Схема электронного пускорегулирующего аппарата эпра

Как устроены и работают пускорегулирующие аппараты люминесцентных ламп

Класс газоразрядных источников света, к которому относятся люминесцентные лампы, требует использования специальной аппаратуры, осуществляющей прохождение дугового разряда внутри стеклянного герметичного корпуса.

Устройство и принцип работы люминесцентной лампы

Ее форма изготавливается в виде трубки. Она может быть прямой, изогнутой или закрученной.

Поверхность стеклянной колбы внутри покрыта слоем люминофора, а на ее концах расположены вольфрамовые нити накала. Внутренний объем герметичен, заполнен инертным газом невысокого давления с парами ртути.

Свечение люминесцентной лампы происходит за счет создания и поддержания разряда электрической дуги в инертном газе между нитями накала, которые работают по принципу термоэлектронной эмиссии. Для ее протекания через вольфрамовую проволоку пропускается электрический ток, обеспечивающий нагрев металла.

Одновременно межу нитями накала прикладывается высокая разность потенциалов, обеспечивающая энергию протекания электрической дуги между ними. Пары ртути улучшают путь тока для нее в среде инертного газа. Слой люминофора преобразовывает оптические характеристики потока исходящих световых лучей.

Обеспечением прохождения электротехнических процессов внутри люминесцентной лампы занимается пускорегулирующая аппаратура . Ее сокращенно называют аббревиатурой ПРА.

Типы пускорегулирующих аппаратов

В зависимости от используемой элементной базы устройства ПРА могут быть выполнены двумя способами:

1. электромагнитной конструкцией;

2. электронным блоком.

Первые модели люминесцентных ламп работали исключительно за счет первого метода. Для этого применялись:

Электронные блоки появились не так давно. Их стали выпускать после массового, бурного развития предприятий, производящих современный ассортимент электронной базы на основе микропроцессорных технологий.

Электромагнитные пускорегулирующие аппараты

Принцип работы люминесцентной лампы с электромагнитным ПРА (ЭМПРА)

Стартерная схема запуска с подключением электромагнитного дросселя считается традиционной, классической. Благодаря относительной простоте и дешевизне она остается популярной, продолжает массово использоваться в схемах освещения.

После подачи сетевого питания на лампу напряжение через обмотку дросселя и вольфрамовые нити накала подводится к электродам стартера. Он создан в виде малогабаритной газоразрядной лампы.

Поступившее на ее электроды напряжение сети вызывает между ними тлеющий разряд, формирующий свечение инертного газа и нагрев его среды. Находящийся рядом биметаллический контакт воспринимает его, изгибается. изменяя свою форму, и замыкает промежуток между электродами.

В цепи электрической схемы образуется замкнутый контур и по нему начинает течь ток, нагревая нити накала люминесцентной лампы. Вокруг них образуется термоэлектронная эмиссия. Одновременно происходит разогрев паров ртути, находящихся внутри колбы.

Образовавшийся электрический ток примерно наполовину снижает напряжение, приложенное от сети на электроды стартера. Тлеющий между ними разряд снижается, а температура падает. Биметаллическая пластина уменьшает свой изгиб, разъединяя цепь между электродами. Ток через них прерывается, а внутри дросселя создается ЭДС самоиндукции. Она мгновенно создает кратковременный разряд в подключенной к ней схеме: между нитями накала люминесцентной лампы.

Его величина достигает нескольких киловольт. Ее хватает для создания пробоя среды инертного газа с подогретыми парами ртути и разогретыми нитями накала до состояния термоэлектронной эмиссии. Между концами лампы возникает электрическая дуга, являющаяся источником света.

В то же время величины напряжения на контактах стартера не хватает для пробоя его инертного слоя и повторного замыкания электродов биметаллической пластины. Они так и остаются в разомкнутом состоянии. Стартер в дальнейшей схеме работы участие не принимает.

После запуска свечения ток в цепи необходимо ограничивать. Иначе возможно перегорание элементов схемы. Эта функция тоже возложена на дроссель. Его индуктивное сопротивление ограничивает возрастание тока, предотвращает выход лампы из строя.

Схемы подключения электромагнитных ПРА

На основе изложенного выше принципа работы люминесцентных ламп для них создаются различные схемы подключения через пускорегулирующую аппаратуру.

Самой простой является включение дросселя и стартера на одну лампу.

При таком способе в схеме питания возникает дополнительное индуктивное сопротивление. Чтобы уменьшить реактивные потери мощности от его действия используют компенсацию за счет включения на входе схемы конденстора, сдвигающего угол вектора тока в противовположную сторону.

Если мощность дросселя позволяет использовать его для работы нескольких люминесцентных ламп, последние собирают в последовательные цепочки, а для запуска каждой используют индивидуальные стартеры.

Когда требуется компенсировать действие индуктивного сопротивления, то применяют тот же прием, что и раньше: подключают компенсационный конденсатор.

Вместо дросселя можно использовать в схеме автотрансформатор, который обладает тем же индуктивным сопротивлением и позволяет регулировать величину выходного напряжения. Компенсацию потерь активной мощности на реактивной составляющей осуществляют подключением конденсатора.

Автотрансформатор может использоваться для освещения несколькими лампами, подключаемыми по последовательной схеме.

При этом важно создавать резерв его мощности для обеспечения надежной работы.

Недостатки эксплуатации электромагнитных ПРА

Габариты дросселя требуют создания отдельного корпуса для пускорегулирующей аппаратуры, занимающего определенное пространство. При этом он издает хоть и небольшой, но посторонний шум.

Конструкция стартера не отличается надежностью. Периодически лампы гаснут из-за его неисправностей. При отказе стартера происходит фальстарт, когда можно визуально наблюдать несколько вспышек до начала стабильного горения. Это явление влияет на ресурс нитей накала.

Электромагнитные ПРА создают относительно высокие потери энергии, снижают КПД.

Умножители напряжения в схемах запуска люминесцентных ламп

Эта схема часто встречается в любительских разработках и не используется в промышленных образцах, хотя не требует сложной элементной базы, проста в изготовлении, работоспособна.

Принцип ее работы заключается в ступенчатом увеличении питающего напряжения сети до значительно бо́льших значений, вызывающих пробой изоляции среды инертного газа с парами ртути без их разогрева и обеспечения термоэлектронной эмиссии нитей накала.

Такое подключение позволяет использовать даже баллоны ламп с перегоревшими нитями накала. Для этого в их схеме с обеих сторон колбы просто шунтируют внешними перемычками.

Подобные схемы обладают повышенной опасностью к поражению человека электрическим током. Ее источником является выходящее с умножителя напряжение, которое можно довести до киловольта и больше.

Мы не рекомендуем эту схему к использованию и публикуем ее для разъяснения опасности создаваемых ею рисков. Заостряем на этом вопросе ваше внимание специально: сами не применяйте этот способ и предупреждайте своих коллег об этом главном недостатке.

Электронные пускорегулирующие аппараты

Особенности работы люминесцентной лампы с электронным ПРА (ЭПРА)

Все физические законы, происходящие внутри стеклянной колбы с инертным газом и парами ртути для образования разряда дуги и свечения остались без изменений в конструкциях ламп, управляемых электронными пускорегулирующими устройствами.

Поэтому алгоритмы работы ЭПРА остались теми же, что и у их электромагнитных аналогов. Просто старая элементная база заменена современной.

Это обеспечило не только высокую надежность пускорегулирующей аппаратуры, но и ее маленькие габариты, позволяющие устанавливать ее в любом подходящем месте, даже внутри цоколя обычной лампочки Е27, разработанного еще Эдисоном для ламп накаливания.

По этому принципу работают малогабаритные энергосберегающие светильники с люминесцентной трубкой сложной закрученной формы, которые по габаритам не превышают лампы накаливания и создаются для подключения к сети 220 через старые патроны.

В большинстве случаев для электриков, занимающихся эксплуатацией люминесцентных ламп, достаточно представлять простую схему подключения, выполненную с большим упрощением из нескольких составных частей.

Из электронного блока ЭПРА для эксплуатации выделяются:

входная цепь, подключаемая к сети питания 220 вольт;

две выходных цепи №1 и №2, присоединяемые к соответствующим нитям накала.

Обычно электронный блок выполняется с высокой степенью надежности, длительным ресурсом. На практике чаще всего у энергосберегающих ламп при эксплуатации происходит разгерметизация корпуса колбы по разным причинам. Из него сразу уходит инертный газ и пары ртути. Такая лампа уже не загорится, а электронный блок у нее остается в исправном состоянии.

Его можно использовать повторно, подключить на колбу соответствующей мощности. Для этого:

цоколь лампы аккуратно разбирают;

из него извлекают электронный блок ЭПРА;

помечают пару проводов, задействованных в схеме питания;

маркируют проводники выходных цепей на нити накала.

Дальше остается только переподключить схему электронного блока на целую, исправную колбу. Она будет работать дальше.

Устройство электромагнитных ПРА

Конструктивно электронный блок состоит из нескольких частей:

фильтра, устраняющего и блокирующего электромагнитные помехи, поступающие из питающей сети в схему или создаваемые электронным блоком при работе;

выпрямителя синусоидальных колебаний;

схемы коррекции мощности;

электронного балласта (аналог дросселя).

Электрическая схема инвертора работает на мощных полевых транзисторах и создается по одному из типовых принципов: мостовой или полумостовой схеме их включения.

В первом случае работает четыре ключа в каждом плече моста. Такие инверторы создаются для преобразования больших мощностей у осветительных систем в сотни ватт. Полумостовая схема содержит всего два ключа, обладает меньшим КПД, используется чаще.

Обе схемы управляются от специального электронного блока — микродрайвера.

Как работает электронная ПРА

Для обеспечения надежного свечения люминесцентной лампы алгоритмы ЭПРА разбиты на 3 технологических этапа:

Смотрите так же:  Вес 1 км провода ас

1. подготовительный, связанный с первоначальным нагревом электродов с целью увеличения термоэлектронный эмиссии;

2. поджигание дуги подачей импульса высоковольтного напряжения;

3. обеспечение стабильного протекания дугового разряда.

Такая технология позволяет быстро включать лампу в работу даже при отрицательной температуре, обеспечивает мягкий запуск и выдачу минимально необходимого напряжения между нитями накала для хорошего свечения дуги.

Одна из простых принципиальных схем подключения электронного ПРА к люминесцентной лампе показана ниже.

Диодный мост на входе выпрямляет переменное напряжение. Его пульсации сглаживаются конденсатором С2. После него работает двухтактный инвертор, включенный по полумостовой схеме.

В его состав входят 2 n-p-n транзистора, создающие колебания высокой частоты, которые управляющими сигналами подаются в противофазе на обмотки W1 и W2 трехобмоточного тороидального в/ч трансформатора L1. Его оставшаяся обмотка W3 выдает высокое резонансное напряжение на люминесцентную лампу.

Таким образом, при включении питания до начала зажигания лампы в резонансном контуре создается максимальный ток, который обеспечивает нагрев обеих нитей накала.

Параллельно лампе подключен конденсатор. На его обкладках создается большое резонансное напряжение. Оно запускает электрическую дугу в среде инертных газов. Под ее действием обкладки конденсатора закорачиваются и резонанс напряжений прерывается.

Однако свечение лампы не прекращается. Она продолжает работать автоматически за счет оставшейся доли приложенной энергии. Индуктивное сопротивление преобразователя регулирует ток, проходящий через лампу, поддерживает его в оптимальном диапазоне.

Как устроены и работают ЭПРА для люминесцентных ламп

Люминесцентные лампы не могут работать напрямую от сети 220В. Для их розжига нужно создать импульс высокого напряжения, а перед этим прогреть их спирали. Для этого используют пускорегулирующие аппараты. Они бывают двух типов — электромагнитные и электронные. В этой статье мы рассмотрим ЭПРА для люминесцентных ламп, что кто такое и как они работают.

Из чего состоит люминесцентная лампа и для чего нужен балласт?

Люминесцентная лампа этот газоразрядный источник света. Он состоит из колбы трубчатой формы наполненной парами ртути. По краям колбы расположены спирали. Соответственно на каждом краю колбы расположена пара контактов — это выводы спирали.

Работа такой лампы основана на люминесценции газов при протекании через него электрического тока. Но ток просто так между двумя металлическими спиралями (электродами) просто так не потечет. Для этого должен произойти разряд между ними, такой разряд называется тлеющим. Для этого спирали сначала разогревают, пропуская через них ток, а после этого между ними подают импульс высокого напряжения, 600 и более вольт. Разогретые спирали начинают эмитировать электроны и под действием высокого напряжения образуется разряд.

Если не вдаваться в подробности – то описание процесса достаточно для постановки задачи для источника питания таких ламп, он должен:

1. Разогреть спирали;

2. Сформировать зажигающий импульс;

3. Поддерживать напряжение и ток на достаточном уровне для работы лампы.

Интересно: Компактные люминесцентные лампы, которые чаще называют «энергосберегающими», имеют аналогичную структуру и требования для их работы. Единственное отличие состоит в том, что их габариты значительно уменьшены благодаря особой форме, по сути это такая же трубчатая колба, на форма не линейная, а закрученная в спиралевидную.

Устройство для питания люминесцентных ламп называется пускорегулирующим аппаратом (сокращенно ПРА), а в народе просто — балластом.

Различают два вида балласта:

1. Электромагнитный (ЭмПРА) — состоит из дросселя и стартера. Его преимущества — простота, а недостатков масса: низкий КПД, пульсации светового потока, помехи в электросети при его работе, низкий коэффициент мощности, гудение, стробоскопический эффект. Ниже вы видите его схему и внешний вид.

2. Электронные (ЭПРА) — современный источник питания для люминесцентных ламп, он представляет собой плату, на которой расположен высокочастотный преобразователь. Лишен всех перечисленных выше недостатков, благодаря чему лампы выдают больший световой поток и срок службы.

Схема ЭПРА

Типовой электронный балласт состоит из таких узлов:

2. Высокочастотный генератор выполненный на ШИМ-контроллере (в дорогих моделях) или на авто генераторный схеме с полумостовым (чаще всего) преобразователем.

3. Пусковой пороговый элемент (обычно динистор DB3 с пороговым напряжением 30В).

4. Разжигающей силовой LC-цепи.

Типовая схема изображена ниже, рассмотрим каждый из её узлов:

Переменное напряжение поступает на диодный мост, где выпрямляется и сглаживается фильтрующим конденсатором. В нормальном случае до моста устанавливают предохранитель и фильтр электромагнитных помех. Но в большинстве китайских ЭПРА нет фильтров, а ёмкость сглаживающего конденсатора ниже необходимой, от чего бывают проблемы с поджигом и работой светильника.

Совет: если вы ремонтируете ЭПРА, то прочтите статью «Как проверить диодный мост» на нашем сайте.

После этого напряжение поступает на автогенератор. Из названия понятно, что автогенератор — это схема, которая самостоятельно генерирует колебания. В этом случае она выполнена на одном или двух транзисторах, в зависимости от мощности. Транзисторы подключены к трансформатору с тремя обмотками. Обычно используются транзисторы типа MJE 13003 или MJE 13001 и подобные, в зависимости от мощности лампы.

Хоть и этот элемент называется трансформатором, но выглядит он не привычно — это ферритовое кольцо, на котором намотано три обмотки, по несколько витков каждая. Две из них управляющие, в каждой по два витка, а одна — рабочая с 9 витками. Управляющие обмотки создают импульсы включения и выключения транзисторов, соединены одним из концов с их базами.

Так как они намотаны в противофазе (начала обмоток помечены точками, обратите внимание на схеме), то импульсы управления противоположны друг другу. Поэтому транзисторы открываются по очереди, ведь если их открыть одновременно, то они просто замкнут выход диодного моста и что-нибудь из этого сгорит. Рабочая обмотка одни концом подключена к точке между транзисторами, а вторым к рабочим дросселю и конденсатору, через нее происходит питание лампы.

При протекании тока в одной из обмоток в двух других наводится ЭДС соответствующей полярности, которое и приводит к переключениям транзисторов. Автогенератор настроен на частоту выше звукового диапазона, то есть выше 20 кГц. Именно этот элемент является преобразователем постоянного тока в ток переменой частоты.

Для запуска генератора установлен динистор, он включает схему после того как напряжение на нем достигнет определённого значения. Обычно устанавливают динистор DB3, который открывается в диапазоне напряжений около 30В. Время, через которое он откроется, задается RC-цепью.

Более продвинутые варианты ЭПРА, строятся не на автогенераторной схеме, а на базе ШИМ-контроллеров. Они имеют более устойчивые характеристики. Однако, за более чем пять лет занятий электроникой мне не разу не попался такой ЭПРА, все с которыми работал, были автогенераторными.

Выше неоднократно упоминалось об LC цепи. Это дроссель, установленный последовательно со спиралью, и конденсатор, установленный параллельно лампе. По этой цепи сначала протекает ток, прогревающий спирали, а затем образуется импульс высокого напряжения на конденсаторе её зажигающий. Дроссель выполняется на Ш-образном ферритовом сердечнике.

Эти элементы подбираются так, чтобы при рабочей частоте они входили в резонанс. Так как дроссель и конденсатор установлены последовательно на этой частоте наблюдается резонанс напряжений.

При резонансе напряжений на индуктивности и ёмкости начинает сильно расти напряжение в идеализированных теоретических примерах до бесконечно большого значения, при этом ток потребляется крайне малый.

В результате мы имеем подобранные по частотам генератор и резонансный контур. По причине роста напряжения на конденсаторе происходит зажигание лампы.

Ниже изображен другой вариант схемы, как вы можете убедиться – все в принципе аналогично.

Благодаря высокой рабочей частоте удаётся достигнуть малых габаритов трансформатора и дросселя.

Для закрепления пройденной информации рассмотрим реальную плату ЭПРА, на картинке выделены основные узлы описанные выше:

А это плата от энергосберегающей лампы:

Заключение

Электронный балласт значительно улучшает процесс розжига ламп и работает без пульсаций и шума. Его схема не очень сложна и на её базе можно построить маломощный блок питания. Поэтому электронные балласты от сгоревших энергосберегаек – это отличный источник бесплатных радиодеталей.

Люминесцентные лампы с электромагнитным пускорегулирующим аппаратом запрещено использовать в производственных и бытовых помещениях. Дело в том, что у них сильные пульсации, и возможно появление стробоскопического эффекта, то есть если они будут установлены в токарной мастерской, то при определенной частоте вращения шпинделя токарного станка и другого оборудования – вам может казаться, что он неподвижен, что может вызвать травмы. С электронным балластом такого не произойдет.

ЭПРА – что это такое, и как работает

Люминесцентные лампы напрямую от сети в 220 вольт не работают. Им необходим специальный переходник, который будет стабилизировать напряжение и сглаживать пульсацию тока. Этот прибор носит название пускорегулирующая аппаратура (ПРА), состоящая из дросселя, с помощью которого сглаживается пульсация, стартер, используемый как пускатель, и конденсатор для стабилизации напряжения. Правда, ПРА в этом виде – это старый блок, который постепенно выводится из оборота. Все дело в том, что ему на смену пришла новая модель – ЭПРА, то есть, тот же пускорегулирующий аппарат, только электронного типа. Итак, давайте разберемся в ЭПРА – что это такое, его схема и основные составляющие.

Смотрите так же:  Как подобрать сечение электрического кабеля

Конструкция и принцип работы ЭПРА

По сути, ЭПРА – это электронное плато, небольшого размера, в состав которого входит несколько специальных электронных элемента. Компактность конструкции дает возможность установить плато в светильник вместо дросселя, стартера и конденсатора, которые все вместе занимают больше места, чем ЭПРА. При этом схема подключения достаточно проста. О ней чуть ниже.

Преимущества

  • Люминесцентная лампа с ЭПРА включается быстро, но плавно.
  • Она не моргает и не шумит.
  • Коэффициент мощности – 0,95.
  • Новый блок практически не греется по сравнению с устаревшим, а это прямая экономия электрического тока до 22%.
  • Новый пусковой блок снабжен несколькими видами защиты лампы, что повышает ее пожарную безопасность, безопасность эксплуатации, а также продлевает в несколько раз срок службы.
  • Обеспечение плавного свечения, без мерцания.

Внутреннее устройство ЭПРА

Внимание! Современные правила охраны труда предписывают использовать в рабочих помещениях люминесцентные лампы, снабженные именно этой новой аппаратурой.

Схема устройства

Начнем с того, что люминесцентные лампы – это газоразрядные источники света, которые работают по следующей технологии. В стеклянной колбе находятся пары ртути, в которые подается электрический разряд. Он-то и образует ультрафиолетовое свечение. На саму колбу изнутри нанесен слой люминофора, который преобразует ультрафиолетовые лучи в видимый глазами свет. Внутри лампы всегда находится отрицательное сопротивление, вот почему они не могут работать от сети в 220 вольт.

Но тут необходимо выполнить два основных условия:

  1. Разогреть две нитки накала.
  2. Создать большое напряжение до 600 вольт.

Внимание! Величина напряжения прямо пропорциональна длине люминесцентной лампы. То есть, для коротких светильников мощностью 18 Вт оно меньше, для длинных мощностью выше 36 Вт больше.

Теперь сама схема ЭПРА.

Начнем с того, что люминесцентные лампы, к примеру, ЛВО 4×18, со старым блоком всегда мерцали и издавали неприятный шум. Чтобы этого избежать, необходимо подать на нее ток частотой колебания более 20 кГц. Для этого придется повысить коэффициент мощности источника света. Поэтому реактивный ток должен возвращаться в специальный накопитель промежуточного типа, а не в сеть. Кстати, накопитель с сетью никак не связан, но именно он питает лампу, если случиться сетевой переход напряжения через ноль.

Как работает

Итак, сетевое напряжение в 220 вольт (оно переменное) преобразуется в постоянное с показателем 260-270 вольт. Сглаживание производится с помощью электролитического конденсатора С1.

После чего постоянное напряжение необходимо перевести в высокочастотное напряжение до 38 кГц. За это отвечает полумостовой преобразователь двухтактного типа. В состав последнего входят два активных элемента, которые собой представляют два высоковольтных транзистора (биполярных). Их обычно называют ключами. Именно возможность перевода постоянного напряжения в высокочастотное дает возможность уменьшить габариты ЭПРА.

Электронный пускорегулирующий аппарат

В схеме устройства (балласта) также присутствует трансформатор. Он является одновременно и управляющим элементом преобразователя, и нагрузкой для него. Этот трансформатор имеет три обмотки:

  • Одна из них рабочая, в которой всего лишь два витка. Через нее происходит нагрузка на цепь.
  • Две – управляющие. В каждой по четыре витка.

Особую роль во всей этой электрической схеме играет динистор симметричного типа. В схеме он обозначен, как DB3. Так вот этот элемент отвечает за запуск преобразователя. Как только напряжение в соединениях его подключения превышает допустимый порог, он открывается и подает импульс на транзистор. После чего происходит запуск преобразователя в целом.

Далее происходит следующее:

  • С управляющих обмоток трансформатора импульсы поступают на транзисторные ключи. Эти импульсы являются противофазными. Кстати, открытие ключей вызывает наводку на двух обмотках и на рабочей тоже.
  • Переменное напряжение с рабочей обмотки подается на люминесцентную лампу через последовательно установленные элементы: первая и вторая нить накала.

Внимание! Емкость и индуктивность в электрической цепи подбираются таким образом, чтобы в ней возникал резонанс напряжений. Но при этом частота преобразователя должна быть неизменной.

Обратите внимание, что на конденсаторе С5 будет происходить самое большое падение напряжения. Именно этот элемент и зажигает люминесцентную лампу. То есть, получается так, что максимальная сила тока разогревает две нити накала, а напряжение на конденсаторе С5 (оно большое) зажигает источник света.

По сути, светящаяся лампа должна снизить свое сопротивление. Так оно и есть, но снижение происходит незначительно, поэтому резонансное напряжение все еще присутствует в цепи. Это и есть причина, по которой лампа продолжает светиться. Хотя дроссель L1 создает ограничения тока на показатель разницы сопротивлений.

Преобразователь продолжает после запуска работать в автоматическом режиме. При этом его частота не меняется, то есть, идентична частоте запуска. Кстати, сам запуск длится меньше одной секунды.

Тестирование

Перед тем как запустить ЭПРА в производство проводились всевозможные тесты, которые показатели, что встроенный люминесцентный светильник может работать в достаточно широком диапазоне подаваемых на него напряжений. Диапазон составил 100-220 вольт. При этом оказалось, что частота преобразователя изменяется в следующей последовательности:

  • При 220 вольт она составила 38 кГц.
  • При 100 вольтах 56 кГц.

Но необходимо отметить, что при снижении напряжения до 100 вольт яркость свечения источника света явно уменьшилась. И еще один момент. На люминесцентный светильник всегда подается ток переменного типа. Это создает условия его равномерного износа. А точнее сказать, износа его нитей накаливания. То есть, увеличивается срок эксплуатации самой лампы. При тестировании лампы постоянным током, срок ее службы снизился в два раза.

Причины неисправностей

Итак, по каким причинам люминесцентная лампа может не гореть?

  • Трещины в местах пайки на плате. Все дело в том, что при включении светильника плата начинает нагреваться. После того как он будет включен, происходит остывание блока ЭПРА. Перепады температуре негативно влияют на места пайки, поэтому появляется вероятность обрыва схемы. Исправить неполадку можно пайкой обрыва или даже обычной его чисткой.
  • Если произошел обрыв нити накаливания, то сам блок ЭПРА остается в исправном состоянии. Так что эту проблему можно решить просто – заменить сгоревшую лампу новой.
  • Скачки напряжения являются основной причиной выхода из строя элементов электронного ПРА. Чаще всего выходит из строя транзистор. Производители пускорегулирующей аппаратуры не стали усложнять схему, поэтому варисторов в ней нет, который бы и отвечали за скачки. Кстати, и установленный в цепь предохранитель также от скачков напряжения не спасает. Он срабатывает лишь в том случае, если один из элементов схемы будет пробит. Поэтому совет – скачки напряжения обычно присутствуют в непогоду, поэтому не стоит включать люминесцентную лампу, когда за окном сильный дождь или ветер.
  • Неправильно проведена схема подключения аппарата к лампам.

Это интересно

В настоящее время ЭПРА устанавливаются не только с газоразрядными источниками света, но и с галогенными и светодиодными лампами. При этом нельзя использовать один аппарат, предназначенный для одного вида ламп, к другой лампе. Во-первых, не подойдут по параметрам. Во-вторых, у них разные схемы.

При выборе ЭПРА необходимо учитывать мощность лампы, в которую он будет устанавливаться.

Оптимальный вариант модели – это аппараты с защитой от нестандартных режимов работы источника света и от деактивации их.

Обязательно обратите внимание на позицию в паспорте или инструкции, где указано, в каких погодных климатических условиях электронный ПРА может работать. Это влияет и на качество эксплуатации, и на срок службы.

Подключение

И последнее – это схема подключения. В принципе, ничего сложного. Обычно производитель прямо на коробке указывает эту самую схему подключения, где точно по клеммам указаны и номера, и контур подключения. Обычно для вводного контура – три клеммы: ноль, фаза и заземление. Для выходного на лампы – по две клеммы, то есть попарно, на каждую лампу.

ЭПРА – что это такое, и как работает

Люминесцентные лампы напрямую от сети в 220 вольт не работают. Им необходим специальный переходник, который будет стабилизировать напряжение и сглаживать пульсацию тока. Этот прибор носит название пускорегулирующая аппаратура (ПРА), состоящая из дросселя, с помощью которого сглаживается пульсация, стартер, используемый как пускатель, и конденсатор для стабилизации напряжения. Правда, ПРА в этом виде – это старый блок, который постепенно выводится из оборота. Все дело в том, что ему на смену пришла новая модель – ЭПРА, то есть, тот же пускорегулирующий аппарат, только электронного типа. Итак, давайте разберемся в ЭПРА – что это такое, его схема и основные составляющие.

Конструкция и принцип работы ЭПРА

По сути, ЭПРА – это электронное плато, небольшого размера, в состав которого входит несколько специальных электронных элемента. Компактность конструкции дает возможность установить плато в светильник вместо дросселя, стартера и конденсатора, которые все вместе занимают больше места, чем ЭПРА. При этом схема подключения достаточно проста. О ней чуть ниже.

Смотрите так же:  Реле тока устройство назначение

Преимущества

  • Люминесцентная лампа с ЭПРА включается быстро, но плавно.
  • Она не моргает и не шумит.
  • Коэффициент мощности – 0,95.
  • Новый блок практически не греется по сравнению с устаревшим, а это прямая экономия электрического тока до 22%.
  • Новый пусковой блок снабжен несколькими видами защиты лампы, что повышает ее пожарную безопасность, безопасность эксплуатации, а также продлевает в несколько раз срок службы.
  • Обеспечение плавного свечения, без мерцания.

Внутреннее устройство ЭПРА

Внимание! Современные правила охраны труда предписывают использовать в рабочих помещениях люминесцентные лампы, снабженные именно этой новой аппаратурой.

Схема устройства

Начнем с того, что люминесцентные лампы – это газоразрядные источники света, которые работают по следующей технологии. В стеклянной колбе находятся пары ртути, в которые подается электрический разряд. Он-то и образует ультрафиолетовое свечение. На саму колбу изнутри нанесен слой люминофора, который преобразует ультрафиолетовые лучи в видимый глазами свет. Внутри лампы всегда находится отрицательное сопротивление, вот почему они не могут работать от сети в 220 вольт.

Но тут необходимо выполнить два основных условия:

  1. Разогреть две нитки накала.
  2. Создать большое напряжение до 600 вольт.

Внимание! Величина напряжения прямо пропорциональна длине люминесцентной лампы. То есть, для коротких светильников мощностью 18 Вт оно меньше, для длинных мощностью выше 36 Вт больше.

Теперь сама схема ЭПРА.

Начнем с того, что люминесцентные лампы, к примеру, ЛВО 4×18, со старым блоком всегда мерцали и издавали неприятный шум. Чтобы этого избежать, необходимо подать на нее ток частотой колебания более 20 кГц. Для этого придется повысить коэффициент мощности источника света. Поэтому реактивный ток должен возвращаться в специальный накопитель промежуточного типа, а не в сеть. Кстати, накопитель с сетью никак не связан, но именно он питает лампу, если случиться сетевой переход напряжения через ноль.

Как работает

Итак, сетевое напряжение в 220 вольт (оно переменное) преобразуется в постоянное с показателем 260-270 вольт. Сглаживание производится с помощью электролитического конденсатора С1.

После чего постоянное напряжение необходимо перевести в высокочастотное напряжение до 38 кГц. За это отвечает полумостовой преобразователь двухтактного типа. В состав последнего входят два активных элемента, которые собой представляют два высоковольтных транзистора (биполярных). Их обычно называют ключами. Именно возможность перевода постоянного напряжения в высокочастотное дает возможность уменьшить габариты ЭПРА.

Электронный пускорегулирующий аппарат

В схеме устройства (балласта) также присутствует трансформатор. Он является одновременно и управляющим элементом преобразователя, и нагрузкой для него. Этот трансформатор имеет три обмотки:

  • Одна из них рабочая, в которой всего лишь два витка. Через нее происходит нагрузка на цепь.
  • Две – управляющие. В каждой по четыре витка.

Особую роль во всей этой электрической схеме играет динистор симметричного типа. В схеме он обозначен, как DB3. Так вот этот элемент отвечает за запуск преобразователя. Как только напряжение в соединениях его подключения превышает допустимый порог, он открывается и подает импульс на транзистор. После чего происходит запуск преобразователя в целом.

Далее происходит следующее:

  • С управляющих обмоток трансформатора импульсы поступают на транзисторные ключи. Эти импульсы являются противофазными. Кстати, открытие ключей вызывает наводку на двух обмотках и на рабочей тоже.
  • Переменное напряжение с рабочей обмотки подается на люминесцентную лампу через последовательно установленные элементы: первая и вторая нить накала.

Внимание! Емкость и индуктивность в электрической цепи подбираются таким образом, чтобы в ней возникал резонанс напряжений. Но при этом частота преобразователя должна быть неизменной.

Обратите внимание, что на конденсаторе С5 будет происходить самое большое падение напряжения. Именно этот элемент и зажигает люминесцентную лампу. То есть, получается так, что максимальная сила тока разогревает две нити накала, а напряжение на конденсаторе С5 (оно большое) зажигает источник света.

По сути, светящаяся лампа должна снизить свое сопротивление. Так оно и есть, но снижение происходит незначительно, поэтому резонансное напряжение все еще присутствует в цепи. Это и есть причина, по которой лампа продолжает светиться. Хотя дроссель L1 создает ограничения тока на показатель разницы сопротивлений.

Преобразователь продолжает после запуска работать в автоматическом режиме. При этом его частота не меняется, то есть, идентична частоте запуска. Кстати, сам запуск длится меньше одной секунды.

Тестирование

Перед тем как запустить ЭПРА в производство проводились всевозможные тесты, которые показатели, что встроенный люминесцентный светильник может работать в достаточно широком диапазоне подаваемых на него напряжений. Диапазон составил 100-220 вольт. При этом оказалось, что частота преобразователя изменяется в следующей последовательности:

  • При 220 вольт она составила 38 кГц.
  • При 100 вольтах 56 кГц.

Но необходимо отметить, что при снижении напряжения до 100 вольт яркость свечения источника света явно уменьшилась. И еще один момент. На люминесцентный светильник всегда подается ток переменного типа. Это создает условия его равномерного износа. А точнее сказать, износа его нитей накаливания. То есть, увеличивается срок эксплуатации самой лампы. При тестировании лампы постоянным током, срок ее службы снизился в два раза.

Причины неисправностей

Итак, по каким причинам люминесцентная лампа может не гореть?

  • Трещины в местах пайки на плате. Все дело в том, что при включении светильника плата начинает нагреваться. После того как он будет включен, происходит остывание блока ЭПРА. Перепады температуре негативно влияют на места пайки, поэтому появляется вероятность обрыва схемы. Исправить неполадку можно пайкой обрыва или даже обычной его чисткой.
  • Если произошел обрыв нити накаливания, то сам блок ЭПРА остается в исправном состоянии. Так что эту проблему можно решить просто – заменить сгоревшую лампу новой.
  • Скачки напряжения являются основной причиной выхода из строя элементов электронного ПРА. Чаще всего выходит из строя транзистор. Производители пускорегулирующей аппаратуры не стали усложнять схему, поэтому варисторов в ней нет, который бы и отвечали за скачки. Кстати, и установленный в цепь предохранитель также от скачков напряжения не спасает. Он срабатывает лишь в том случае, если один из элементов схемы будет пробит. Поэтому совет – скачки напряжения обычно присутствуют в непогоду, поэтому не стоит включать люминесцентную лампу, когда за окном сильный дождь или ветер.
  • Неправильно проведена схема подключения аппарата к лампам.

Это интересно

В настоящее время ЭПРА устанавливаются не только с газоразрядными источниками света, но и с галогенными и светодиодными лампами. При этом нельзя использовать один аппарат, предназначенный для одного вида ламп, к другой лампе. Во-первых, не подойдут по параметрам. Во-вторых, у них разные схемы.

При выборе ЭПРА необходимо учитывать мощность лампы, в которую он будет устанавливаться.

Оптимальный вариант модели – это аппараты с защитой от нестандартных режимов работы источника света и от деактивации их.

Обязательно обратите внимание на позицию в паспорте или инструкции, где указано, в каких погодных климатических условиях электронный ПРА может работать. Это влияет и на качество эксплуатации, и на срок службы.

Подключение

И последнее – это схема подключения. В принципе, ничего сложного. Обычно производитель прямо на коробке указывает эту самую схему подключения, где точно по клеммам указаны и номера, и контур подключения. Обычно для вводного контура – три клеммы: ноль, фаза и заземление. Для выходного на лампы – по две клеммы, то есть попарно, на каждую лампу.

Похожие статьи:

  • Белый и черный провода где плюс какого цвета провод плюс и минус? в зарядном устройстве 2 провода черный и белый . где плюс где минус? какого цвета провод плюс и минус? в зарядном устройстве 2 провода черный и белый . где плюс где минус? можно определить с помощью […]
  • Заземление гру Заземление гру п. 2.2.19 ПБ 12-529-03: 2.2.19. Надземные газопроводы при пересечении высоковольтных линий электропередачи, должны иметь защитные устройства, предотвращающее падение на газопровод электропроводов в случае их обрыва. […]
  • Отличие провода пунп от ввг Чем отличается ВВГ от ПУНП? Чем отличается ВВГ от ПУНП? Вроде сечение одинаковое, изоляция двойная. Можно ли проводку делать ПУНПом, если она заштукатуривается? Сырьём для ПВХ, методикой испытаний. Этот кабель выпускается по ГОСТ, а […]
  • Можно ли подключить узо без заземления Подключение УЗО без заземления Специальные устройства защитного отключения (УЗО) рекомендуют устанавливать там, где существует высокая вероятность поражения током. Задачей устройства является оперативное отключение всего электрического […]
  • Резисторы на 220 вольт Резистор металлокерамический 30W/R50K (0.5 OM) (9) INMIG150, 180 WESTER Самовывоз (8) Рязань г, Яблочкова проезд д.6, пункт выдачи «220 Вольт», оплата при получении Рязань г, Яблочкова проезд д.6, пункт выдачи «220 Вольт», по […]
  • Помещение с 380 вольт Офис склад в Находке Заметка к объявлению Собственность 380 вольт городской телефон интернет в помещение имеется три отдельных входа парковка назначение производственное высота потолка в складе 3метра расмотривается аренда Объявление […]