Схема электронного предохранителя мощного

Электронный предохранитель схема

Электронный предохранитель на полевом транзисторе

Эта схема подключается в разрыв цепи между источником питания и защищаемой нагрузкой. Конструкция устройства обеспечивает защиту в диапазоне напряжений 5…20 вольт с нагрузкой до 40 ампер.

На операционном усилителе LМ358 выполнен компаратор, на третий вход которого поступает опорное напряжение со стабилизатора TL431. Полевой транзистор VT1 используется для двух задач: в роли датчика тока и мощного электронного ключа. Специфика работы схемы основывается в использовании сопротивления канала полевого транзистора в роли датчика тока.

Для активации электронного предохранителя используется тумблер без фиксации SA1. При коротком нажатии на него, напряжение следует на затвор полевого транзистора через R4 и VD2. Открываясь, транзистор подключает питание к нагрузке.

Состояние на выходе ОУ LМ358 схемы предохранителя зависит от уровня напряжения на его втором входе. Если ток, потребляемый нагрузкой, ниже заданного порога срабатывания конструкции, то напряжение на втором входе компаратора будет меньше опорного напряжения на третьем выводе. В результате на выходе ОУ будет присутствовать высокий уровень напряжения, который поддерживает полевой транзистор открытым.

Одновременно с увеличением потребляемого тока, возрастает напряжение на полевом транзисторе. Когда оно превысит напряжение на резисторе R1, на выходе компаратора напряжение начнет падать, а транзистор VT1 начнет закрываться. Причем это будет связано с опараллельным ростом напряжение на нем.

Поэтому на выходе ОУ еще сильнее падает напряжение, что приводит к мгновенному закрытию полевого транзистора и отключению нагрузки. Для повторного запуска схемы нужно просто повторно нажать тумблер.

Для надежного отключения контролируемой нагрузки при малом токе срабатывания предохранителя необходимо повысить сопротивление токового датчика, подсоединив сопротивление номиналом около 0,1 Ом в электрическую цепь стока транзистора (точка «А»).

Токовый датчик тока построен на оптроне U1 и транзисторном ключе на VT1 в коллекторную цепь которого включено электромагнитное реле. При протекании тока через резистор R1 на нем происходит падение напряжения, параллельно R1 включена цепочка из светодиода, оптрона, R2 и диода VD1. Когда падение напряжения R1 достигнет уровня 3В, сопротивление между выводами 1 и 4 резко снижается, что приведет к открыванию транзисторного ключа и срабатыванию реле. Контакты реле управляют нагрузкой, а вторая группа контактов коммутирует минус питания на обмотку реле и оно самоблокируется. Светодиод сигнализирует о срабатывании защиты. Для снятия защиты потребуется нажать кнопку SB1.

Порог срабатывания защиты электронного предохранителя при заданных номиналах схемы 1А, но его можно изменить с помощью сопротивлений: R1 — грубый, R2 и R3 точный подбор, R1=3/I где I необходимый ток срабатывания защиты.

Схема электронного предохранителя мощного

Это достаточно мощный блок питания на выходное напряжение 12V. В источнике питания используется обычная микросхема LM7812 , но выходной ток может достигать 30A, он усиливается с помощью TIP2955 — транзисторов Дарлингтона (составных). Каждый из транзисторов может выдавать до 5 ампер, а при установке шести в итоге суммарный выходной ток 30 А. Вы можете увеличить или уменьшить число TIP2955 , чтобы получить больше или меньше мощности на выходе.

Схема устройства

Принципиальная схема мощного БП на 30 А

Сама микросхема обеспечивает около 800 мА. Предохранитель подключен после LM7812 для защиты м/с от высоких бросков тока. Транзисторы и микросхема требуют адекватных радиаторов. В прекрасно понимаете, что большой ток нагрузки — это высокая мощность. Рассеиваемая транзисторами мощность также увеличивается, и избыток тепла может вызвать пробой транзисторов.

Для тока 30 ампер вам будет нужен очень большой радиатор или даже вентилятор охлаждения. 100 ОМ резисторы в эмиттерных цепях используются для стабильности и выравнивания токов каждого плеча, ведь уровень усиления будет различным для каждого транзистора. Может получиться, что один тянет на себя 8 А, а другой «отдыхает» с 3-мя амперами:)) Выпрямительные диоды, должны быть способны выдерживать ток не менее 60 ампер. Двойной запас не помешает. Сетевой трансформатор на ток вторички 30 ампер является наиболее дорогостоящей частью проекта. Входное напряжение стабилизатора должно быть, по крайней мере, на несколько вольт выше выходного напряжения 12 В.

Внешний вид самодельного МБП

Ещё раз напоминаем, что при сборке этого мощного БП закладывайте в конструкцию большой радиатор, ещё лучше оснастить его вентилятором или водяным охлаждением радиатора. Если хотя бы пара силовых транзисторов выйдет из строя, то результаты будут плачевны. Не используйте схему без предохранителей!

Испытания мощного блока питания

Для начального тестирования можно не подключать нагрузку. Сначала с помощью вольтметра через выходные клеммы, вы должны измерить 12 Вольт на выходе схемы, или напряжение к этому значению. Затем Подключите 100 ом, 3 Вт резистор или другую небольшую нагрузку. Показания вольтметра не должны меняться. Если отсутствует 12 вольт — выключите питание и внимательно проверьте все соединения. Внимание! Перед установкой деталей (диодов, транзисторов, резисторов) не поленитесь проверить их с помощью мультиметра.

Регулируемый электронный предохранитель

Это устройство предназначено для защиты цепей постоянного тока от перегрузки по току и замыканий цепи нагрузки. Его включают между источником питания и нагрузкой.

Предохранитель выполнен в виде двухполюсника и может работать совместно с блоком питания с регулируемым выходным напряжением в пределах 3. 35 В. Максимальное полное падение напряжения на предохранителе не превышает 1,9 В при максимальном токе нагрузки. Ток срабатывания защитного устройства можно плавно регулировать в пределах от 0,1 до 1,5 А независимо от напряжения на нагрузке. Электронный предохранитель обладает хорошими термостабильностью и быстродействием (3. 5 мкс), надежен в работе.

Принципиальная электрическая схема электронного предохранителя показана на рис.1. В рабочем режиме тринистор VS1 закрыт, а электронный ключ на транзисторах VT1, VT2 открыт током, протекающим через резистор R1 в базу транзистора VT1. При этом ток нагрузки протекает через электронный ключ, набор резисторов R3- R6, переменный резистор R8 и контакты кнопки SB1.

При перегрузке падение напряжения на цепи резисторов R3-R6, R8 достигает значения, достаточного для открывания тринистора VS1 по цепи управляющего электрода. Открывшийся тринистор замыкает цепь базы транзистора VT1, что приводит к закрыванию электронного ключа. Ток в цепи нагрузки резко уменьшается; остается незначительный остаточный ток, равный Iост=Uпит/R1. При Uпит=9 В Iост=12 мА, а при 35 В — 47 мА.

Для того чтобы восстановить рабочий режим после устранения причины перегрузки, нужно на короткое время нажать на кнопку SB1 и отпустить. При этом тринистор закроется, а транзисторы VT1 и VT2 вновь откроются.
Остаточный ток можно уменьшить, увеличив в 1,5. 2,5 раза сопротивление резистора R1 и использовав транзисторы VT1 и VT2 с большим статическим коэффициентом передачи тока. Однако чрезмерное увеличение сопротивления резистора R1 ведет к увеличению падения напряжения на транзисторе VT2, т. е. увеличению падения напряжения на предохранителе в рабочем режиме.

Смотрите так же:  Бутылка узо

Остаточный ток можно существенно уменьшить (до 2. 4 мА) при любом напряжении питания, использовав для смещения транзистора VT1 источник тока на полевом транзисторе КП303А или КП303Б с начальным током стока 1…2,5 мА. При этом резистор R1 исключается. Затвор и исток полевого транзистора нужно соединить вместе и подключить к базе транзистора VT1, а сток — к его коллектору. Следует иметь в виду, что в этом случае устройство работоспособно в цепях с напряжением не более 25 В.


Рис. 1

На рис.2 показана зависимость тока срабатывания предохранителя от сопротивления резистора R8. Вид этой характеристики сильно зависит от напряжения открывания тринистора.
Следует иметь в виду, что при напряжении питания, имеющем значительные пульсации, электронный предохранитель срабатывает на пиках напряжения, поэтому средний ток через нагрузку будет несколько ниже, чем при использовании хорошо сглаженного напряжения.

Ток срабатывания предохранителя можно определить из выражения: Iсраб=UоткрVS1/(Rэкв+R8), где UоткрVS1— напряжение открывания тринистора, а Rэкв — эквивалентное сопротивление цепи резисторов R3- R6. Как показывает график на рис.2, регулирование тока срабатывания резистором R8 в зоне предельных значений довольно грубое, поэтому целесообразно либо сократить пределы регулирования уменьшением сопротивления резистора R8 в 1,5. 2 раза, либо ввести многоступенчатое регулирование переключателем с набором точно подобранных резисторов.

Предохранитель смонтирован на печатной плате из стеклотекстолита толщиной 1,5 мм (рис.3). На плате размещены все детали, кроме транзистора VT2, резистора R8 и кнопки SB1. Транзистор VT2 необходимо установить на небольшой теплоотвод, например, на дюралюминиевую пластину размерами 90х35х2 мм с отогнутыми краями.

В устройстве можно применить транзисторы и в металлическом корпусе, потребуется лишь изменить конструкцию и размеры теплоотвода. Транзистор КТ817Б можно заменить на КТ815Б-КТ815Г, КТ817В, КТ817Г, КТ801А, КТ801Б, а КТ805АМ — на КТ802А, КТ805А, КТ805Б, КТ808А, КТ819Б-КТ819Г. Статический коэффициент передачи тока транзисторов должен быть не менее 45. Постоянные резисторы — МЛТ, МТ и МОН; переменный резистор — любой проволочный; кнопка SB1 — П2К без фиксатора.

В предохранителе лучше использовать тринисторы КУ103А с напряжением открывания 0,4. 0,6 В.
Собранный предохранитель налаживания, как правило, не требует. В некоторых случаях требуется подобрать сопротивление Rэкв добавлением еще одного резистора для установки максимального тока срабатывания. На плате предусмотрено место для четырех резисторов R3-R6.

Несложно рассчитать предохранитель и на больший ток срабатывания (до 3. 5 А). Для этого потребуются более мощные транзисторы.


Рис. 2


Рис. 3

Мощный регулируемый блок питания 0-28 вольт

Можно довольно легко сделать источник питания, который имеет стабильное напряжение на выходе и регулировку от 0 до 28В. Основа — дешёвая распространённая LM317, усиленная с помощью двух транзисторов 2N3055. В таком схемном включении она становится более чем в 2 раза мощнее. Вы можете при необходимости использовать эту конструкцию для получения и 20 ампер (почти без переделок, но с соответствующим трансформатором и огромным радиатором с вентилятором), просто в своём проекте не нуждался в таком большом токе. Ещё раз напоминаю: убедитесь, что вы установили транзисторы на большой радиатор, 2N3055 могут очень сильно нагреваться при полной нагрузке.

Мощный регулируемый блок питания 0-28 вольт — схема

Список использованных в схеме деталей:

Трансформатор 2 x 15 вольт 10 ампер

D1. D4 = четыре MR750 (MR7510) диода или 2 x 4 1N5401 (1N5408).

R3,R4 0.1 Ом 10 ватт

C2 two times 4700uF/50v

D5 1N4148, 1N4448, 1N4151

D7, D8, D9 1N4001

Два транзистора 2N3055

P2 47 или 220 Ом 1 ватт

P3 10k подстроечник

Хотя LM317 и имеет защиту от короткого замыкания, перегрузки и перегрева, предохранители в цепи сети трансформатора и предохранитель F2 на выходе не помешают. Выпрямленное напряжение: 30 х 1.41 = 42.30 вольт, измеренное на С1. Так что все конденсаторы должны быть рассчитаны на 50 вольт. Внимание: 42 вольт-это напряжение, что может быть на выходе, если один из транзисторов будет пробит!

Регулятор P1 позволяет изменять выходное напряжение на любое значение между 0 и 28 вольт. Так как в LM317 минимальное напряжение 1,2 вольта, то чтобы получить нулевое напряжение на выходе БП — поставим 3 диода, D7,D8 и D9 на выходе LM317 к базе 2N3055 транзисторов. У микросхемы LM317 максимальное выходное напряжение — 30 вольт, но с использованием диодов D7, D8 и D9 произойдёт наоборот падение выходного напряжения, и оно составит около 30 — (3х0,6В) = 28.2 вольта. Калибровать встроенный вольтметр нужно с помощью подстроечника P3 и, конечно, хорошего цифрового вольтметра.

Электронный предохранитель на полевом транзисторе. Схема и описание

Электронный предохранитель являются действенным способ позволяющий защитить всевозможные электронные приборы от перегрузок по току.

В основном электронные предохранители обязаны соответствовать следующим требованиям: они должны быть экономичными, простыми и в то же время надежными и иметь малые размеры. Для воплощения всех перечисленных требований как нельзя, кстати, подходят полевые транзисторы высокой мощности.

Принципиальная схема одного из вариантов подобного электронного предохранителя приводится в данной статье.

Описание работы электронного предохранителя

Данный электронный предохранитель подключается в разрыв цепи между источником питания и защищаемой нагрузкой. Схема обеспечивает защиту при напряжении 5…20 вольт при нагрузке, доходящей до 40 ампер.

На операционном усилителе LМ358 (DA1) построен компаратор, на вход 3 которого подается опорное напряжение со стабилизатора TL431 (DA2). Полевой транзистор VT1 воплощает сразу две функции: датчика тока и мощного электронного ключа. Как уже отмечалось выше, специфика электронного предохранителя заключается в применении сопротивления канала полевого транзистора в роле датчика тока.

Ключевые характеристики используемого полевого транзистора

  • предельная мощность рассеивания — 110 Вт.
  • сопротивление канала — 0,027 Ом.
  • максимальное напряжение сток-исток — 55 В.
  • предельный ток стока — 41 А.

Для активации предохранителя предназначена кнопка SA1 (без фиксации). При непродолжительном нажатии на ее, напряжение поступает на затвор полевого транзистора через сопротивление R4 и диод VD2. В результате этого транзистор подключает питание к нагрузке.

Состояние на выходе операционного усилителя LМ358 связано с уровнем напряжения на его входе 2. Если ток, потребляемый нагрузкой, меньше установленного порога срабатывания электронного предохранителя, то напряжение на входе 2 компаратора будет ниже опорного напряжения на выводе 3. В результате на выходе 1 будет высокий уровень напряжения, который поддерживает транзистор в открытом состоянии.

Одновременно с ростом тока потребления, будет увеличиваться и напряжение на полевом транзисторе VT1. Когда данное напряжение превзойдет напряжение на сопротивлении R1, на выходе компаратора напряжение начнет снижаться, транзистор VT1 начнет закрываться с одновременным ростом напряжение на нем.

Смотрите так же:  Пускатель магнитный пма 3100

В связи с этим на выходе компаратора еще сильнее снижается напряжение, что в конечном итоге это приводит к мгновенному закрытию транзистора и обесточиванию нагрузки. Для повторной активации электронного предохранителя нужно повторно нажать кнопку SA1.

Необходимую величину тока срабатывания предохранителя подбирают подстроечным сопротивлением R1. В случае если контролируемое питание стабильно, то стабилизатор DA2 и сопротивление R3 можно убрать из схемы, установив на место R3 перемычку. Для надежного отключения контролируемой нагрузки при небольшом токе срабатывания (не более 1…1,5 ампер) надлежит повысить сопротивление датчика тока, подключив резистор около 0,1 Ом в электрическую цепь стока транзистора VT1 (точка «А» на схеме).

В схеме возможно использовать произвольный ОУ (DA1), который может работать при нулевом напряжении на обоих входах в режиме однополярного питания, а именно К1464УД1Р, КР1040УД1А, К1464УД1Т. Линейный стабилизатор DA2 может быть заменен на отечественный КР142ЕН19. Подстроечный резистор марки СПЗ-28, СПЗ-19а. Все постоянные резисторы С2-33, МЛТ. Не оксидный конденсатор С1 типа К10-17В

Регулируемый мощный блок питания или зарядное устройство

Здравствуйте дорогие друзья. Сейчас я вам расскажу о неплохом и дешевом источнике питания (по совместительству ЗУ для автомобиля), который можно собрать собственноручно. Для сборки данной схемы вам понадобится перечень деталей, сейчас я их вам перечислю: трансформатор силовой понижающий, диодный мост, конденсатор электролит большой емкости и конденсатор меньшей емкости, два резистора (один переменный, а второй постоянный), микросхема крен и три мощных транзистора. Самое главное, что все эти детали можно найти в старом ламповом телевизоре, в общем не нужно тратить деньги на покупку дефицитных радиодеталей – это большой плюс данной схемы. Второй существенный плюс – это то, что такая простенькая схемка способна выдавать ток до 22 Ампер при 13 вольтах. Сами видите какие большие преимущества: и легкая, и при не больших затратах денежных средств, а превратить моно такую схему и в лабораторный блок питания, блок питания для опытов (регулируемый), для питания мощных приборов и так далее. Смотрите схему блока питания – зарядного устройства ниже.

Теперь расскажу о каждой детали подробнее. Давайте начнем с силового трансформатора. Силовой трансформатор предназначен для преобразования напряжения одной частоты. Они бывают повышающие и понижающие. Повышающий трансформатор повышает напряжение, а понижающий понижает, значит, так как трансформатор у нас по схеме понижает напряжение – он понижающий. Состоит трансформатор из первичной, вторичной обмотки и магнитопровода. Магнитопровод состоит из отдельных спресованных листов электротехнической стали. Первичная обмотка состоит и множества витков меньшим сечением провода и характеризуется большим сопротивлением по отношению ко вторичной обмотке (когда бдите искать обмотку на 220 вольт – меряйте сопротивления, где большее – там и сетевая обмотка).

Вторичка состоит и наименьшего количества витков и сечение провода больше – это нужно для того, чтобы снять больший ток. Новички возможно спросят, почему выводы 15, 13 и 10,11 соединены вторички. Это нужно делать для боле высокого выходного напряжения трансформатора. Можно просто намотать больше провода на вточичке – напряжение поднимется. А если у вас на трансформаторе не достаточное напряжение – то можно подключить к сети два трансформатора, а вторички подключить последовательно, но тогда трансформаторы лучше брать одинаковые по мощности, так как трансформатор меньшей мощности будет сильнее греться. Трансформатор можно самостоятельно перемотать на нужное вам напряжение и ток – но об этом в другой статье. В общем вот так выглядит трансформатор, как описано выше. Достать можно с лампового телевизора, он там на ват 150 будет. 150/10=15 А, при 10 вольтах такой трансформатор выдаст вам 15 ампер, а при 150 вольтах – 150./150=1 всего один ампер. Считайте так что сами какой вам ток нужен.

Диодный мост собран по мостовой схеме. Диодный мост по мостовой схеме в два раза лучше убирает пульсации сети, чем одно полупериудный выпрямитель, потому в блоках питания устанавливают диодные мосты по мостовой схеме, чтобы аппаратура, которую питает сеть, через диодный мост не давала сбоев, ели УНЧ – то характерного звука. Конденсаторы любые, но на ток не менее 15-20 Ампер, либо купите диодный мост на рынке и ток так же не менее 20 Ампер. Конденсатор на 47000 мкф электролит убирает пульсации как и диодный мост, только конденсатор убирает эти пульсации лучше и соответственно, чем больше емкость конденсатора – тем больше пульсаций он сможет убрать. Можно электролитические конденсаторы изготовить самому: берете пол литровую банку и наливаете электролит, опускаете 2 пластины (одну медную, а вторую железную), получается анод и катод и можно подключать в сеть. Емкость конденсатора будет на прямую зависеть от количества электролита (а вернее заряженного электролита) и размера пластин (вернее, на сколько быстро сможем заряжать электролит и разряжать, ведь от большей площади пластин мы быстрее зарядим жидкость). Кстати, при очень большой емкости можно отказаться от стабилизатора, так как конденсатор собственно и буде являться стабилизатором напряжения и фильтром.

Микросхема КРЕН8б будет стабилизировать ток до 1 Ампера. Данную микросхему в этом блоке питания можно сравнить с предварительным усилителем в УНЧ, так как основное усиление происходит в транзисторах Т1, Т2, Т3. Все транзисторы обязательно ставим на радиаторы. Резистором R1 мы регулируем ток (до 1Ампера), который стабилизируется микросхемой, поступающий на базу транзистора. Соответственно мы регулируем и коэффициентом усиления сразу всех трех транзисторов (максимальный ток на базу одного транзистора равен 0,33 А, т.к. 1/3=0,333333 А). Положительный заряд получается усиливается и через микросхему (для управления коэффициентом усиления транзисторов), и через транзисторы (транзисторы питаем положительным зарядом, а с микросхемы управляем коэффициентом усиления).

Если подсоединить еще транзистора три так параллельно этим трем и параллельно микросхеме КРНЕ подключить еще одну такую, то ток мы сможем получить в два раза выше, чем при данной работающей стандартной схеме. Советую, если вам нужны большие токи, но при этом трансформатор должен быть достаточно мощным. Вот выходной ток должен быть при моем способе под 40 А при 13 вольтах, а значит 40*13=520 ват Трансформатор должен быть мощностью пол киловата. Резистор R2 нужен для ограничения по току, чтобы не допустить короткого замыкания. Тогда далее ставим конденсатор электролит для сглаживания пульсаций на конечном этапе и не мешало бы еще поставить конденсатор меньшей емкости для того чтобы сглаживать пульсации боле высоких частот. Так же если в сети у вас много помех, то рекомендую установить дросель, который уберет все высокочастотные ВЧ помехи. Дросель устанавливайте последовательно, в разрыв цепи перед микросхемой, на плюс естественно.

ЭЛЕКТРОННЫЙ ПРЕДОХРАНИТЕЛЬ

Радиолюбители, имеющие достаточный опыт разработки и конс­труирования радиоэлектронных схем, наверняка сталкивались с до­вольно неприятной ситуацией. То ли из-за собственной невниматель­ности, то ли по причине выхода из строя элементов нагрузки (напри­мер, мощных транзисторов выходного каскада усилителя низкой частоты) надежно работающий блок питания вдруг переставал функ­ционировать. В некоторых случаях не спасает даже плавкий предохра­нитель, так как для разрыва электрической цепи требуется некоторое время на нагрев и расплавление нити предохранителя. Поэтому для за­щиты электронных устройств целесообразно использовать электрон­ные предохранители — их время срабатывания по сравнению с плавки­ми предохранителями на один/два порядка меньше. Кроме того, у электронных предохранителей нужное значение тока срабатывания можно регулировать, в то время как плавкие предохранители имеют строго определенный ток срабатывания. К «минусам» электронного предохранителя можно отнести затраты энергии на работу использу­емого в нем мощного ключевого транзистора.

Смотрите так же:  Как подключить провода к распредкоробке

Диапазон регулировки тока срабатывания [А] 0.1—3

Рабочее напряжение [В] 5—30

Описание работы электронного предохранителя

Внешний вид электронного предохранителя и его электрическая схема показаны на Рис. 1 и Рис. 2.

Источник питания подключается к контактам XI (+) и Х2 (-), на­грузка подключается к контактам ХЗ (+) и Х4 (-).

Устройство представляет собой электронный ключ (выполнен на транзисторах VT1…VT3), управляемый датчиком тока (выполнен на резисторах R2, R6 и потенциометре R4). Как только ток нагрузки пре­вышает установленное значение, падение напряжения на эмиттерном

Рис. 1. Внешний вид электронного Рис. 2. Электрическая схема

предохранителя электронного предохранителя

переходе транзистора VT3 приводит к его открытию и, как следствие, шунтированию эмиттерного перехода транзистора VT1. При этом, не­смотря на «подпорку» R1, напряжение на базе VT1 относительно его эмиттера оказывается настолько мало, что транзистор просто-напросто запирается и ток через него перестает течь. Поскольку транзистор VT1 и сам является «подпоркой» для мощного ключа VT2, цепь VT1-R5 оказывается разорванной, и напряжение на базе транзистора VT2 ока­зывается намного ниже порога его открывания. Транзистор VT2 ока­зывается закрытым, а нагрузка — обесточенной.

При установлении тока нагрузки ниже тока срабатывания устрой­ства все процессы, начиная с транзистора VT3, происходят в обратном порядке. Порог срабатывания ключа на транзисторе VT3 устанавлива­ется потенциометром R4. Тем самым определяется максимально допус­тимый ток нагрузки. Мощный резистор R3 предназначен для ограниче­ния тока через транзистор VT2. Конденсатор С1 подавляет импульсные помехи микроискрения, возникающие при скольжении ползунка по ре- зистивному слою потенциометра.

Сборка электронного предохранителя

Перед сборкой предохранителя внимательно ознакомьтесь с приве­денными в начале этой книги рекомендациями по монтажу электрон­ных схем. Это поможет избежать порчи печатной платы и отдельных элементов схемы. Перечень элементов набора приведен в Табл. 1.

Таблица 1. Перечень элементов набора NK013

Мощный лабораторный блок питания

В литературе, к сожалению, довольно редко можно найти схемы мощных источников питания на ток 5.-.10 А. Кроме того, в этих источниках схемы защиты либо слишком медленные и неэффективные, либо, работая по принципу ограничения тока, защищают источник только при кратковременной перегрузке.Предлагаю схему мощного лабораторного блока питания (рис.1) с эффективной схемой электронного предохранителя. Блок содержит два канала с независимой регулировкой выходного напряжения по каждому каналу.

выходное напряжение каждого канала, В ———————— О. 52;
максимальный ток нагрузки, А ——————————— 7;
амплитудное значение пульсации при максимальном токе, мВ —- 100;
время срабатывания защиты, мкс —————————— 30.
рис.1-1, рис.1-2, рис.2, рис.3

width=710>
Рисунок не помещается на странице и поэтому сжат!
Для того, чтобы просмотреть его полностью, щелкните здесь или на самом рисунке.

width=710>
Рисунок не помещается на странице и поэтому сжат!
Для того, чтобы просмотреть его полностью, щелкните здесь или на самом рисунке.

Электронный предохранитель собран на транзисторах VT1. VT6 и оптроне VD12. Рассмотрим работу предохранителя в положительном плече источника. Как только падение напряжения на R3 превышает 0,5.-.0,6 В, открывается VT1 и через фотодиод оптрона VD12 течет ток, ограниченный R4 и R5. Оптрон VD12 открывается, и напряжеиие на базах VT7 и VT8 резко снижается. Транзисторы VT7 и VT8 закрываются, соответственно закрываются транзисторы VT3, VT5 и VT4, VT6. Напряжение на коллекторах VT3 и VT4 составляет 2. 5 В. Преимущество данной системы защиты состоит в том, что при перегрузке любого плеча выключаются оба канала источника.

После срабатывания защиты напряжение па выходах практически равно нулю. Источник осгается в таком состоянии и после отключения нагрузки. Чтобы вернуться к нормальной работе, необходимо отключить источник от сети и подождать пока разрядятся конденсаторы фильтра через резисторы R1 и R2. При повторном включении, если причина перегрузки устранена, падения” напряжения на R3 недостаточно для открывания VT1, соответственно закрыт VD12. Транзисторы VT3, VT5 и VT4, VT6 открыты, и положительное и отрицательное напряжения через них подаются на сами стабилизаторы, которые построены на базе схемы из [I].

Основой стабилизаторов являются операционные усилители DA1 и DA2. Использованное схемное решение позволяет изменять выходные напряжения с помощью резисторов R55 и R61 практически от 0 до напряжения на входе соответствующего стабилизатора.

В блоке питания хорошо работают как кремниевые, так и германиевые транзисторы без какого-либо подбора параметров. Главное, чтобы допустимое напряжение коллектор-эммиттер у всех транзисторов было не менее 50 В. Выводы R55 и R61 необходимо подключить непосредственно к выходным клеммам.Ток срабатывания защиты устанавливается подбором величины R3 и R6. Если вместо R3 и R6 установить резисторы по t Ом, а в цепь базы VT1 и VT2 включить переменные резисторы на 1. 2 к, можно регулировать ток защиты в диапазоне 1-..10 А.

Печатная плата приведена на рис.2, а ее сборочный чертеж — на рис.3. Данные трансформатора Т1 указаны в таблице

Мощный лабораторный блок питания
Просмотров сегодня: 20644, всего: 20644

Похожие статьи:

  • Бензиновые генераторы на 380 вольт цены Бензиновые генераторы 380 вольт Максимальная мощность 5.80 кВт Активная мощность 5.20 кВт Напряжение на выходе 220/380 В Вид топлива Бензин Максимальная мощность 6.50 кВт Активная мощность 6 кВт Напряжение на выходе […]
  • Производитель провода псдкт Поиск производителей кабеля и провода © 2010–2019 «НТПС-Информ» Телефон: +7 (351) 751-0-135 Почта: [email protected] Мы не занимаемся продажей кабеля. Информация о наличии и стоимости продукции не является публичной […]
  • Прогрев бетона от 220 вольт Кабель для прогрева бетона 97 м. (220 вольт) Кабeль для cушки бeтоннo-мoнолитных констpукций от 220 вoльт 40КДБC - 97. Пpи пoнижении темпeратуpы вoздуxa нижe +5°С необxодимо принимaть меpы по пpедотвpащeнию замеpзания бетонa. Haиболеe […]
  • Паритет провода Акустические провода ШВПМ . ТУ 3578-005-39793330-2010 Сертификаты: Назначение: Конструкция Токопроводящая жила - медная многопроволочная Изоляция - ПВХ пластикат Требования пожарной безопасности Класс пожарной опасности по […]
  • Вв провода на нексию 8кл Высоковольтные провода Нексия (8-кл) Tesla T736B Высоковольтные провода Дэу Нексия 1.5 8-кл (под трамблер). T736B. Бренд: Tesla . Состояние товара: Новый Задать вопрос по товару можно по телефонам:(096) 970-30-30(044) […]
  • Самодельные высоковольтные провода зажигания Автомобильные высоковольтные провода системы зажигания Зажигание рабочей смеси в цилиндрах бензиновых двигателей внутреннего сгорания производится электрической искрой. Из соображений электробезопасности водителя и пассажиров на […]