторичных величин в первичные значения тока, напряжения и мощности, включая активную и реактивную составляющие.

Счетчик фиксирует направление полной мощности со всеми ее составляющими в прямом и обратном направлении, хранит эту информацию с привязкой ко времени. При этом пользователю можно снимать показания энергии по ее приращению за определенный период времени, например, текущие или выбранные из календаря сутки, месяц или год либо — накоплению на определенное назначенное время.

Фиксация значений активной и реактивной мощности за определенный период, например, 3 или 30 минут, как и быстрый вызов ее максимальных значений в течение месяца значительно облегчает анализ работы энергетического оборудования.

В любой момент можно просмотреть мгновенные показатели активного и реактивного потребления, действующего тока, напряжения, частоты в каждой фазе.

Наличие функции многотарифного учета энергии с использованием нескольких каналов передачи информации расширяет условия коммерческого применения. При этом создаются тарифы для определенного времени, например, каждого получаса выходного либо рабочего дня по сезонам или месяцам года.

Для удобства работы пользователя на дисплее выводится рабочее меню, между пунктами которого можно перемещаться, используя рядом расположенные органы управления.

Электронный счетчик электроэнергии позволяет не только считывать информацию непосредственно с дисплея, но и просматривать ее через удаленный компьютер, а также осуществлять ввод дополнительных данных или их программирование через оптический порт.

Защита информации

Установка пломб на счетчик производится в два этапа:

1. на первом уровне доступ внутрь корпуса прибора запрещается службой технического контроля завода после изготовления счетчика и прохождения им государственной поверки;

2. на втором уровне пломбирования блокируется доступ к клеммам и подключенным проводам представителем энергоснабжающей организации или энергонадзора.

Все события снятия и установки крышки оборудованы сигнализацией, срабатывание которой фиксируется в памяти журнала событий с привязкой ко времени и дате.

Система паролей предусматривает ограничение пользователей к доступу информации и может содержать до пяти ограничений.

Нулевой уровень полностью снимает ограничения и позволяет просматривать все данные местно или удаленно, синхронизировать время, корректировать показания.

Первый уровень пароля дополнительного доступа предоставляется работникам монтажной или эксплуатационной организации систем АСКУЭ для наладки оборудования и записи параметров, не оказывающих влияние на коммерческие характеристики.

Второй уровень пароля основного доступа назначается ответственным работником энергонадзора на счетчике, прошедшем наладку и полностью подготовленном к работе.

Третий уровень основного доступа дается работникам энергонадзора, осуществляющим снятие и установку крышки со счетчика для доступа к его клеммным зажимам или проведению удаленных операций через оптический порт.

Четвертый уровень предоставляет возможности установки аппаратных ключей на плату, удаление всех установленных пломб и возможность работы через оптический порт для усовершенствования конфигурации, замены калибровочных коэффициентов.

Приведенный перечень возможностей, которыми обладает электронный счетчик электроэнергии, является общим, обзорным. Он может выставляться индивидуально и отличаться даже на каждой модели одного производителя.

Реализация электронного счетчика электроэнергии на микроконтроллере серии MSP430FE42x

В данном примере применения описывается, как реализовать электронный счетчик электроэнергии на микроконтроллере серии MSP430FE42x. Документ содержит описание некоторых основополагающих принципов и рекомендации по использованию микроконтроллеров серии MSP430FE42x, а также рисунки печатных плат и демонстрационные версии программ.

1 Введение

В данном примере применения описаны схема электрическая принципиальная и программное обеспечение электронного счетчика электроэнергии на микроконтроллере семейства MSP430FE42x. В качестве дополнения предполагается использовать руководство пользователя модуля ESP430CE1.

Смотрите так же:  Электропроводка на мтз 82 схема

Микроконтроллеры семейства MSP430FE42x со встроенным сигнальным процессором ESP430CE1 для однофазного счетчика электроэнергии со встроенным аналоговым входным терминалом и температурным датчиком были разработаны специально для использования в устройствах измерения потребляемой мощности. ESP430CE1 выполняет большинство действий по измерению потребления электроэнергии автоматически, не используя ресурсы вычислительного ядра. Это позволяет сохранить ресурсы вычислительного ядра для использования их в других задачах, например для осуществления связи с другими устройствами. ESP430CE1 может работать с различными токовыми датчиками. В качестве токового датчика он может использовать Роговского без дополнительных внешних компонентов шунт, токовые трансформаторы (СТ), включая трансформаторы со связью по постоянному току и большим фазовым сдвигом, или катушки индуктивности. Все параметры могут быть настроены программно, а калибровочные константы могут быть сохранены во Flash памяти микроконтроллера MSP430 и переданы ESP430CE1 при инициации системы.

2 Аппаратная часть

Схема монтажной платы и блок-схема устройства приведены в приложении А и описываются в нижеследующих разделах данного примера применения. Монтажная плата может использоваться с токовыми трансформаторами или шунтами и может быть перестроена. Такая монтажная плата выпускается компанией Softbaugh и имеет серийный номер для заказа DE427. Заказать ее можно на сайте компании Softbaugh, адрес которого в интерненте www.softbaugh.com.

Подключение каналов V1, I1 и I2 показаны на схеме, приведенной в приложении А.

2.1 Использование шунта в качестве преобразователя тока


Рисунок 1. Блок-схема подключения шунта к двухпроводной однофазной сети

2.2 Использование CT в качестве преобразователя тока


Рисунок 2. Блок-схема подключения CT к двухпроводной однофазной сети

2.3 Подключение CT и шунта в качестве преобразователя тока, позволяющее обнаруживать несанкционированного подключения


Рисунок 3. Блок-схема подключения шунта и CT к двухпроводной однофазной сети, позволяющее обнаруживать несанкционированное подключение

2.4 Подключение CT для подключения к трехпроводным однофазным сетям, применяемым в США


Рисунок 4. Блок-схема ANSI электросчетчика, использующегося в трехпроводных однофазных сетях

2.5 Подключение входов датчиков напряжения

Печатная плата оснащена делителем напряжения, рассчитанным на работу в сетях со среднеквадратическим значением напряжения 230 В. Также она содержит схему защиты, рассчитанную на это напряжение.

Емкостной источник питания способен обеспечивать ток потребления до 4 мА. Необходимо обеспечить, чтобы ток потребления не превысил это допустимое значение. Для этого в демонстрационной схеме был использован светодиод с низким током свечения.

2.6 Подключение входов датчиков тока

На печатной плате имеется место для монтажа SMD резистора, используемого в качестве нагрузки для токового трансформатора, но этот резистор не установлен в поставляемой плате. Замечание: нагрузочный резистор для СТ не установлен, но при подключении СТ его необходимо установить, иначе MSP430 будет поврежден.

2.7 Сглаживающий фильтр

В качестве сглаживающего фильтра рекомендуется использовать резистор номиналом 1 кОм, подключенный последовательно ко входу АЦП, и конденсатор номиналом 33 нФ, подключенный между входом преобразователя и землей. Для исключения влияния синфазных помех рекомендуется использовать сглаживающие фильтры в обоих каналах токового преобразователя.

2.8 Неиспользуемые каналы АЦП

Неиспользуемые каналы АЦП не должны быть ни к чему подключены.

3 Расчет констант для измерителя ESP430CE1

Измерителю необходимы константы, соответствующие примененным трансформаторам и/или шунтам. В данном разделе показан расчет констант для измерителя ESP430CE1.

3.1 Коэффициент преобразования по напряжению

Коэффициент преобразования по напряжению, в соответствии с которым пересчитывается реальное входное напряжение во входное напряжение модуля ESP430CE1 рассчитывается по приведенным ниже формулам:

    V(inp.max) = VoltageGain x V (Line, Nom.) x sqrt(2) x R2 /(R1 + R2)
    kV1 = Voltage (Line, nominal) x 2 x sqrt(2) / (2 15 x (1- (Vref – V(inp.max) x 2)/Vref) )

3.2 Коэффициент преобразования по току для шунта

Коэффициент преобразования по току для шунта, в соответствии с которым пересчитывается реальный входной ток в ток модуля ESP430CE1 рассчитывается по приведенным ниже формулам:

    V(I, inp.max) = CurrentGain x Imax x R(Shunt) x sqrt(2)
    kI1 = Current (Line, nominal) x 2 x sqrt(2) / (2 15 x (1- (Vref – V(I, inp.max) x 2)/Vref) )

3.3 Коэффициент преобразования по току для трансформатора тока

Коэффициент преобразования по току для трансформатора тока, в соответствии с которым пересчитывается реальный входной ток в ток модуля ESP430CE1 рассчитывается по приведенным ниже формулам:

    V(I, inp.max) = CurrentGain x Imax / CTRatio x R(Burden) x sqrt(2)
    kI1 = Current (Line, nominal) x 2 x sqrt(2) / (2 15 x (1- (Vref – V(I, inp.max) x 2)/Vref) )

3.4 Уровень прерывания по мощности

Уровень прерывания по мощности ESP430CE1 рассчитывается по следующей формуле:

    InterruptLevel = Pulses/kWh x (1000 / 3600) x fADC / (kV1 x kI1 x 4096)

Pulses/kWh определяет сколько прерываний на каждый кВт*ч будет сформировано.

4 Калибровка измерителя

Калибровка электронного счетчика электроэнергии на базе микроконтроллера семейства MSP430 при помощи обычной калибровочной аппаратуры, используемой для калибровки обычных электросчетчиков, возможна, но неэффективна. Вычислительная мощность MSP430 позволяет делать это другими методами, которые приведены ниже.

Основная калибровка может быть инициализирована при помощи команды с0, переданной через UART. Для выполнения этой команды необходимо в файле parameter.h определить входные значения следующих параметров:

    — calVoltage
    — calCurrent
    — calPhi
    — calCosPhi
    — calFreq

Калибровка фазового сдвига между током и напряжением должна быть выполнена с точностью 0.5 градуса, так как ошибка фазового сдвига, возникающая в датчиках, превышает это значение, поэтому более высокая точность не может быть достигнута.

Для калибровки счетчика электроэнергии необходимо разделить тракты измерения тока и напряжения. Это позволяет выполнить калибровку с малыми потерями энергии и определить величины напряжения, тока и фазового сдвига. На рисунке 5 показана схема включения электросчетчика при калибровке.


Рисунок 5. Электронный счетчик электроэнергии на MSP430 с внешними терминалами

4.1 Калибровка при непрерывном измерении

Нормальный рабочий режим ESP430CE1 устанавливается путем посылки вычислительным ядром команды SetMode. Величина измеренной мощности, записанная после каждого измерения в регистр ActEnSPer1 (и в регистр ActEnSPer2 для систем с двумя датчиками), преобразуется вычислительным ядром в сигнал с постоянной частотой, пропорциональный измеренной мощности. Для формирования сигнала с постоянной частотой может быть использован модуль таймера Timer_A.

При калибровке выполняются следующие действия:

  • Вычислительное ядро устанавливает в нулевом контрольном регистре ESP430CE1 флаги Curr_I1, Curr_I2, соответствующие режиму измерения.
  • Регистры параметров инициализируются для измерения мощности в нагрузке. Выполняется это при помощи команды SET_PARAM.
  • После получения команды mSet_Mode ESP430CE1 переходит в режим измерения электроэнергии.
  • Первый результат измерения, находящийся ActEnSPer1 (и ActEnSPer2 в системах с двумя датчиками), не используется, так как неизвестна точка начала.
  • Следующие результаты измерений, находящиеся в ActEnSPer1 (и ActEnSPer2 в системах с двумя датчиками) являются правильными и используются для вычислений.
  • Флаг St_ZCld в нулевом регистре состояния указывает, что при следующей доступной выборке (флаг St_NEVal установлен), новые результаты измерения за прошлый период доступны в регистрах ActEnSPer1 и ActEnSPer2.
  • Вычислительное ядро сбрасывает флаг St_NEVal при помощи команды mCLR_EVENT и выполняет считывание данных (см. описание алгоритма считывания ниже).
  • Если необходимо, например, для вычисления результата за больший период, последние четыре пункта повторяются.

Вышеупомянутые шаги повторяются и во второй калибровочной точке.

Калибровка обоих датчиков должна быть выполнена независимо. При калибровке одного датчика измерителя ток через второй датчик должен быть нулевым. И наоборот.

Калибровка производится за один основной период (или за nper основных периодов) при двух токах нагрузки I1HI и I1LO. Номинальная вычисленная мощность для двух точек калибровки:

    nHIcalc = Cz1 x I1HI x V1 x cos?1 x (nper / fmains) x (fADC / 4096) [шаги 2 ]
    nLOcalc = Cz1 x I1LO x V1 x cos?1 x (nper / fmains) x (fADC / 4096) [шаги 2 ]

Результирующие значения для наклона и смещения:

    Наклон: GainCorr1 = ((nHIcalc – nLOcalc) / (nHImeas – nLOmeas)) x 2 14
    Смещение: Poffset = (((nHImeas x nLOcalc) – (nLOmes – nHIcalc)) / (nHImeas – nLOmeas)) x (fmains / nper) x (4096 / fADC),

где fmains – основная частота в Гц;

    fADC – частота дискретизации АЦП в Гц (обычно 4096 Гц);
    nper – количество основных периодов, использованных при калибровке;
    nHIclac – вычисленная мощность в точке калибровки с высоким током в шагах в квадрате;
    nHImaes – измеренная мощность в точке калибровки с высоким током в шагах в квадрате;
    nLOclac – вычисленная мощность в точке калибровки с низким током в шагах в квадрате;
    nLOmaes – измеренная мощность в точке калибровки с низким током в шагах в квадрате;

4.1.2 Пример калибровки

Для схемы, показанной на рисунке 1, калибровка производится при следующих условиях:

    V1 = 230 В, I1HI= 20 A, I1LO = 1 A, cos?1 = 1, nper = 1, fADC = 2048 Гц, fmains = 50 Гц.

Тогда

    nHIcalc = Cz1 x I1HI x V1 x cos?1 x (nper / fmains) x (fADC / 4096) = 29,322.80806 x 20 х 230 х 1 х (1 / 50) х (2048 / 4096) = 1,348,849.171 = 14,94F1h [шагов 2 ]
    nLOcalc = Cz1 x I1LO x V1 x cos?1 x (nper / fmains) x (fADC / 4096) = 29,322.80806 x 1 х 230 х 1 х (1 / 50) х (2048 / 4096) = 67,422.458 = 1,0772h [шагов 2 ]
Смотрите так же:  Светодиоды 220 вольт переменного тока

Результат измерения в обеих точках:

    n1Himeas = 14,6040h (ошибка -1 % по сравнению с n1Hicalc = 14,94F1h)
    n1Lomeas = 1,0CB7h (ошибка +2 % по сравнению с n1Localc = 1,0772h)

    GainCorr1 = ((nHIcalc – nLOcalc) / (nHImeas – nLOmeas)) x 2 14 = ((14,94F1h – 1,0772h) / (14,6040h – 1,0CB7h)) x 2 14 = 40С0h

Poffset = (((nHImeas x nLOcalc) – (nLOmes – nHIcalc)) / (nHImeas – nLOmeas)) x (fmeins / nper) x (4096 / fADC) = (((14,6040h x 1,0772h) – (1,0CB7h – 14,94F1h)) / (14,6040h – 1,0CB7h)) x (50 / 1) x (4096 / 2048) = -215,489 = FFFC,B63Fh

Если точки калибровки исправить с учетом наклона и смещения, тогда:

    ncorr = (nmeas x GainCorr1)) x 2-14 + (Poffset1) x (nper / fmains) x (fADC / 4096) nHIcorr = 14,6040h x 40C0h x 2-14 +FFFC,B63Fh x ((1 x 2048) / (50 x 4096)) = 1,348,890 = 14,951Ah nLOcorr = 1,0CB7h x 40C0h x 2-14 +FFFC,B63Fh x ((1 x 2048) / (50 x 4096)) = 67,441 = 1,0771h

Результирующая ошибка при обеих коррекциях равняется +3.1 Е-5, т.е. 31 ppm.

4.2 Калибровка при помощи ПК

На рисунке 6 показан один из возможных вариантов установки для калибровки электронных счетчиков электроэнергии. Электросчетчики подключены к последовательному порту ПК через последовательный порт USART0, работающий в режиме UART или SPI. Все необходимые для калибровки вычисления выполняются ПК, а MSP430 каждого электросчетчика только запоминает полученные корректировочные величины во встроенной памяти данных или внешней EEPROM памяти.

ПК управляет калибровочной установкой, состоящим из генератора напряжения, генератора тока и фазовращателя, через коммуникационный интерфейс. ПК считывает результаты умножения напряжения и тока, вычисленные встроенными АЦП (или количество импульсов Ws на выходе каждого электросчетчика) и сравнивает это значение со значением, полученным эталонным электросчетчиком, который является частью калибровочной аппаратуры. ПК вычисляет ошибку электросчетчика в одной (например, при номинальном токе) или двух (например, при максимальном и номинальном токе потребления) точках калибровки. По результатам этих ошибок вычисляются индивидуальные корректировочные коэффициенты для наклона и угла смещения и передаются в конкретный электросчетчик, в котором микроконтроллер MSP430 сохраняет эти значения.


Рисунок 6. Калибровка электронных электросчетчиков при помощи ПК

Формулы для вычисления значений калибровочных констант приведены в руководстве пользователя модуля ESP430CE1.

Другой метод калибровки использует способность MSP430 выполнять сложные вычисления. Основное преимущество этого метода калибровки — это простота: Для передачи данных при этом методе не требуется никаких проводных соединений (см. рисунок 7). Уравнения исправления ошибок, используемые измерителем во время теста, такие же, как и приведенные в приведенном выше разделе «Калибровка при непрерывном измерении».

  • Измеритеи, которые будут калиброваться, переводятся в режим калибровки при помощи скрытого переключателя, UART, ключа, входного импульса и т.д.
  • ПК включает калибровочную аппаратуру, которая отдает определенное количество энергии, измеряемое при помощи эталонного измерителя, калибруемым электросчетчикам..
  • Электросчетчики измеряют выданное количество энергии и вычисляют значение электропотребления WEM1 для 100 % номинального тока Inom.
  • После этого калибровочная аппаратура отключается (I = 0, U = 0). Это позволяет при необходимости вычислить и измерить смещение самого АЦП.
  • ПК включает калибровочную аппаратуру, которая снова отдает электросчетчикам определенное количество электроэнергии (например 5 % Inom, 100 % Vnom, cos?=1). После этого аппаратура снова отключается (i = 0, U = 0).
  • Счетчики снова измеряют электроэнергию и вычисляют значение WEM0 для 5 % номинального тока Inom.
  • По двум значениям WEM1 и WEM0, найденным для 100 % и 5 % номинального тока Inom, электросчетчики вычисляют индивидуальные величины смещения и наклона.
  • После калибровки можно провести простой визуальный тест:
    — для обнуления индикаторов электросчетчики сбрасываются — калибровочная аппаратура выдает точно определенное количество энергии (при различных значениях тока, напряжения и cos?) — Визуально проверяется, чтобы на всех электросчетчиках отображалось одинаковая величина измеренного значения потребленной энергии — По показаниям ЖКИ можно определить, что рассчитанные коэффициент наклона и смещения выходят за допустимые пределы.

Пример: если провести калибровку при следующих параметра:

  • 10 000 Ws (100 % Inom, 100 % Vnom, cos? = 1)
  • 5 000 Ws (100 % Inom, 100 % Vnom, cos? = 0.5)

калибруемые электросчетчики должны показать значение Ws, равное 15 900 ± допустимая точность. Если вычисленное значение выходит за допустимые пределы, то электросчетчик признается не прошедшим калибровку.


Рисунок 7. Самокалибровка электросчетчиков

5 Емкостной источник питания

На рисунке 8 показан емкостной источник питания, формирующий одно напряжение Vcc = +3 В. Если его выходного тока недостаточно, то можно использовать выходной буфер на базе NPN транзистора.

Уравнения для разработки приведенных ниже источников питания приводятся в разделе 3.8.3.2 «Емкостной источник питания» примера применения SLAA024. В данной главе описываются другие источники питания и уравнения для их расчета.


Рисунок 8. Емкостной источник питания

5.1 Детектор обнаружения отключения/включения линейного напряжения

Так как детектор падения напряжения ESP430CE1 объединен со счетчиком циклов линейного напряжения, то при пропадании линейного напряжения он не работает. Для обнаружения этого можно отслеживать нахождение VRMS в течение определенного интервала времени ниже заданного порога или использовать внешнюю цепь для детектирования отключения линейного питания. При использовании внешней цепи для снижения потребления можно отключать модуль ESP430CE1.


Рисунок 9. Детектирование наличия линейного напряжения

6 Рекомендации по трассировке печатной платы

Правильная трассировка печатной платы очень важна для систем, использующих АЦП с высоким разрешением. Ниже приведены основные рекомендации по трассировке плат.

1. Использование, по возможности, отдельных шин аналоговой и цифровой «земли».

2. Максимально толстые дорожки от источника питания до выводов DVSS, AVSS, DVCC, и AVCC.

3. Установка конденсатора в точке схождения всех линий аналоговой «земли». Установка конденсатора в точке схождения всех цифровых «земель».

4. Конденсатор Cb следует расположить в точке схождения всех шин питания. Это необходимо для обеспечения низкого полного сопротивлению этого конденсатора.

5. AVSS и DVSS терминалы должны быть внешне соединены вместе.

6. AVCC и DVCC терминалы должны быть внешне соединены вместе.

7. Источник питания и накопительный конденсатор Cb должны быть расположен максимально близко друг к другу. Между выводами, подключенным к шинам аналогового и цифрового питания, должны быть установлены конденсаторы Ca и Cb.

8. Для развязки шин аналогового и цифрового питания необходимо использовать катушку индуктивности L. Также можно использовать и резистор, но при использовании катушки индуктивности обеспечивается лучшая фильтрация высоких частот.

9. Если по периметру печатной платы проходит дорожка, то она должна быть подключена к заземляющей шине платы.


Рисунок 10. Заземление аналого-цифрового преобразователя

6.2 Чувствительность к ЭМИ

На рисунке 11 упрощенно показана не оптимальная трассировка: серым выделены участки, способные принимать внешние наводки от внешних источников ЭМИ. Для снижения влияния внешних источников ЭМИ эти участи по площади должны быть минимальными.


Рисунок 11. Трассировка платы, чувствительной к внешним ЭМИ

На рисунке 12 показана печатная плата, имеющая оптимальную трассировку. Участки, являющиеся приемниками ЭМИ, имеют минимальную площадь.


Рисунок 12. Трассировка печатной платы, имеющей минимальную чувствительность к ЭМИ

7 Демонстрационная программа

7.1 Инициализация аналогового терминала

При отключенном модуле ESP430CE1, Вычислительное ядро MSP430 имеет доступ к модулю SD16 модулю. Сначала вычислительное ядро MSP430 должно сделать инициацию входного аналогового терминала. При этом производится установка коэффициента усиления, частоты дискретизации и частоты генератора синхроимпульсов для SD16:

7.2 Инициализация электросчетчика

Перед использованием ESP430CE1 надо настроить. Пример подпрограммы настройки модуля:

7.3 Программа Demo 1

Demo 1 – простая демонстрационная программа, которая инициализирует ESP430CE1 для измерения электрической энергии и вывода результата на индикатор. При этом происходит мигание светодиода. Эта программа может работать с отладочным комплектом Kickstart производства компании IAR.

Ниже приведены файлы демонстрационной программы их назначение:

Как работает счетчик электроэнергии старого и нового образца

Индукционный

Старые электросчетчики состоят из следующих элементов:

  1. Последовательная обмотка, именуемая также токовой катушкой. Состоит из нескольких витков толстого провода.
  2. Параллельная обмотка (катушка напряжения). Устроена, наоборот, из большого количества витков провода маленькой толщины.
  3. Счетный механизм. Устанавливается на оси алюминиевого диска.
  4. Постоянный магнит, назначение которого – тормозить и обеспечивать плавный ход диска.
  5. Диск из алюминия. Крепится на подшипниках и подпятниках.

Как видно на схеме, устройство индукционного счетчика электроэнергии достаточно простое. Что касается принципа работы, он также несложен. Сначала переменное напряжение подается на параллельную обмотку (катушку напряжения) и далее протекает на вторую, токовую катушку. Между двумя электромагнитами катушек возникают магнитные вихревые токи, которые, собственно, и способствуют вращению диска. Чем больше сила тока, тем быстрее будет крутиться диск. В свою очередь счетный механизм работает по следующему принципу: вращение от диска передается к барабану за счет червячной передачи (этому способствует установленный на оси диска червяк, который передает вращение через шестеренку, что видно на схеме выше).

Наглядно увидеть, как работает индукционный электросчетчик, вы можете на видео ниже:

Обращаем ваше внимание на то, что принцип работы однофазного счетчика электроэнергии старого образца аналогичен трехфазной модели.

Электронный

В электронном счетчике, к примеру, Энергомера ЦЭ6803В, нет ни диска, ни червячной передачи. Устройство счетчиков электроэнергии нового образца показано на схеме и фото ниже:

Принцип действия электронной модели заключается в том, что датчики тока и напряжения передают сигналы на преобразователь. Последний, в свою очередь, передает код на микроконтроллер для дальнейшей расшифровки и передачи данных на дисплей. В результате мы видим, сколько киловатт электроэнергии израсходовано на данный момент.

Смотрите так же:  Высоковольтные провода киа сид

На этом видео подробно рассматривается устройство электронного и индукционного счетчика:

Что касается многотарифных приборов учета, типа «день-ночь» или трехтарифные модели, в их устройстве дополнительно встроен модуль памяти, который запоминает количество тока, «намотанное» в разных режимах: днем и ночью. Это нужно для того, чтобы правильно подсчитывать оплату за электроэнергию (с 23:00 до 7:00 стоимость киловатта меньше, чем в остальное время суток). Про преимущества и недостатки двухтарифных электросчетчиков можете прочитать в нашей статье.

Существуют также модели приборов учета электроэнергии с пультом. В их конструкцию внесен механизм, который может блокировать систему подсчета израсходованного электричества.

Вот и все, что хотелось рассказать вам о том, какое устройство и принцип работы счетчиков электроэнергии. Надеемся, информация была для вас понятной и полезной!

Будет полезно прочитать:

Что такое электронный счетчик электроэнергии: 10 преимуществ

Электронный счетчик электроэнергии может быть однофазным и трехфазным Электричество – это ресурс, без которого в наше время обойтись почти невозможно. Именно на нем работает большинство приборов в доме. Это и стиральная машина, и телевизор, и компьютер и даже телефон вы не сможете зарядить без электричества. Однако за обеспечения дома электроэнергией нужно платить. Чтобы человек оплачивал лишь тот объем, который он использовал за месяц был изобретен счетчик электроэнергии. Сначала его точность была не высока, но сейчас на рынках появились электрические счетчики. Как они работают, и в чем их преимущества читайте далее.

Принцип работы электросчетчика

Электронный счетчик – это устройство, которое измеряет мощность, и напряжение потребляемого тока за определенный промежуток времени. Затем алгоритмы счетчика переводят полученную информацию в цифры.

Электронные счетчики работают на микропроцессорном оборудовании. Они оцифровывают вторичные величины за небольшой отрезок времени. Полученные результаты выводятся на дисплей и передаются посредством удаленного доступа. Таков их принцип работы.

Электронные счетчики очень удобны в использовании. Если для того, чтобы снять показания с индукционной модели такого устройства, нужно было иметь определенный опыт. То теперь все необходимые показания выводятся на экран в виде цифр.

У электронных счетчиков есть некоторые особенности, которые повышают их удобство, практичность и защиту. Поэтому покупка такого устройства во многих случаях, целиком и полностью оправдана.

Электросчетчик должен установить специалист, который поставит пломбу

Особенности, которые имеет устройство электронного электросчетчика:

  1. Такой электросчетчик будет надежно работать в абсолютно любом положении. Он не имеет вращающихся деталей, а потому не будет заклинивать.
  2. В электронных счетчиках изменить показания потребления энергии не получится. Там есть защита от сильных магнитов.
  3. В таком устройстве заложена программа проверки токов утечки. Она сравнивает токи, идущие по фазному и нулевому проводу. В случае большого разбега устройство отключает электроснабжение квартиры.
  4. Такие системы оснащены ограничителями мощности и другими элементами, повышающими их точность.

Все данные с таких устройств поступают прямиком на компьютеры коммунальных служб. Это помогает следить за состоянием электросети, а так же ужесточает контроль над квартирами, не давая злоумышленникам воровать электроэнергию.

Преимущества электронного счетчика

У электронного счетчика достаточно много преимуществ. Именно по этому все больше людей заменяют им свои старые приборы измерения электроэнергии. Такие устройства повышают точность показаний и упрощают их снятие.

Схема подключения электронного доступна всем. Ее множено найти в специализированной литературе. Однако лучше доверить установку счетчика работнику электрослужб. В этом случае за все неточности установке будут отвечать электрические инстанции.

Список достоинств электронных счетчиков электричества действительно велик. Давайте ознакомимся с ним подробнее.

Достоинства электронного электросчетчика:

  1. Такие устройства считаются высокоточными. Они практически не дают погрешностей в подсчете истраченного за определенный промежуток времени количества электроэнергии. Более того, он не изменяет своих показаний при воздействии различных факторов, например вибрации. Это его принципиальная разница с индукционным прибором.С сегодняшними ценами на электричество – это очень важное преимущества.
  2. Также повысилась чувствительность. Теперь счетчик более чутко реагирует на перепады и колебания в электросети.
  3. Еще одним преимуществом электронных счетчиков является их способность вести многотарифный учет в разное время суток. Это важно потому, что сейчас практикуется разная оплата за электричество днем и ночью.
  4. Электронные счетчики могут учитывать разные составляющие электроэнергии. Более того, вы можете записать показания счетчика за удобное время, а потом снова увидеть их, подключив к ноутбуку.
  5. Если электросчетчики старого образца не могли одновременно учитывать передаваемую и получаемую электроэнергию, то современные электронные счетчики такой способностью обладают. Поэтому вам не нужно будет устанавливать два устройства для каждой линии.
  6. Также электронные счетчики могут контролировать все параметры электросети, например, мощность, напряжение и нагрузка. Таким образом, при сбое какого-то параметра сети, прибор об этом проконтролирует.
  7. Счетчики электронного типа оснащены системой против воровства электричества. Подобные попытки фиксируются устройством и передаются энергослужбам.
  8. Электронный счетчик работает таким образом, что все показания передаются на один общий компьютер. Таким образом, отпадает надобность привлечения специальных работников для снятия и контроля показаний.
  9. Время между проверками состояния таких счетчиков возрасло. Это связанно с тем, что проверять их показания не нужно, а о сбоях в электросети они сообщают самостоятельно.
  10. Для такого многофункционального устройства электронный счетчик имеет весьма небольшие размеры. Он не превышает габаритами обычные устаревшие устройства.

Время от времени электрический счетчик нужно сдавать, чтобы проверили его работоспособность

Использование электронных счетчиков, прежде всего, выгодно для коммунальных служб. Однако и для жильцов современных квартир некоторые их свойства будут очень полезны.

Недостатки электронных счетчиков электроэнергии

Электронные счетчики, как вы, наверное, уже догадались, имеют не только достоинства. Они обладают и некоторыми недостатками. Чтобы окончательно разрешить вопрос с актуальностью их покупки, мы предлагаем ознакомиться и с их недостатками.

Недостатки электронных электросчетчиков:

  • Высокая стоимость;
  • Неустойчивость к перепадам напряжения;
  • Невозможность ремонта после поломки.

Как видите, все минусы данного прибора связанны с его стоимостью и недолговечностью. Поэтому прежде чем покупать дорогостоящий электросчетчик, подумайте, стоит ли оно того.

Виды счетчиков эл. Энргии

Существуют разные виды электрических счетчиков. Какой из них подойдет именно вам, зависит от ваших потребностей. Давайте вкратце ознакомимся со всеми вариациями электросчетчиков.

Виды электросчетчиков:

  1. Электронно-механический, или индукционный счетчик – это более старый вариант таких приборов. Он более долговечен, но имеет меньшую точность. Например, напряжение в 200 в. Он не видит.
  2. Электронный или цифровой счетчик – это современное, многофункциональное и точное устройство. Однако его срок службы ниже предыдущего варианта.
  3. Однофазный счетчик отлично подходит ля современных квартир. Одним из представителей такого оборудования является Меркурий.
  4. Использование трехфазного счетчика менее распространено, чем однофазного.

Для усовершенствования электросчетчиков может быть изготовлена электрическая глушилка. Она останавливает электросчетчик и может размещаться в подъездах и на столбах. Однако такие ухищрения караются законом.

Как работает электронный счетчик электроэнергии (видео)

Электронный электросчетчик – это современное и многофункциональное устройство. Несмотря на то, что оно имеет массу преимуществ перед старыми устройствами для измерения электроэнергии, его нельзя назвать долговечным. Поэтому до сих пор для многих актуальность его покупки остается под вопросом.

Похожие статьи:

  • Сечение кабеля ga 10 Акустический кабель из посеребренной меди сечением 10 Ga (5.2 мм2) готовый с разъемами типа "банан" DAXX S90-25 (2,5 метра) Предназначение: кабель для подключения акустических систем Особенность: cеребро отлично работает в области […]
  • Обрыв телефонного кабеля куда звонить Не работает стационарный телефон Ростелеком, что делать? Городской телефон, хоть давно и пережил себя, но все равно остается на дежурстве у многих абонентов. А вот проблемы, связанные с отсутствием связи или качеством работы городской […]
  • Как соединить провода интернета обжать Как обжать витую пару В сегодняшней статье я расскажу о том, как правильно обжать сетевой кабель “витая пара” и какие инструменты и аксессуары для этого понадобятся. Конечно, до сих пор встречаются умельцы, которые могут это сделать с […]
  • Магнитный пускатель 4а Как правильно выбрать электромагнитный пускатель? Поговорим об электромагнитных пускателях, как правильно выбрать и что нужно знать. Прежде всего, необходимо разделить понятия «контактор» и «пускатель магнитный». Контактор — это группы […]
  • Заземление в щитке частного дома Заземление в щитке частного дома Назначение защитного заземления При пробое изоляции питающего провода на металлическом корпусе незаземлённого прибора появляется потенциал. Если дотронуться к такому устройству, то можно получить удар […]
  • Высоковольтные провода для неона Силиконовый высоковольтный кабель Силиконовый высоковольтный кабель служит для соединения неоновых трубок между с собой и с трансформаторами. Качественный, хороший кабель c многожильным лужёным проводником - залог долгой службы вашей […]