Схема плавного включения ламп автомобиля

Универсальная схема плавного отключения света в салоне авто на конденсаторе.

  • Самоделкин
  • 2 мая 2013
  • Самоделки для авто (автомобилей и мотоциклов)Свет

Сегодня мы расскажем, как своими руками сделать универсальную схему плавного отключения света в салоне авто на конденсаторе.

Ранее я публиковал статью о плавном отключении света в салоне автомобиля daewoo, но некоторым автомобилистам она может показаться слишком сложной для повторения. Я решил опубликовать самую простую схему задержки выключения и плавного гашения света на конденсаторе и нескольких вспомогательных элементах. Эта схема подойдет для любого автомобиля, вне зависимости от производителя. Все что вам потребуется, это припаять схему параллельно клемам подключения лампы вашего салонного фонаря.
Давайте рассмотрим как действует схема. Верхний на схеме диод защищает схему от переполюсовки и препятствует обратному ходу тока. То есть предотвращает разрядку конденсатора на других потребителей кроме лампы салона. В некоторых автомобилях параллельно лампе салона установлена лампа освещения багажника. Чем больше потребителей, тем большую емкость конденсатора придется задействовать для организации плавного тушения света.
Далее, ток поступает непосредственно на лампу и на токоограничивающий резистор номиналом несколько Ом (на схеме указан 1 Ом). Его функция заключается в ограничении тока зарядки конденсатора.
При подключении разряженного конденсатора к бортовой сети автомобиля будет наблюдаться большой импульс тока, так как в разряженном виде конденсатор представляет собой КЗ, что может вывести из строя предохранитель отвечающий
за цепь освещения салона. Через этот резистор происходит заряд конденсатора и накопление в нем энергии, которая при отключении освещения (на схему перестанет поступать напряжение от борт сети) начнет отдавать запасенную энергию через резистор и параллельно ему подключенный диод к нашей лампочке.
По мере разряда конденсатора напряжение на лампе будет падать и будет создаваться визуальный эффект плавного отключения освещения салона. Время задержки выключения подсветки определяется емкостью конденсатора, чем выше емкость, тем больше задержка.
Следует отметить, что в случае применения в осветителе не ламп накаливания, а светодиодных лампочек потребуется меньшая емкость конденсатора и резистор осуществляющий «дотушивание». Это вызвано тем, что ток потребляемый светодиодной лампой при снижении напряжения (на конденсаторе) не линеен и сильно падает при снижении напряжения до 7-8 вольт.
Без дотушивающего резистора вы увидите плавное тушение до определенного предела, а после лампа будет еще минуту светиться в 10% яркости.

Если у вас так же имеются самоделки для автомобиля, поделитесь ими. Пришлите их на нашу почту [email protected] или зарегистрируйтесь на сайте и самостоятельно опубликуйте ваше творение.

Автор статьи “Универсальная схема плавного отключения света в салоне авто на конденсаторе” Самоделкин

Плавное включение фар и габаритных огней автомобиля. Устройство для увеличения срока эксплуатации автомобильных ламп

Недавно один из наших форумчан, Rus_lan, выложил на форум интересную штуку — устройство для плавного включения фар автомобиля. Штука эта многих сразу же заинтересовала (и меня в том числе), поэтому тему было решено более подробно раскрыть и описать в отдельной статье.

Итак, если вы автолюбитель, то вам наверняка приходится менять в своём автомобиле различные лампы накаливания: дальний и ближний свет, габаритные огни, поворотники…

Поскольку наиболее активно в автомобиле используются лампы ближнего света и габаритных огней, то и менять их приходится чаще всего.

Хорошо известно, что перегорают лампы обычно в момент включения, причём зимой гораздо чаще, чем летом. Почему так происходит?

Дело в том, что рабочая температура нити лампы накаливания составляет более двух с половиной тысяч градусов цельсия. Именно при такой температуре нить и начинает светиться. До рабочей температуры нить нагревается протекающим по ней током. Если нагрев происходит слишком быстро и неравномерно, то температуры соседних участков нити не успевают выравниваться за счёт теплопроводности, между соседними участками создаётся большой перепад температур, расширяются эти участки сильно неравномерно, в результате чего в нити возникают большие механические нагрузки и она рвётся. Похожий эффект можно наблюдать, если плеснуть холодной водой на раскалённый камень. Внешние слои камня при этом резко охлаждаются и сжимаются, в то время, как внутренние ещё остаются горячими и расширенными. В результате, как мы знаем, камень трескается.

Кроме эффекта, описанного выше, механические нагрузки возникают также из-за магнитного взаимодействия витков спирали, сила которого опять же пропорциональна силе тока.

Хорошо, ну а при чём же здесь всё-таки момент включения? Всё очень просто. В момент включения, когда нить холодная, её сопротивление значительно ниже, чем сопротивление в нагретом состоянии, соответственно и протекающий в это время ток значительно больше рабочего тока. Следовательно, в момент включения мы имеем максимальную скорость нагрева нити, а также максимальное магнитное взаимодействие витков. Зимой начальная температура, а значит и начальное сопротивление нити, ниже, чем летом, следовательно начальный ток ещё больше.

Как с этим бороться? Давайте подумаем. Избавиться от неравномерного нагрева нити мы не можем, поскольку он возникает вследствии дефектов самой нити (например, если нить неравномерна по толщине, то более тонкие участки имеют большее сопротивление и нагреваются быстрее и сильнее). Однако, мы вполне можем уменьшить скорость нагрева и магнитное взаимодействие между витками спирали. Для этого нужно всего лишь ограничить протекающий через нашу лампочку ток, чтобы он, в то время, пока спираль нагревается, не превышал рабочего значения (или хотя бы превышал его незначительно). Именно такое устройство, позволяющее при включении плавно увеличивать ток через лампочку, и предложил Rus_lan.

  1. C1 — конденсатор 47мкФ x 16В
  2. R1 — резистор 68кОм
  3. R2 — резистор 6,8кОм
  4. R3 — резистор 24кОм
  5. T1 — полевой транзистор FDB6670AL
  6. D1 — диод (любой)

Работает это устройство следующим образом: за счёт резисторов и конденсатора, установленного параллельно затвору полевика, напряжение на затворе транзистора растёт очень медленно, соответственно также медленно этот транзистор и открывается, что, в свою очередь, обеспечивает плавное увеличение напряжения на лампе и тока через неё. Делитель R1R3 задаёт максимальное напряжение на затворе. Резистор R2 дополнительно увеличивает время включения и защищает затвор транзистора, предотвращая любые возможности возникновения резких бросков тока через него.

Схема выложена в том варианте, в котором Rus_lan выложил её на форум, но лично я бы в ней кое-что изменил. Дело в том, что электролитические конденсаторы крайне плохо переносят низкие температуры (а у нас, например, зимой морозы -30 0 С и ниже совсем не редкость), поэтому я считаю, что лучше взять какой-нибудь керамический кондёр. Понятно, что найти керамику с такой ёмкостью нереально, но в таком случае можно взять конденсатор с ёмкостью поменьше, а уменьшение ёмкости скомпенсировать пропорциональным увеличением резисторов R1, R3.

Смотрите так же:  Краскопульт 220 вольт

Собранное устройство выглядит вот так:

А вот так оно выглядит в работе (в автомобильной фаре):

На этом всё, как говорится «ни гвоздя, ни жезла», удачи!

Плавное выключение света в салоне авто

  • Самоделкин
  • 26 марта 2013
  • Самоделки для авто (автомобилей и мотоциклов)Свет

Многим нравится плавное гашение света в салоне автомобиля, однако далеко не все авто обладают такой функцией. В этой статье я расскажу как собрать схему для плавного выключения света в салоне с задержкой в 3 секунды своими руками. Схема создавалась для автомобиля Daewoo Lanos, цвета клемной колодки указанны именно для этой модели.

Параллельно с добавлением функции плавного отключения, было решено заменить штатную лампочку освещения салона на её светодиодный китайский аналог выделяющий гораздо меньше тепла, которое, как видно на фото, «крошит» пластик плафона.

Схема плавного отключения освещения салона Daewoo Lanos с задержкой

Схема проста и особых пояснений не требует. На первом транзисторе организована задержка отключения. В качестве время-задающей цепи служит конденсатор и параллельно включенный резистор номиналом 1М, чем выше емкость конденсатора и номинал резистора тем дольше задержка отключения лампочки. При подключении вывода «переключатель» к земляному проводу при помощи «ползункового» переключателя происходит мгновенный заряд емкости конденсатора через резистор номиналом 5 (кОм). Диод после резистора установлен не случайно. При открытии дверей на серый провод клемной колодки подается земля, а (как выяснилось в результате экспериментов) при закрытии двери земля не только пропадает, а на смену ей приходит +12 вольт. Именно с целью блокировки последующего положительного потенциала, мгновенно разряжающего емкость конденсатора, в схему был добавлен диод. Второй транзистор (кт819) выполняет роль усилителя. Резистор в его базе 1 (кОм) определяет яркость свечения, при применении обычных ламп накаливания возможно потребуется снизить его значение до 300-500 Ом а так же увеличить емкость время-задающего конденсатора. Обратите внимание на резистор подключенный параллельно нагрузке, в случае применения светодиодных ламп он необходим для «дотушивания» освещения. Это обусловлено тем, что при снижении напряжения на клемах лампы до 7-8 Вольт, резко падает потребляемый ток и лампа еще долгое время светится в 10% накала.

Устройство плавного включения-выключения света в салоне авто

Предлагаю Вашему вниманию несложное устройство плавного включения и выключения света в салоне автомобиля. Конечно в 21 веке это не особо актуально, т.к. во всех современных авто эта опция идет с завода, но все же остаются автовладельцы авто, в которых эта опция отсутствует.

Принцип работы: при открытии двери салона автомобиля освещение салона плавно включается и горит до того момента, пока все двери не будут закрыты. После закрытия всех дверей салона авто, лампа освещения продолжает гореть еще одну минуту или пока не будет произведен запуск двигателя авто, после чего плавно гаснет. Если дверь открывается, когда двигатель уже запущен, то после закрытия двери свет сразу плавно погаснет.

За основу устройства взят м/к atmega168, но так же может быть использован любой из этой серии (atmega48, 88, 328), ниже схема устройства:

Диоды VD1, VD2, VD4 любые маломощные в корпусе SOD-323, на рабочее напряжение не меньше 30В (я использовал bat54, какие были под рукой), транзисторы VT2, VT3 аналогично, ток до 100мА и рабочее напряжение не менее 30В. Резисторы и конденсаторы C3-С5 в SMD корпусах типоразмера 1206. Стабилизатор DA1 в корпусе TO-92. Можно не устанавливать С4, С5 и кварц, задав тактирование от внутреннего генератора. Если не нужна задержка на выключение света (1 мин), можно не ставить VD1, R1, R2 и VT3 и замкнуть 26 вывод контроллера на землю. В этом случае свет будет плавно выключаться сразу после закрытия дверей не зависимо от того запущен двигатель или нет. В архиве к статье есть печатная плата в Sprint-Layout 5, схема в Splan7, исходники микропрограммы в Atmel Studio 4 и прошивки под atmega 48,88,168.

Электроника, автомобильная техника и не только!

Плавное включение фар

Как известно, лампы накаливания перегорают в момент включения. Из-за того, что холодная нить в лампе имеет небольшое сопротивление, в момент включения через эту нить начинает течь большой ток, который и разрушает ее. Вариант защиты нити как бы напрашивается сам собой: нужно постепенно нагревать нить лампы перед тем, как подать на нее все напряжение, на которое она рассчитана. Далее речь пойдет про плавное включение автомобильных ламп.

Перед тем, как сделать такое устройство, я перечитал много похожих тем в интернете про плавное включение. Предлагается куча вариантов решения. Чаще всего в устройствах используют Р-канальный полевой транзистор.

При одинаковых характеристиках Р-канальный транзистор дороже N-канального. К тому же N-канальный транзистор можно найти с меньшим сопротивлением в открытом состоянии, чем P-канальный. Но т.к. в большинстве автомобилей лампы управляются плюсом (один вывод лампы постоянно соединен с минусом (корпусом автомобиля), а на второй вывод подается плюс питания, когда нужно включить лампу), то применение N-канальных полевых транзисторов затруднительно.

Почему затруднительно применить N-канальный транзистор?

Немного теории. Полевой транзистор в открытом состоянии имеет очень малое сопротивление канала. А чем меньше сопротивление, тем меньше потери при коммутации больших токов. Но для того, чтобы полностью открыть полевой транзистор, нужно приложить к его затвору определенное (пороговое) напряжение (Vgsth) относительно истока.

Величина этого напряжения составляет около 10-15 В. Есть транзисторы с величиной этого напряжения 4,5-5 В (логический уровень). Для N-канальных транзисторов это напряжение положительное, для их собратьев отрицательное. В даташите на транзистор сопротивление канала сток-исток (когда канал полностью открыт) указывается для порогового напряжения. При напряжении, меньше порогового, сопротивление канала больше.

Существуют два вида включения полевого транзистора (когда он используется в режиме ключа): включение в качестве верхнего ключа и в качестве нижнего ключа. Если в автомобиле лампы включаются плюсом (минус подключен постоянно), то чтобы использовать N-канальный транзистор, его нужно включить верхним ключом (в верхнее плечо схемы).

В этом случае для того, чтобы открыть транзистор, нужно на его затвор подать напряжение, больше напряжения питания схемы, т.к. исток подключен к общей шине через нагрузку (лампу). Чтобы подать на затвор напряжение, больше напряжения питания, используют схемы вольтодобавки (бутстрепный конденсатор и диод). Но чтобы эта схема работала, ее нужно питать импульсным напряжением. Поэтому удобнее использовать P-канальный полевой транзистор, т.к в этом случае (когда коммутируется плюс) исток транзистора подключен непосредственно к шине питания.

Чтобы осуществить плавное включение ламп, применяют несколько способов. Вот некоторые из них:

1.Самый простой — включить параллельно лампе обмотку реле, а последовательно с лампой — мощный резистор сопротивлением около 1 Ома. При такой схеме лампы сначала загораются примерно вполнакала, затем срабатывает реле, и своими контактами шунтирует резистор. Лампы светят по полной.

Смотрите так же:  Как выбрать сечение вводного кабеля

2. Похожий на предыдущий способ, только вместо резистора последовательно с лампой включается NTC термистор 2-5 Ом, который нагреваясь, уменьшает свое сопротивление, напряжение на лампе увеличивается, срабатывает реле и шунтирует термистор.

3. Полевой транзистор и конденсатор.

Суть данного способа в том, что в цепи затвора транзистора установлен конденсатор, который при подаче питания постепенно заряжается. Растет напряжение на конденсаторе, и транзистор постепенно открывается, увеличивая ток через нагрузку. Происходит плавное включение ламп.

Большой минус данного решения заключается в нагреве транзистора. Напряжение на затворе транзистора увеличивается медленно. Пока напряжение не достигнет порогового значения сопротивление канала транзистора достаточно велико. Т.к. сопротивление холодной лампы очень маленькое, то через лампу и канал сток-исток идет большой ток. Поэтому транзистор нагревается.

4. Полевой транзистор, управляемый ШИМ-сигналом.

При таком управлении транзистор открывается на определенное время, потом снова закрывается. И так по кругу. При большой частоте такие включения/выключения незаметны для глаз. Чем больше длительность открытого состояния транзистора, тем ярче светит лампа.

Минусы в том, что нагрузка работает в импульсном режиме, а это значит помехи в сеть питания автомобиля, неполная отдача мощности в лампу (т.к. включение чередуется с выключением. Пусть это незаметно визуально, но теоретически яркость ламп меньше, чем при постоянно включенных).

На основании всего этого решил сделать свое устройство с блэк джеком и…:) Устройство плавного включения ламп.

Общий принцип работы схемы такой: при подаче питания с помощью ШИМ-сигнала постепенно открывается транзистор VT3. Как только ШИМ достигает максимального значения (плавное включение ламп), с помощью транзистора VT1 срабатывает реле и своими контактами шунтирует переход транзистора VT3.

Почему реле 5-вольтовое? Пробовал схему с реле 12 В, но из-за того, что в бортовой сети автомобиля напряжение (при работающем двигателе и исправной цепи заряда) больше 12 (14 В), обмотка реле нагревается. Поэтому отказался от 12-вольтового реле.

Устройство включается в разрыв цепи между выключателем ближнего света и лампами. Можно подключить к блоку предохранителей, а предохранители установить непосредственно на проводах.

Также в схему добавлено измерение напряжения сети. При включении выключателя ближнего света, если напряжение меньше 12.2 В (двигатель не запущен или нет заряда аккумулятора), свет не включается. Удобная функция, если в авто нет сигнализации о включенных фарах при неработающем двигателе. т.е. если приехали, заглушили двигатель, забыли выключить фары, устройство отключит их. Свет включается только, если напряжение выше 12.7 В. Перед отключением сделана задержка 4 с, чтобы свет не выключался от кратковременных просадок напряжения.

Также фары выключатся, если напряжение превысит 15.4 В.

Хотя последняя функция спорная, т.к. при неисправном регуляторе напряжения, если напряжение в сети повышается выше допустимого, лучше наоборот нагрузить сеть, что позволит немного уменьшить напряжение. Но я решил, что можно защитить лампы от перенапряжения.

Потребляет устройство около 6.6 мА (лампы отключены).

Двусторонняя плата получилась размером 24х50 мм.

Простейшая схема плавного розжига и затухания светодиодов

На просторах интернета имеется множество схем плавного розжига и затухания светодиодов с питанием от 12В, которые можно сделать своими руками. Все они имеют свои достоинства и недостатки, различаются уровнем сложности и качеством электронной схемы. Как правило, в большинстве случаев нет смысла сооружать громоздкие платы с дорогостоящими деталями. Чтобы кристалл светодиода в момент включения плавно набирал яркость и также плавно погасал в момент выключения, достаточно одного МОП транзистора с небольшой обвязкой.

Схема и принцип ее работы

Рассмотрим один из наиболее простых вариантов схемы плавного включения и выключения светодиодов с управлением по плюсовому проводу. Помимо простоты исполнения, данная простейшая схема имеет высокую надежность и невысокую себестоимость. В начальный момент времени при подаче напряжения питания через резистор R2 начинает протекать ток, и заряжается конденсатор С1. Напряжение на конденсаторе не может измениться мгновенно, что способствует плавному открытию транзистора VT1. Нарастающий ток затвора (вывод 1) проходит через R1 и приводит к росту положительного потенциала на стоке полевого транзистора (вывод 2). В результате происходит плавное включение нагрузки из светодиодов.

В момент отключения питания происходит разрыв электрической цепи по «управляющему плюсу». Конденсатор начинает разряжаться, отдавая энергию резисторам R3 и R1. Скорость разряда определяется номиналом резистора R3. Чем больше его сопротивление, тем больше накопленной энергии уйдет в транзистор, а значит, дольше будет длиться процесс затухания.

Для возможности настройки времени полного включения и выключения нагрузки, в схему можно добавить подстроечные резисторы R4 и R5. При этом, для корректности работы, схему рекомендуется использовать с резисторами R2 и R3 небольшого номинала. Любую из схем можно самостоятельно собрать на плате небольшого размера.

Плата в файле Sprint Layout 6.0: plavnyj-rozzhig.lay6

Элементы схемы

Главный элемент управления – мощный n-канальный МОП транзистор IRF540, ток стока которого может достигать 23 А, а напряжение сток-исток – 100В. Рассматриваемое схемотехническое решение не предусматривает работу транзистора в предельных режимах. Поэтому радиатор ему не потребуется.

Вместо IRF540 можно воспользоваться отечественным аналогом КП540.

Сопротивление R2 отвечает за плавный розжиг светодиодов. Его значение должно быть в пределах 30–68 кОм и подбирается в процессе наладки исходя из личных предпочтений. Вместо него можно установить компактный подстроечный многооборотный резистор на 67 кОм. В таком случае можно корректировать время розжига с помощью отвертки.

Сопротивление R3 отвечает за плавное затухание светодиодов. Оптимальный диапазон его значений 20–51 кОм. Вместо него также можно запаять подстроечный резистор, чтобы корректировать время затухания. Последовательно с подстроечными резисторами R2 и R3 желательно запаять по одному постоянному сопротивлению небольшого номинала. Они всегда ограничат ток и предотвратят короткое замыкание, если подстроечные резисторы выкрутить в ноль.

Сопротивление R1 служит для задания тока затвора. Для транзистора IRF540 достаточно номинала 10 кОм. Минимальная емкость конденсатора С1 должна составлять 220 мкФ с предельным напряжением 16 В. Ёмкость можно увеличить до 470 мкФ, что одновременно увеличит время полного включения и выключения. Также можно взять конденсатор на большее напряжение, но тогда придется увеличить размеры печатной платы.

Управление по «минусу»

Выше переведенные схемы отлично подходят для применения в автомобиле. Однако сложность некоторых электрических схем состоит в том, что часть контактов замыкается по плюсу, а часть – по минусу (общему проводу или корпусу). Чтобы управлять приведенной схемой по минусу питания, её нужно немного доработать. Транзистор нужно заменить на p-канальный, например IRF9540N. Минусовой вывод конденсатора соединить с общей точкой трёх резисторов, а плюсовой вывод замкнуть на исток VT1. Доработанная схема будет иметь питание с обратной полярностью, а управляющий плюсовой контакт сменится на минусовой.

Плавное включение и выключение светодиодов

В данной статье будет рассмотрено несколько вариантов схем реализации идеи плавного включения и выключения светодиодов подсветки панели приборов, салонного света, а в некоторых случаях и более мощных потребителей – габаритов, ближнего света и им подобных. Если у вас панель приборов подсвечивается с помощью светодиодов, при включении габаритов подсветка приборов и кнопок на панели будет зажигаться плавно, что выглядит достаточно эффектно. То же можно сказать и про освещение салона, которое будет плавно загораться, и плавно же затухать после закрытия дверей автомобиля. В общем, неплохой такой вариант тюнинга подсветки :).

Смотрите так же:  Как определить сечение алюминиевого кабеля по диаметру таблица

Схема управления плавным включением и выключением нагрузки, управляемая плюсом.

Данную схему можно использовать для плавного включения светодиодной подсветки приборной панели автомобиля.

Эту схему можно использовать и для плавного розжига стандартных ламп накаливания со спиралями небольшой мощности. При этом транзистор необходимо разместить на радиаторе с площадью рассеивания около 50 кв. см.

Схема работает следующим образом.
Управляющий сигнал поступает через диоды 1N4148 при подаче напряжения на «плюс» при включении габаритных огней и зажигания.
При включении любого из них подается ток через резистор 4,7 кОм на базу транзистора КТ503. При этом транзистор открывается, и через него и резистор 120 кОм начинает заряжаться конденсатор.
Напряжение на конденсаторе плавно растет, и далее через резистор 10 кОм поступает на вход полевого транзистора IRF9540.
Транзистор постепенно открывается, плавно увеличивая напряжение на выходе схемы.
При снятии управляющего напряжения транзистор КТ503 закрывается.
Конденсатор разряжается на вход полевого транзистора IRF9540 через резистор 51 кОм.
После окончания процесса разряда конденсатора схема перестает потреблять ток и переходит в режим ожидания. Потребляемый ток в этом режиме незначителен. При необходимости, изменить время розжига и затухания управляемого элемента (светодиоды или лампы) можно подбором номиналов сопротивлений и емкости конденсатора 220 мкФ.

При правильной сборке и исправных деталях этой схеме не нужны дополнительные настройки.

Вот вариант печатной платы для размещения деталей данной схемы:

Схема плавного включения и выключения светодиодов.

Данная схема позволяет плавно включать – выключать светодиоды, а также уменьшать яркость подсветки при включении габаритов. Последняя функция может быть полезна в случае чрезмерно яркой подсветки, когда в темноте подсветка приборов начинает слепить и отвлекать водителя.

В схеме используется транзистор KT827. Переменное сопротивление R2 служит для установки яркости свечения подсветки в режиме включенных габаритов.
Подбором емкости конденсатора можно регулировать время загорания и угасания светодиодов.

Для того что бы реализовать функцию притухания подсветки при включении габаритов, нужно установить сдвоенный выключатель габаритов или использовать реле, которое бы срабатывало при включении габаритов и замыкало контакты выключателя.

Плавное выключение светодиодов.

Простейшая схема для плавного затухания светодиода VD1. Хорошо подойдет для реализации функции плавного угасания салонного света после закрытия дверей.

Диод VD2 подойдет почти любой, ток через него невелик. Полярность диода определяется в соответствии с рисунком.

Конденсатор C1 электролитический, большой емкости, емкость подбираем индивидуально. Чем больше емкость, тем дольше горит светодиод после отключения питания, но не стоит устанавливать конденсатор слишком большой емкости, так как будут обгорать контакты концевиков из-за большой величины зарядного тока конденсатора. К тому же, чем больше емкость — тем массивнее сам конденсатор, могут возникнуть проблемы с его размещением. Рекомендуемая емкость 2200 мкФ. При такой емкости подсветка затухает в течение 3-6 секунд. Конденсатор должен быть рассчитан на напряжение не менее 25В. ВАЖНО! При установке конденсатора соблюдайте полярность! При неправильной полярности подключения электролитический конденсатор может взорваться!

Плавное выключение освещения салона

Во многих иномарках есть удобная функция плавного отключения освещения салона. Если вдруг ваш автомобиль лишен такого преимущества, эту опцию можно без труда внести самостоятельно. Принципиальная электрическая схема управления освещением состоит из двух транзисторов VT1 и VT2, трех резисторов R1, R2 и R3, одного диода VD1 и оксидного конденсатора С1 (Рис. 1)


В момент закрывания дверей в автомобиле, происходит размыкание контакта дверного выключателя SF1. При этом конденсатор С1 разряжен. По цепи +12В, через лампу салона EL1, конденсатор C1, резистор R1, эмиттерный переход транзисторов VT1 и VT2 начинает течь ток. Транзисторы открываются. На них устанавливается напряжение, равное суммарному напряжению на их эмиттерных переходах (1,4…1,5 В).

Лампа салона EL1 светит ярко, поскольку на ней установлено напряжение бортовой сети за вычетом незначительного падения напряжения на транзисторах.

Далее конденсатор С1 начинает заряжаться, а ток, который протекает через него уменьшаться. Вследствие, базовые и коллекторные токи транзисторов VT1 и VT2 также падают. Напряжение и ток на лампе EL1 уменьшаются и она постепенно гаснет. Время полного отключения освещения зависит от характеристик всех элементов схемы. В предложенном варианте (см. рис. 1) оно составляет примерно 5 с. При необходимости изменить время отключения освещения следует поменять емкость конденсатора С1. Чем емкость выше, тем дольше задержка отключения света, и наоборот.

Необходимо заметить, что при открывании любой двери лампа EL1 загорается мгновенно. Для этого в цепь впаян диод, который при замыкании контакта дверного выключателя быстро разряжает конденсатор С1.
В схеме можно применять транзисторы средней и большой мощности любого типа. При применении транзисторов с переходом p-n-p следует поменять полярность подключения самого устройства к выключателю SF1 и полярность подключения конденсатора С1 .

Хотя оба транзистора находятся в активном режиме короткий промежуток времени (приблизительно 5с), теплоотдача от их работы невелика. Но для повышения надежности устройства следует использовать небольшой теплоотвод.

Установку и подключение собранного устройства к сети автомобиля целесообразнее всего произвести в центральной стойке около выключателя освещения. Устройство не влияет на работу сигнализации, которая также подключена к дверным выключателям, поскольку ток потребления в отключенном состоянии очень мал.

Похожие статьи:

  • Пускатель магнитный пме-212 220в 1з Пускатель магнитный пме-212 220в 1з 1. Условное обозначение номинального тока: 2. Условное обозначение исполнения пускателя по степени защиты: 3. Условное обозначение сочетания конструктивных элементов: 1 – без реле, нереверсивный, без […]
  • Схема узо электрического тока Схема узо электрического тока Дифференциальный автомат или дифавтомат – устройство, выполняющее две функции: Защита электрических цепей от утечек токов на землю Защита от коротких замыканий или перегрузок в цепях. Иными словами, […]
  • Установка розеток в самаре Заказать установку розеток и выключателей в Самаре Заказать установку, замену или перенос розеток в Самаре - просто! Позвоните нам по т. 8-927-205-92-92,опишите фронт работ и удобное время выполнения заказа. Наше отличие от […]
  • Пускатель магнитный с кнопками 220в Пускатель ПМ12-160120 220В, магнитный ПМ12 160120 160А. Цена. Купить Ном. ток, In, А: 160; Ном. напряжение изоляции, Ui: 1000В; Кол-во полюсов: 3; Доп. контакты: 2з+2р; Напряжение катушки: 220В; Ном. мощность, кВт: 75 […]
  • Термокомпенсирующие провода Кабель к термопарам (термокомпенсационный провод) СФКЭ Кабель термокомпенсационный для подключения термопар ко вторичным приборам. Первичная поверка: не требуется Провода марки СФКЭ предназначены для фиксированного присоединения […]
  • Пускатель магнитный нереверсивный без теплового реле Магнитный пускатель ПМЛ-1220 220В Наличие: от 10 до 100 Магнитный пускатель ПМЛ-1220 используется для дистанционного пуска непосредственным подключением к сети, отключения и реверсирования трехфазных асинхронных электродвигателей с […]