Схема электронного спидометра

Как работают автомобильные спидометры?

Леонардо да Винчи в 1500 г. создал прототип механизма для измерения скорости конного экипажа. И только в 1901 году усовершенствованный аналог изобретения был установлен компанией Oldsmobile на автомобили. С тех пор устройство спидометра разительно изменилось. Рассмотрим принцип работы, почему врут механические и электрические спидометры, а также основные поломки.

Механические

По своему устройству аналоговые спидометры делятся на следующие виды:

  • стрелочные. Скорость показывается перемещением стрелки по циферблату в форме полусферы;
  • ленточные. Положение окрашенной ленты на горизонтально размеченной шкале показывает фактическую скорость автомобиля. Немного видоизмененный аналог такого измерителя вы могли видеть на ВАЗ 2101 и 2102;
  • барабанные. Индикатор был нанесен на барабане, который вращался пропорционально изменению скорости.

Аналоговый спидометр

Механический спидометр стрелочного типа – единственный из аналоговых видов измерителей скорости, которые до сих пор устанавливаются на многие автомобили. Рассмотрим устройство аналогового спидометра, принцип работы которого основывается на явлении магнитной индукции. Составные компоненты:

  • червячный узел, устанавливающийся в КПП. Шестерня вращается вместе с вторичным валом КПП, что позволяет рассчитать скорость вращения приводов, соответственно, и колес;
  • тросиковый привод, который тянется от червячного узла к приборной панели;
  • магнитный элемент;
  • металлическая пластина, соединенная со стрелкой;
  • пружина;
  • шкала.

Сопутствующим элементом спидометра можно считать счетчик пройденного расстояния, который через червячную передачу соединен с тросиком. Устройство и способы смотки одометра мы рассматривали ранее, поэтому заострять внимание на этом не будем.

В полноприводных автомобилях скоростная часть спидометра может находиться в раздаточной коробке.

Принцип работы

Вращение вторичного вала МКПП через главную передачу связано с червяком и шестерней (червячная передача), которая крепится к тросу. Соответственно, вращение вторичного вала провоцирует движение троса, который оборачивается вокруг своей оси внутри кожуха. Трос, тянущийся от КПП к приборной панели, соединен с магнитом, который находится вблизи металлической пластины и соединен со стрелкой. С курса физики все мы знаем о влиянии магнитных полей на ферромагнетики. Вращаясь вокруг своей оси, магнит провоцирует отклонение металлической пластины, как бы утягивая ее за собой. Соответственно, чем выше скорость вращения магнита, тем быстрее будет крутиться металлическая часть, и тем больше будет подыматься стрелка автомобильного спидометра. Именно так работает механический спидометр.

Электронный спидометр

В электронном счетчике отсутствует механическая связь между показаниями на приборной панели и вторичным валом КПП. Способ реализации во многом зависит от устройства датчика скорости, который бывает двух типов:

  • оптоэлектронный. В корпусе КПП, как и в случае с механическим спидометром, устанавливается скоростная часть с тросиком. Вот только показания скорости автомобиля рассчитывается на основании импульсов, формирующихся фотопрерывателем. Частота импульсов пропорциональна скорости вращения троса, что позволяет высчитать фактическую скорость автомобиля;
  • безтросовый. В корпусе КПП устанавливается магнитно-резистивный элемент (МРЭ). Многополюсный магнит вращается вместе с ведомым валом КПП. Возникающие изменения магнитного поля увеличивают/уменьшают сопротивление МРЭ, которое преобразовывается мостовой схемой в импульсы.

Еще большее распространение получил электронный спидометр, работающий на эффекте Холла. Если к проводнику или полупроводнику прямоугольной формы приложено постоянное напряжение и его пронизывает под прямым углом линии магнитного поля, на противоположных плоскостях проводника возникает напряжение, которое и было названо в честь первооткрывателя Эдвина Холла.

Частота изменения выходного напряжения будет пропорциональна скорости вращения задающего диска. Именно частота импульсов напряжения позволяет ЭБУ высчитывать фактическую скорость автомобиля. Стоит заметить, что ранее главная функция датчика скорости – показывать скорость движения авто, стала теперь по большей мере сервисной. Датчик скорости используется системой питания двигателя в определенных режимах работы. Поэтому при поломке или некорректной работе электронного датчика мотор может глохнуть при смене передач, неустойчиво работать, терять тягу.

Почему спидометр врет

Любой автомобильный спидометр искажает показания. По большей мере связано это с калибровкой устройств, точно выполнить которую достаточно сложно. Также стоит учесть, что скорость измеряется по вращению лишь одной из оси главной передачи (редуктор, установленный в МКПП). А ведь при повороте колесо, находящееся на внутреннем радиусе, проходит меньшее расстояние, нежели внешнее колесо.

Но главную поправку в показания автомобильного спидометра вносит размерность колес. Чем больше диаметр колеса, тем большее расстояние автомобиль пройдет за один оборот приводного вала.

В среднем измерители врут на 5-10 км/час. Поскольку неточные показания могут стать причиной ДТП, производители автомобилей, калибруя электронные спидометры, перестраховываются. Измеритель скорости на новом автомобиле никогда не будет врать в большую сторону.

К основным неисправностям относятся:

  • разрушение шестеренок червячной передачи, которые часто изготавливаются из пластика;
  • обламывание троса в месте зацепления со скоростной частью, вкручивающейся в КПП;
  • окисление контактов датчика, обламывание проводов питания. Проверку питания можно осуществить своими руками при помощи мультиметра;
  • неисправность электронной части, располагающейся в щитке приборов.

Предлагаем посмотреть видео процесса базовой диагностики в случае, если не работает спидометр.

Схема электронного спидометра

Автор — Олег Петрович.
Участник Конкурса «Поздравь Кота по-человечески 2009»
Опубликовано 03.09.2009.

Добрый день и удачной охоты, всем котам и кошечкам!
А самое главное:
С днем рождения Кот!
Пусть живет и здравствует наш «РадиоКот»! Ура товарищи (ну или господа)!

Глава 1. Немного предистории, или как я люблю отечественный Автопром.

После того, как на моей машине, а машина прямо скажем почти эксклюзивная (в смысле запчасти фиг найдешь), благополучно скончался очередной спидометр, то ли седьмой, то ли восьмой, я решил замутить электронный девайс, чтоб и скорость показывал и километры щелкал.
Как обычно, начал поиск того, что уже натворили собратья по разум и коллеги по несчастью обладания данным типа авто. Пролистав не одну страницу и посетив не один форум, обнаружил что ничего подходящего для моего авто нет, либо девайс собран на PICе, у меня даже программатора нет и приходится просить друзей-знакомых, да и AVRки мне как-то роднее, либо состоит из 2х отдельных блоков, и у всех значения пробега пишутся во внутреннюю EEPROM, что не есть гут. Пораскинув мозгами, не широко так, чтобы потом можно было собрать в кучу, решился на отчаянный шаг — лепить самому. Что из этого получилось — решать вам, многоуважаемые коты.

Фото 1. Общий вид:

Фото 2. Основной блок:

Фото 3. Датчик ДСА-9 + «двигло»:

Глава 2. О выборе компонентов, или «я его слепила из того, что было».

Итак, за источник сигнала о продвижении авто по тернистому пути наших автодорог был выбран ДСА-9, имеющий: 6 импульсов на 1 метр пути, выход ОК и резьбовое соединение М22 х не помню на сколько, как раз по размеру, НО можно использовать любой датчик скорости с 6имп/метр, в зависимости от авто.
С проциком было труднее. Любимой меге48 не хватало пары ног, но тут на глаза попалась старая макетка с мегой16, что ж так тому и быть. Итого: МП=ATmega16-16PI
С выбором тактовой частоты долго мучаться не пришлось, после не больших подсчетов выяснилось, что период повторения импульсов при скорости 250 км/ч составляет 2,4 мс, или 2400 тиков при тактовой частоте в 1 МГц, маловато будет, было решено использовать кварц на 8 МГц, это уже 19200 тиков процессора, а для удобства подсчета, с помощью таймера Т1, использовать «предделитель на 8».
Для отображения всего, что будет измерятся и подсчитыватся предназначены:
KingDright BA56-12GWA (можно любые с ОА) — для отображения текущей прыткости
МЭЛТ MT-08S2A-2YLG (опять же можно любой 8х2 LCD с аналогичным контроллером и тактовой не ниже 250 кГц) — для подсчета того, что будет пройдено по тем направлениям, что в России гордо именуется дорогами.
Ну и AT24C04B (наследство от той самой макетки, но можно любую из серии 24Схх), чтобы «помнить» от тех незабываемых километрах пути.

Глава 3. О самом главном, или без теории ни туды, и ни сюды.

Переходим, собственно, к методике определения скорости. Как всем известно, если автомобиль движется, то с датчика скорости поступают импульсы, если никуда не движется — то и импульсов тоже не дождетесь! И что самое поразительное — частота (или кому удобнее — период повторения) прямо пропорциональна (обратно пропорциональна, для периода повторения) скорости движения, вот тут-то, не при котах будь она упомянута, собака и порылась. Что такое частота — это количество импульсов в секунду (просто гениально, спасибо Герцу) N(в секунду)=Fп, поэтому получаем:

V=Fп/6 (м/сек) (мы же помним, что на 1 метр приходится 6 импульсов)

Но минуточку, где вы видели спидометры со шкалой «М/СЕК»? Да и ГАИшники, (ДАИшники — это чтобы для тех, кто в Украине проживает, было понятно) штрафуют за лишние км/час. Отсюда вывод — надо пересчитать, а как? Все гениальное просто: умножаем на 3600 (это столько секунд в 1 часе) и делим на 1000 (столько метров в 1 км) после сложнейших математических преобразований получаем волшебную формулу:

V=0,6*Fп (км/час) — то что доктор прописал.

Из это формулы следует гениальное (жаль, что не я первый додумался) умозаключение — если организовать «временные ворота» длительностью 0,6 сек, в которые проталкивать импульсы от датчика, на выходе получим скорость! 1 импульс — 0,6 км/час, 10 импульсов — 6 км/час, 100 импульсов — 60 км/час и т.д. Но, опять это «НО», как сказал один из главных героев любимого фильма из детства «Айболит-66» — «Нормальные герои всегда идут в обход», вот этим путем пойдем и мы, т.е. заменим в формуле Fп на Тп (оно же 1/Fп), в результате получим:

Возникает законный вопрос — «ЗАЧЕМ?». Напрашивается еще одна цитата: «А я объясню!» («Ирония судьбы, или с легким паром»). Дело в том, что как любой цифровой прибор, нашему спидометру присущи те же недостатки — погрешность. Может кто помнит, обычно пишут: «+/- 2 знака мл.разряда» (например). Так вот, чтобы уменьшить, всякие там, погрешности умные люди придумали «складывать и умножать» (шучу), накапливать и усреднять.
Теперь посмотрим, сколько нужно времени, чтобы усреднить 2 показания, ну скажем на скорости 60 км/ч.
При первом способе получается: 2 временных отрезка по 0,6 сек — итого 1,2 сек, авто при этом проедет примерно 33м. (временем выполнения сложения-деления можно пренебречь)
Второй способ нам дает: 2 интервала по 10 мс — итого 0,02 сек, авто проедет — 0,33м.
Вот поэтому в программе происходит накопление и усреднение 8-ми отсчетов скорости. Почему 8? Просто удобнее усреднять, не мне — микропроцику.
Тогда зачем я тут подробно описывал первый способ расчета? А чтоб было, вдруг кому-то понадобится!
Что? Забыл про одометр? Ну, там все просто: считаем импульсы, делим на 6 — получаем метры, потом делим на сто — сотни метров (нужны для учета суточного пробега), еще на 10 получили — км. Как вы поняли в девайсе всего два счетчика пробега: полный и суточный.
Опять же, количество счетчиков ограничено только моей фантазией (или ее отсутствием) и теми самыми 19200 тиками (по секрету скажу — тиков ушло примерно 1/3), можно конечно добавить счетчиков, прицепить часы на DS1307 и считать км за 1 час, скажем, или расстояние от работы до магазина с пивом, но зачем?

Смотрите так же:  Подключение точечных светодиодных светильников на 220 вольт

Глава 4. Описание работы, или «а оно вам надо?»

Основная часть схемы изображена на рис.1.
И так, что у нас в наличии:
таймеры: Т0, Т1, Т2 — отлично,
аппаратный TWI — пригодится,
1 свободная нога от АЦП — вполне достаточно,
есть еще ноги для организации внешних прерываний,
ну еще куча всего — оно нам не пригодится, по крайней мере в этом проекте.

Основную работу выполняет Т1, заполняет время между 2-мя нарастающими фронтами от приходящих импульсов датчика скорости, импульсами 1МГц (считать удобно: 1 импульс — 1 мкс) попутно подсчитывая их (импульсы от датчика). Работает он в режиме ICR, и использует 2-а прерывания, собственно Input Capture1 Interrupt Vector и Overflow1 Interrupt Vector, второй нужен только для расчета скоростей ниже 10 км/ч, к сожалению на таких скоростях Т1 успевает переполняться и не один раз, поэтому и переменная 3-х байтовая.
На счетчике Т2, работающем в нормальном режиме, организовано формирование интервалов времени для динамического отображения информации на 7-ми сегментных индикаторах и вывода данных на LCD (здесь все понятно, пояснить нечего).
Т0 — тоже, ничего особенного режим Fast PWM, управляет ключем регулирующим яркость свечения индикаторов. АЦП — меряет напругу на переменном резисторе R7, выравнивает результат влево, и записывает его в OCR0.
Ну что еще? Гальваническая развязка входов МК от бортовой сети авто, так проще, ключ на элементах VT5,VT6 (если кому-то больше нравятся полевики, пожалуйста — можно и на полевике) нужен только для того, чтобы процик успел записать данные по километражу в 24С04, после выключения зажигания. Забыл пояснить Vп — цепь питания постоянно находящаяся под напряжение ботовой сети , Vз — цепь питания, на которой напряжение бортовой сети появляется после включения зажигания и соответственно пропадающее после отключения оного.

Для эстетов на выводах PC3, PC4 организован вывод скорости до 200км/ч с дискретностью 2,5км/ч на линейку светодиодов (рис.3), всего-то: 10 — 74ALS164, 81- светодиод (один светится постоянно изображая «0км/ч), но это на любителя (кто надумает лепить сие безобразие — не забудьте поменять источник питании на более мощный, а если и яркость регулировать захотите — то и транзистор на ШИМе.)

Питается все это безобразие от преобразователя (рис.2) на МС33063А, заменять на, что-то типа 7805, не рекомендую. Девайс кушает около 0,2А и на 7805 будет рассеиваться мощность около (14,5В-5В)*0,2А = 1,9Вт, многовато, греться будет как «собака», плюс еще тепловой режим под панелью авто, без радиатора не обойтись.

Вот в принципе и все. Работка скромненькая, но я честно старался.
Не пинайте слишком сильно — в конкурсе участвую первый раз, да и «писатель» я начинающий.
С надеждой на вашу благосклонность.

Схема электронного спидометра

————————————————
:020000040000FA
:10000000850186018B018101640083160030850023
:100010000130860046308100831202309400423065
:10002000920002309100FE3093000A308E008F0063
:10003000900078308C008B109F3081000B118B1C4E
:100040002E288E0B2D280A308E008F0B2D280A307B
:100050008F00900B2D280A3090008B100B1D1F284D
:100060000310940C141C38280830940014308400B9
:100070008501840300088600140885008C0B1C2869
:100080008D0110084C2092000F084C2091000D1497
:100090000E084C20930015280A3C031D51280D1C06
:1000A00054280D1456200800FE3008000F3982072E
:1000B00002349E3424340C349834483440341E3492
:1000C000003408347E34BE34DE34EE34F634FA3490
:02400E00F23F7F
:00000001FF
————————————————

Для программирования нужно все, что находится между строчками с «тире», в любом текстовом редакторе сохранить в виде файла с расширением .hex, и дальше программатором – «прошить» в микропроцессор.

В качестве индикаторов использованы три семисегментных блока SA08-11 с высотой знака 20.3 мм фирмы «Kingbright». Цвет – ярко красный. Напомню, что семисегментники в данном случае берутся с общим анодом. Индикаторы включены по схеме динамической индикации, их аноды управляются через ключи на транзисторах КТ646. Можно применять и другие, например, КТ815. Одноименные (a, b, c, d, e, f, g) катоды соединяются параллельно у всех трех индикаторов.

При правильной сборке, цифровой спидометр начинает работать сразу без каких либо настроек. Автор конструкции: Иван Федоров.

Схема и устройство спидометра

Без спидометра нам не обойтись. Скорости велики, а их влияние на безопасность неоспоримо.
Спидометр не только украшает приборную панель, но сохраняет нервы, деньги, а иногда и жизнь. Не по мельканию же кустов за обочиной определять скорость! Глаз даже опытного водителя в долгой поездке «замыливается» – и немалые 100 км/ч кажутся черепашьим шагом.

Схема и устройство спидометра

Скорость, о которой мы говорим, «мгновенная». Это она важна при экстренном торможении или энергичном маневре. Но спидометр включает и одометр с точностью измерения до километра, иногда – до 100 метров. Хотите точней – обзаводитесь навигационной системой вроде GPS.

Наиболее просты механические спидометры. Приводятся от трансмиссии «гибким валом» – особым тросиком, хорошо передающим вращение. Так как одинаковые спидометры бывают на разных авто, в их приводе применяют простейший редуктор, передаточное число которого подобрано к автомобилю. На заднеприводном спидометр обычно контролирует вращение вторичного вала КП. Значит, показания зависят от размера шин, передаточного числа редуктора заднего моста и собственной погрешности прибора. Пример: на «жигулях» замена пары 4,44 на 3,9 изменит показания на 14%. В этих случаях обязательна замена и редуктора спидометра. Однако зубчатки редуктора не резиновые – поэтому идеального соответствия спидометра размеру шин не бывает, а они ведь еще изнашиваются… Суммарная ошибка показаний до 10% и даже больше – дело обычное. Часто этим объясняются рекорды дворовых гонщиков.

Спидометры переднеприводных автомобилей с поперечным расположением двигателя обычно «обслуживают» привод левого колеса после главной пары. Значит, к погрешности спидометра и влиянию размера шины прибавляется эффект от закругления дороги: на поворотах влево «приборная скорость» чуть меньше, чем посередине машины, а вправо – чуть больше.

Как сказываются шины нештатного размера? Замена шины 175/70R13 на шину 165/70R13 или наоборот меняет показания спидометра на 2,5%. Немного? Но вопрос еще в том, как эта ошибка сложится с погрешностью самого спидометра и его редуктора, как скажется износ шин, давление в них. Низкое давление уменьшает радиус качения. Деформация «хитрая», а плата за нее – и рост расхода топлива, и падение максимальной скорости, хотя при этом сами показания спидометра… завышены!


Механический спидометр устроен просто:
поверх магнитного диска 1, приводимого тросом, расположен с небольшим зазором вращающийся на оси алюминиевый колпак (картушка) 2 со стрелкой и возвратной пружиной 3 (см. рис.). Когда диск вращается, его магнитные силовые линии возбуждают в картушке токи, создающие свое магнитное поле. При взаимодействии двух полей картушка увлекается за диском, но пружина ограничивает ее поворот углом, зависящим от скорости вращения диска. Циферблат отградуирован в соответствии с тарировкой прибора, зависящей от жесткости возвратной пружины. Любое изменение ее жесткости недопустимо – показания спидометра окажутся искажены.


Одометр – набор барабанчиков с цифрами
(еще их называют «декадами»). Каждый связан с соседним зубчатой передачей с отношением 1:10. С началом движения крайний – километровый отсчитывает единицы километров, когда он сделает один оборот, соседний 10-километровый покажет в своем окошке единицу. Через 100 км первый оборот завершит 10-километровый барабанчик. И так далее. Отечественные одометры ведут счет до 99 999 км, затем обнуляются. Нынче многие одометры шестизначные. Отдельные модели включают в себя удобную опцию – счетчик короткого (обычно не больше 1000 км) пробега с точностью до сотни метров. Водитель может его обнулить нажатием кнопки.

К сожалению, работоспособность механического спидометра сильно зависит от износа его собственных деталей, а также привода. Важно проложить гибкий вал без резких перегибов (иначе трос изнашивается, стрелка колеблется, механизм шумит) – не на каждом автомобиле это удается. Тросовый привод затрудняет сборку и разборку приборного щитка. В конце концов, от троса отказались – спидометр стал электронным, он работает по сигналу датчика скорости. Показанный датчик совмещен с редуктором, который, кстати, можно установить и на старую машину с тросовым приводом: отвинти колпачок с накаткой – и прикручивай трос. У нас электронные спидометры впервые появились на ГАЗ-3110, ВАЗ-2110, ими комплектовали последние варианты «ИЖ-Ода».

По внешнему виду первые электронные спидометры трудно отличить от механических. Стрелка на своем месте, барабанчики с цифрами тоже. Но отныне стрелка – деталь электронного измерителя числа импульсов от датчика скорости. Угол ее поворота пропорционален числу импульсов в единицу времени – подробности технологии пересчета оставим специалистам. Одометр похож на механический, но «декады» подчиняются управляемому электроникой микроэлектродвигателю.

Эти приборы несколько точней механических, но все же погрешность 5–7% у них случается, ведь они избавились лишь от слабых мест самой механики (люфтов, капризов троса, картушки, возвратной пружинки т.п.).

Полностью электронные приборы совершенней. Но и здесь привычные стрелки на своих местах: оказывается, большинство людей понимают их «язык» лучше, чем любые цифры на дисплее. Такой приборный щиток можно встретить на «самарах» ВАЗ-2113…2115 и части машин «десятого» семейства. С обратной стороны этот комплекс – произведение искусства. Всеми стрелками командует электроника через исполнительные электродвигатели. Дисплеи (одометра и температуры воздуха) жидкокристаллические.

При всех возможностях электроники основа измерений, то есть контроль вращения ведущего колеса с шиной, остается. Значит, связанные с этим ошибки измерений неизбежны, а разработчики «продвинутых» спидометров, похоже, не интересуются возможностью их тонкой подстройки. Почему – вопрос открытый. Вряд ли это неразрешимая проблема – предусмотрена же эта функция у маршрутных компьютеров! На фото один из них. В числе задач МК – учет расхода топлива. Тут не обойтись без измерений пройденного расстояния. Как учесть ошибки измерения? Компьютер позволяет вводить поправку. Порядок действий описан в инструкции к нему. «Базой» является путь, измеренный по километровым столбам – они вкопаны с точностью, какая многим спидометрам и не снилась. В наше время положение реперных точек легко проверить современными навигационными средствами. Строители-дорожники с ними тоже знакомы.

Смотрите так же:  Проложить провода по стене

Как сделать цифровой спидометр в автомобиль

Если вы давно хотели что-то поменять на приборной панели или просто обновить ее, предлагаем вам собрать цифровой спидометр. Делается он просто, требует минимум элементов и немного усилий. Зато позволит преобразить панель и придать ей новый образ. Придавая вашему автомобилю некий элемент отличия от остальных представителей этого же класса.

Конструкция схемы предельна, проста, для ее сборки вам понадобятся:

  • — микроконтроллер ATmega8 – основная часть схемы, на нем задаются программное управление;
  • — светодиодный семисегментный индикатор – на нем непосредственно отображается значение скорости, определенное датчиком и обработанное на микроконтроллере;
  • — стабилизатор напряжения на 5 В (КР142ЕН5), на схеме он не указан, цепляется к схеме со стороны «+5 В», нужен для стабилизации напряжения;
  • — конденсаторы (2 шт) номиналом 47 мкФ не менее 25В, на схеме также не указаны служат для фильтрации напряжения до и после стабилизатора напряжения;
  • — Резисторы номиналом 1 кОм (3 шт), 10 кОм (1 шт) и 150 Ом (7 шт).

Понятно, что конструкция действительно очень проста, приступаем к самой сложной части. Прошивка микроконтроллера, будет зависеть от типа, установленного у вас датчика скорости. Один из самых распространенных датчиков выдает 6 импульсов на 1 метр пути. Прошивочный файл представленный в конце статьи сделан именно под такой датчик. Обновление показаний скорости запрограммировано на частоту в 2 Гц.

Принцип работы довольно простой, навесных элементов минимум, как видно из схемы.

Микроконтроллер ATmega8 не требует внешнего генератора импульсов или навесного конденсатора, т.к. содержит внутренний генератор, достаточно просто подать на него питание, и он генерирует сам для себя тактовую частоту в 1 МГц.

С фьюзами микроконтроллера также ничего не делаем, достаточно просто прошить. Микроконтроллер замеряет количество поступивших с датчика скорости импульсов в определенный период времени, вычисляет скорость, преобразует это значение в км/ч и выводит это значение на индикатор. Все это справедливо именно для семисегментного индикатора с общим анодом в случае использования любого другого схема работать не будет.

На фотографиях представлена трассировка платы, для установки всех необходимых элементов и окончательный вид устройства. И указано местонахождения датчика скорости в автомобиле, если вдруг возникнет проблема, где его искать.

Схема электронного спидометра

Спидометр для электромобиля

на основе интегрального таймера КР1006ВИ1

Для измерения скорости электромобиля не всегда возможно применить механический спидометр с приводом от коробки перемены передач (КПП). А зачастую КПП отсутствует на электромобиле.
На современных автомобилях устанавливаются импульсные датчики скорости для работы бортового компьютера. Вот такой датчик и использован для разработки электронного спидометра.
Датчик скорости (производители Калуга, Курск, Кострома) автомобиля (ДСА) сконструирован по принципу эффекта Холла и выдает на контроллер частотно-импульсный сигнал. Частота сигнала прямопропорциональна скорости движения автомобиля. Контроллер использует этот сигнал для управления работой двигателя на холостом ходу и посредством регулятора холостого хода, управляет подачей воздуха в обход дроссельной заслонки. Датчик выдает 6 импульсов на один оборот вала.
На Самарах, ИЖах, Оке, Десятках и ГАЗах (включая Газели и Соболи), УАЗах датчик 6-импульсный.

  • 311.3843, 343.3843, 301.3843 — на ВАЗ
  • 345.3843 — на ИЖах (резьба М22, а не М18)
  • 341.3843, 342.3843 — на ГАЗах
  • 342.3843 — ГАЗ и УАЗ
  • На карбюраторных ВАЗ-2110 первое время ставили 10-импульсные датчики с номером 28.3843. На них указано
  • количество импульсов.
  • На Газах встречаются 10-импульсные датчики 344.3843 Устройство разрабатывалось для датчиков с 6 импульсами на оборот вала, но небольшая перенастройка позволит его применить и для датчиков с 10-ю импульсами на оборот.

    При разработке спидометра было решено в одном корпусе с ним разместить сигнализатор разряда бортовой батареи электромобиля. В тех случаях, когда подзаряд батареи питающей все потребители электромобиля кроме тягового мотора , не предусмотрен от тяговой батареи, это актуально. Тяговая батарея обычно всегда снабжается устройствами защиты от разряда ниже допустимого уровня, это очень дорогое устройство электромобиля — имеется ввиду тяговая батарея. Ниже представлена схема всего устройства.

    Рис.1. Схема принциапиальная спидометра и сигнализатора

    Разработка такой микросхемы как интегральный таймер упрощает разработку многих устройств. Я полагаю, что полезность этого устройства еще не до конца оценена. Именно на этой микросхеме КР1006ВИ1 разработан спидометр. Импортный аналог имеет в своем названии цифры 555 с различными буквами, например, NE555, IN555N На входе устройства резистор 5.1 ком с целью загрузить открытый коллектор датчика импульсов. Прямоугольные импульсы датчика проходя конденсатор емкостью 22 нф дифференцируются и запускают одновибратор на интегральном таймере КР1006ВИ1. На выходе микросхемы появляется прямоугольный импульс с параметрами задаваемыми конденсатором и резистором подключенными к выводам 6 и 7 микросхемы. Длительность выходного импульса не зависит от частоты вращения вала датчика импульсов. При необходимости корректировки параметра выходного импульса первым делом надо подбирать резистор 5.1 ком. Но эта необходимость может появить при переходе на датчик с 10 импульсами на оборот. Диод КД522 на входе 2 микросхемы, предназначен для защиты входа от импульсов обратной полярности при дифференцировании. С вывода 3 импульсы поступают через резистор и диод на накопительный конденсатор емкостью 10 мкф. Диод служит для предотвращения разряда конденсатора через выход интегрального таймера. Накопительный конденсатор интегрирует импульсы во времени, благодаря чему при повышении скорости напряжение на конденсаторе повышается и стрелочный индикатор показывает увеличение напряжения, что дает возможность прокалибровать прибор в еденицах скорости. В правой части схемы на трех транзисторах собрано устройство контроля напряжения питания. Если питание подается с аккумулятора, то устройство будет индицировать состояние питающего напряжения. Оба первых транзистора имеют в эмиттерной цепи один и тот же резистор. Такое построение схемы создает положительную обратную связь для получения более четкого переключения светодиода. Третий транзистор представляет собой усилительный элемент для включения звукового сигнализатора. После сборки потребуется настроить устройство на нужный порог срабатывания. Предлагается настраивать на 11.5 в, что составляет 90% разряда батареи. Специалисты рекомендуют при работе аккумуляторов в составе тяговых батарей электромобиль не разряжать их ниже 20% — это 11.7 в.
    При достижении указанного напряжения зажигается светодиод, обратное гашение происходит почти на 1 вольт выше нижнего порога. Гистерезис переключения сильно зависит от тока протекающего через светодиод. Так, что разницу между верхним и нижним порогами можно регулировать путем подбора резистора в цепи светодиода, но надо следить чтобы не превысит допустимый ток через светодиод. Так же можно подбирать резистор в цепи эмиттеров транзисторов.
    Срабатывание световой сигнализации дублируется звуковым сигнализатором.

    Рис.2. Плата спидометра — сигнализатора

    На рис.2 представлена разводка печатной платы устройства. В моем случае плата вырезана под конкретный измерительный прибор, поэтому несколько отличается.
    Окончательная настройка спидометра производится после установки на транспортное средство с помощью резистора включенного последовательно со стрелочным прибором. В качестве корпуса использован прибор ДУП-М — дистанционный указатель положения. Можно найти в запасниках у знакомых КИПовцев.

    Автомобильный цифровой спидометр на PIC16F628. Схема

    Приведенный в данной статье автомобильный цифровой спидометр, возможно, установить в автомобиле взамен заводского аналогового спидометра обрабатывающего сигналы, поступающие от стандартного датчика скорости.

    Описание работы цифрового спидометра

    Устройство спроектировано на основе широко известного микроконтроллера PIC16F628A. Для отображения измеренной скорости применен светодиодный индикатор имеющий высоту знака равного 25,4 мм с общим катодом (SC1021YWA – цвет свечения желтый). Данный цифровой спидометр подключается к тому же разъему, что и штатный аналоговый спидометр.

    Путем нажатия на кнопку SA2 есть возможность менять степень свечения цифрового индикатора, каждое нажатие на SA2 сопровождается акустическим сигналом. Если дверь автомобиля закрыта не до конца на вход 2 PIC16F84A поступает низкий уровень напряжения. При скорости движения автомобиля более девяти километров в час, звучит прерывистый акустический сигнал и на дисплее на полную яркость высвечивается надпись «dor».

    Питание схемы цифрового автомобильного спидометра осуществляется непосредственно от клеммы замка зажигания. Схема индикации построена так, что незначащие нули гаснут. С схеме применен звукоизлучатель с встроенным генератором, имеющий частоту звучания в районе 1400 Гц. и рассчитанный на работу от 5 вольт.

    Существуют несколько видов датчиков скорости, все они отличаются друг от друга количеством импульсов на 1 километр пробега автомобиля. Прошивка, которую нужно записать в память PIC16F84A посредством pic программатора, обрабатывает входной сигнал 5 типов датчиков, вырабатывающие 2500, 4000, 6000, 8000 и 10000 импульсов на 1 километр пробега.

    Чтобы активизировать необходимый режим, нужно установить перемычку SA1. Включить питание и нажать на 2 сек. кнопку SA2. Каждое нажатие будет соответствовать: от 1 (2500) до 5 (10000) и далее по кругу. Если после последнего нажатия прошло более 3 сек., то спидометр выдаст звуковой сигнал, указывая на то, что выбранный режим был записан в память микроконтроллера. После этого необходимо убрать перемычку SA1 и теперь спидометром можно пользоваться.

    И еще, не забывайте следить за аккумулятором своего автомобиля. В случае его непредвиденной разрядки его можно зарядить автоматическим зарядником.

    Скачать файлы к схеме (986,3 Kb, скачано: 2 490)

    Электронный спидометр

    Владельцы патента RU 2310867:

    Использование: в автомобильной промышленности. Технический результат заключается в повышении надежности работы спидометра, расширении его технических характеристик и снижении себестоимости. Спидометр, содержащий датчик числа оборотов, имеющий вращающийся ротор, усилитель электрических сигналов датчика, электрический привод, счетчик полного числа оборотов, соединенный с электрическим приводом, и указатель частоты вращения датчика, дополнительно снабжен редуктором вращения, формирователем импульсов, интегратором, при этом датчик выполнен в виде ротора, содержащего две соединенные друг с другом металлические пластины на поверхности вращения, и статора, содержащего две металлические пластины на внутренней поверхности, расположенные напротив пластин ротора при неподвижном состоянии последнего, при этом ротор датчика соединен с выходным валом редуктора, одна пластина статора соединена со входом усилителя и через резистор с источником питания бортовой сети, вторая пластина соединена с массой, выход усилителя соединен с входом формирователя, выход формирователя соединен с электрическим приводом и с входом интегратора, выход привода соединен со счетчиком полного числа оборотов, выход интегратора соединен с указателем частоты вращения ротора датчика. 1 ил.

    Смотрите так же:  Монтаж проводов для интернета

    Изобретение относится к автомобильной промышленности, в частности, к контрольно-измерительным устройствам и отображения скоростного режима работы автомобиля, основано на емкостном датчике вращения и может быть использовано в производстве и эксплуатации автомобильной техники для повышения эффективности и надежности работы КИП, а также безопасности движения.

    Аналог известного устройства спидометра, содержащий датчик числа оборотов, имеющий вращающийся привод, усилитель электрических сигналов датчика, механический привод, счетчик полного числа оборотов, соединенный с механическим приводом, и указатель частоты вращения датчика [Данов Б.А. Электронные системы автомобилей. М.: Транспорт, 1996].

    Недостатком устройства является необходимость установки датчика вращения на близком расстоянии от указателей, сложность передачи информации о вращении на больших расстояниях посредством механического привода (тросика), а так же сложность автоматизации измерений.

    Наиболее близким к предлагаемому является спидометр, содержащий датчик числа оборотов, имеющий вращающийся ротор, усилитель электрических сигналов датчика, электрический привод, счетчик полного числа оборотов, соединенный с электрическим приводом, и указатель частоты вращения датчика [Техническое описание «КамА3-4310»].

    Работа устройства обеспечивается за счет датчика. Датчик представляет собой трехфазный генератор синхронного типа, вращающийся магнит которого связан с вторичным валом коробки передач. При вращении магнита в трех фазовых обмотках датчика наводится напряжение, которое усиливается транзисторами и подается на обмотки указателя спидометра. Под действием тока обмоток создается вращающееся магнитное поле, которое приводит во вращение магнит электродвигателя. Под действием вращающегося магнита в катушке скоростного узла, связанной со стрелкой указателя, наводятся вихревые токи. Взаимодействуя, магнитные поля вихревых токов и вращающегося магнита поворачивают катушку и стрелку на определенный угол.

    Недостатком известного устройства является сложность конструкции, так как роль датчика выполняет трехфазный синхронный генератор. Также недостатком является относительная массивность якоря, которая ограничивает предельное число оборотов.

    Технический результат направлен на повышение надежности работы контрольно-измерительных приборов и безопасности движения.

    Технический результат достигается тем, что спидометр, содержащий датчик числа оборотов с вращающимся ротором, усилитель электрических сигналов датчика, электрический привод, счетчик полного числа оборотов, соединенный с электрическим приводом, и указатель частоты вращения датчика, при этом дополнительно снабжен редуктором вращения, формирователем импульсов, интегратором, при этом датчик выполнен в виде ротора, содержащего две соединенные друг с другом металлические пластины на поверхности вращения, и статора, содержащего две металлические пластины на внутренней поверхности, расположенные напротив пластин ротора при неподвижном состоянии последнего, при этом ротор датчика соединен с выходным валом редуктора, одна пластина статора соединена с входом усилителя и через резистор с источником питания бортовой сети, вторая пластина соединена с массой, выход усилителя соединен с входом формирователя, выходы формирователя соединены с электрическим приводом и с входом интегратора, выход привода соединен со счетчиком полного числа оборотов, выход интегратора соединен с указателем частоты вращения ротора датчика.

    Отличительным признаком предлагаемого изобретения является то, что спидометр дополнительно снабжен редуктором вращения, формирователем импульсов, интегратором, при этом датчик выполнен в виде ротора, содержащего две соединенные друг с другом металлические пластины на поверхности вращения, и статора, содержащего две металлические пластины на внутренней поверхности, расположенные напротив пластин ротора при неподвижном состоянии последнего, при этом ротор датчика соединен с выходным валом редуктора, одна пластина статора соединена с входом усилителя и через резистор с источником питания бортовой сети, вторая пластина соединена с массой, выход усилителя соединен с входом формирователя, выход формирователя соединен с электрическим приводом и с входом интегратора, выход привода соединен со счетчиком полного числа оборотов, выход интегратора соединен указателем частоты вращения ротора датчика.

    На чертеже представлена функциональная схема электронного спидометра. Спидометр содержит датчик 2 числа оборотов, имеющий вращающийся ротор, редуктор вращения 1, выходной вал которого соединен с ротором датчика 2, усилитель 3 электрических сигналов датчика, вход которого соединен с датчиком 2, формирователь импульсов 4 (с двумя выходами), вход которого соединен с выходом усилителя 3, интегратор 5, вход которого соединен с выходом формирователя 4, указатель частоты вращения 6 ротора датчика, соединенный с выходом интегратора 5, электрический привод 7, соединенный со вторым выходом формирователя импульсов 4, счетчик полного числа оборотов 8 датчика, соединенный с электрическим приводом 7, при этом датчик 2 выполнен в виде ротора, содержащего две соединенные друг с другом металлические пластины на поверхности вращения, и статора, содержащего две металлические пластины на внутренней поверхности, расположенные напротив пластин ротора при неподвижном состоянии последнего, при этом одна пластина статора соединена со входом усилителя и через резистор 9 с источником питания бортовой сети, вторая пластина соединена с массой.

    Спидометр выполняют в микропроцессорном и электромеханическом вариантах.

    В электромеханическом варианте спидометра в качестве указателя частоты вращения 6 ротора датчика 2 используют стрелочный указатель, электрический привод 7 выполнен в виде шагового двигателя, а счетчик полного числа оборотов 8 — в виде механического счетчика. Градуировка стрелочного указателя частоты оборотов 6 осуществляют по максимальному отклонению стрелки указателя при максимальном числе оборотов датчика 2.

    В микропроцессорном варианте спидометра указатель частоты вращения 6 и счетчик полного числа оборотов 8 выполняют в виде декадных цифровых индикаторов, а в качестве электрического привода 7 используют согласующий преобразователь частоты импульсов с логической операцией суммирования и с постоянным запоминающим устройством.

    Электронный спидометр работает следующим образом. После начала движения автомобиля через редуктор 1 приводится во вращение ротор датчика числа оборотов 2, формирующий конденсатор с периодически изменяющейся емкостью. Поэтому в цепи источник питания — резистор — датчик будет протекать переменный ток. В промежутки времени, когда пластины находятся напротив пластин статора, образованные ими конденсаторы заряжаются, а при уходе пластин ротора конденсаторы расформировываются и пластины разряжаются. Периодическая зарядка — разрядка конденсаторов создает в цепи переменный ток, а соответственно изменяющееся напряжение на резисторе 9 и на емкостях датчика 2 с положительной и отрицательной полярностями в виде импульсов, величина, форма и длительность которых обусловлена постоянной времени τ=RC, где С — есть емкость последовательно соединенных конденсаторов, образуемых пластинами ротора и статора датчика. Редуктор 1 служит для повышения числа оборотов ротора датчика с целью повышения частоты переменного тока и уменьшения погрешности при формировании импульсов.

    Импульсное напряжение с датчика 2 поступает на вход усилителя 3. Усиленные электрические импульсы поступают на вход формирователя импульсов 4, в котором формируются импульсы одной, например, положительной полярности с одинаковыми амплитудами и длительностями. Частота импульсов на выходе формирователя 4 равна частоте вращения датчика 2 импульсов. При этом полное число импульсов прямо пропорционально полному числу оборотов датчика, а соответственно, полному числу оборотов колес автомобиля, то есть пройденному пути. Частота импульсов также прямо пропорциональна частоте вращения датчика, которая, в свою очередь, прямо пропорциональна скорости оборотов колес автомобиля или скорости движения. В связи с этим регистрация частоты следования импульсов дает информацию о скорости движения, а полное число импульсов — о полном пройденном пути. Численные значения указателей градуируются по калиброванным значениям вращения колес автомобиля по существующим методикам.

    Сопоставительный анализ с прототипом показал, что предлагаемый спидометр является более простым по конструкции датчика, более надежным и долговечным благодаря использованию датчика числа оборотов, вырабатывающего сигналы за счет использования источника питания бортовой сети, и импульсной системы в формировании и регистрации сигналов.

    Электронный спидометр, содержащий датчик числа оборотов, имеющий вращающийся ротор, усилитель электрических сигналов датчика, электрический привод, счетчик полного числа оборотов, соединенный с электрическим приводом, и указатель частоты вращения датчика, отличающийся тем, что он дополнительно снабжен редуктором вращения, формирователем импульсов, интегратором, при этом датчик выполнен в виде ротора, содержащего две соединенные друг с другом металлические пластины на поверхности вращения, и статора, содержащего две металлические пластины на внутренней поверхности, расположенные напротив пластин ротора при неподвижном состоянии последнего, при этом ротор датчика соединен с выходным валом редуктора, одна пластина статора соединена со входом усилителя и через резистор с источником питания бортовой сети, вторая пластина соединена с массой, выход усилителя соединен с входом формирователя, выход формирователя соединен с электрическим приводом и с входом интегратора, выход привода соединен со счетчиком полного числа оборотов, а выход интегратора соединен с указателем частоты вращения ротора датчика.

    Похожие статьи:

    • Четыре провода в наушниках Наушники, 6 проводов на 4 контакта. Распиновка В общем нужна помощь, что куда паять. Штекер на 4 контакта, наушники с микрофоном и кнопкой. Нужно чтоб микро работал, на кнопку пофиг. В гугле искал, таких цветов не нашел, прозвонить, что к […]
    • Схема соединения трёхфазного двигателя в однофазную сеть Как запустить трёхфазный электродвигатель в однофазной сети. Положение "треугольник" на клеммнике двигателя. Соединение обмотки в треугольник. Для примера схема соединений обмотки 1500 об. мин., количество параллельных ветвей а=1. […]
    • Проекты заземление молниезащита Проект молниезащиты Проект молниезащиты церкви (молниеприемная часть, токоотводы и заземление). Пример №5 скачать Когда необходимо выполнять проект молниезащиты и заземления? Строго говоря для этого нам придется обратиться к статье 49 […]
    • Штыревое заземление схема Заземление. Монтаж модульно-штыревой системы заземления В этой статье я расскажу о более новой и передовой системе заземления - модульной штыревой системе. Вы ознакомитесь с условиями и способами монтажа такого очага заземления и […]
    • Как увеличить мощность электродвигателя редуктором Расчет мощности электродвигателя или расчет крутящего момента редуктора Нужно выбрать мотор редуктор. Входные данные: шина массой 150 кг которую надо перевернуть с вертикального положения в горизонтальне. Нужно ли учитывать плечо […]
    • Преобразователь 12 в 220 2000вт схема Автомобильный преобразователь 12-220 на 2500 ватт Недавно коллеги с сайта попросили нарисовать схему мощного автомобильного инвертора на 1500 ватт и вот сегодня решил выложить принцип строения мощных автомобильных инверторов. Для более […]