Схема преобразователя 12 на 220 чистая синусоида

Схема преобразователя 12 на 220 чистая синусоида

Преобразователь 12/220В с синусом на выходе.

Автор — Евдокимов А.В., [email protected]
Опубликовано 25.11.2008.

Предисловие.
Около месяца назад я искал в нете схему простого преобразователя 12/220в с «чистым» синусом на выходе и к своему удивлению обнаружил, что её нет. Всё что обычно предлагается, сводится либо к получению псевдосинуса путём преобразования без использования низкочастотного повышающего трансформатора, либо к совету использовать усилитель D-класса, управляемый опорным синусоидальным напряжением. В качестве устройства управления и генерации синусоиды предлагается применять микроконтроллер. Либо даётся ссылка на смартапс. В общем, получается не слишком просто. Пришлось потратить довольно много отпускного времени, чтобы разработать схему более отвечающую требованиям простоты и «чистоты» синуса.

Характеристики:
Входное напряжение 12. 14В
Выходное напряжение 50Гц 220+/-2В
Максимальная мощность 50Вт
КПД 84. 90%.

Работа.
Задающий генератор, источник опорного напряжения и компаратор собраны на DA2. Внешние элементы DD1 и DD2 повторяют внутреннюю структуру TL494, в той её части, которая неустойчиво работает на низких частотах (ложные срабатывания D-триггера).
Далее с помощью ФНЧ подавляются верхние гармонические составляющие ШИМ. ФНЧ состоит из двух частей. Первая- DA1.1, ФНЧ с гладкой характеристикой АЧХ. Второй- DA1.2 режекторный фильтр с частотой подавления 150Гц. Анализ показывает, что в ШИМ содержаться только первая и нечётные гармоники, потому такого фильтра оказывается достаточно, чтобы сформировать «красивый» синус (осциллограмма 2). А, поскольку уровень первой гармоники практически линейно зависим от скважности, то получаем хорошо управляемый синус с точной постоянной составляющей, равной +2,5В. Далее, дополнительно получаем инверсную синусоиду (вывод 14 DA1.4).
На DA3, DA5, VT1, VT2 собран первый канал УНЧ класса D. Второй канал соответственно собран на DA4, DA7, VT3, VT4. На выходе первого и второго канала УНЧ формируются противофазные синусоиды (осциллограмма 3).
С выхода трансформатора, через диодный мост подаётся обратная связь по выходному напряжению. Таким образом выходное напряжение стабилизируется.

Конструкция и детали.
Трансформатор TV1 это доработанный ТП60-2, который применялся в знаменитом видеомагнитофоне «Электроника ВМ-12». С трансформатора сматываются все вторичные обмотки, и вместо них наматывается одна обмотка, содержащая 33 витка обмоточного провода диаметром 0,7мм, сложенного всемеро. Можно использовать и медную шину, подходящую по площади сечения. При подаче напряжения 220В на вторичной (в преобразователе она первичная) обмотке трансформатора, на холостом ходу, напряжение составляет 6,5В.
Дроссели L1 и L2 наматываются на ферритовых кольцах типоразмера 24*13*9,7мм и содержат 22 витка обмоточного провода диаметром 1,5мм. К сожалению марка и магнитная проницаемость этих ферритовых колец мне неизвестна. Они используются во вторичных цепях импульсных компьютерных блоков питания типа ATX.
Транзисторы и микросхемы драйверов DA5, DA7 можно найти на материнских платах.
Все транзисторы устанавливаются на один радиатор площадью 15. 20см2. Для их изоляции от радиатора используются слюдяные прокладки.
Конденсаторы С21. С24 типа К73-17 на напряжение 63В.
Конденсатор С25 типа К73-17 на напряжение 630В.
Диоды можно использовать любые, с максимальным обратным напряжением не менее 400В.
Резисторы R44, R45 мощностью не менее 0,25Вт.

Настройка.
1. Отсоединить первичную обмотку трансформатора.
2. Резистором R9 установить частоту следования импульсов 100Гц на выходе DA2 (осциллограмма 1).
3. Проверить наличие синусоидального сигнала (осциллограмма 2) на выводах 7 и 14 DA1. Сигналы должны быть противофазны, но одинаковы по форме.
4. Резисторами R22 и R31 установить сигнал на выходе первого канала УНЧ согласно осциллограмме 3. Тоже проделать со вторым каналом (R24 и R34).
5. Установить подвижный контакт резистора R4 в верхнее по схеме положение.
6. Подключить к выходу преобразователя эквивалент нагрузки. Можно использовать лампу накаливания мощностью 25Вт.
7. Подключить первичную обмотку трансформатора.
8. Резистором R4 установить напряжение 220В на выходе преобразователя.

Необходимость схем инверторов с чистой синусоидой

Разработкой схем инвертора с чистой синусоидой заняты не только многие народные умельцы, но и научно-технические центры. Инверторы, или блоки бесперебойного питания, приобрели популярность с развитием компьютерных технологий. Сбои в программном обеспечении, потеря информации при внезапном отключении питания вынудили принять необходимые меры безопасности. Первые устройства выдавали импульсное напряжение прямоугольной формы — меандр. Они обеспечивали небольшой промежуток времени, в течении которого можно было сохранить информацию и выполнить штатное выключение компьютера. Дальнейшие разработки позволили создать усовершенствованные модели преобразователей.

Увеличение емкости аккумуляторов, номинальной мощности инверторов позволило не только увеличить время работы компьютеров, но и применить ИБП для работы других устройств и приборов при перебоях в электроснабжении.

Первый опыт эксплуатации показал, что длительная работа оборудования на импульсном напряжении приводит к ускоренному износу и отказу техники. Определенные категории оборудования оказались не способными работать на напряжении, отличающемся от синусоиды. Мощность источников питания не позволяла подключать несколько устройств одновременно.

Возникла необходимость в инверторах с синусоидальной формой напряжения, способных выдержать нагрузку в несколько киловатт. Частичное решение проблемы было найдено. Производители предложили преобразователи с квази — синусом. Такая форма представляет собой синусоиду, состоящую из множества небольших ступенек.

Естественная и искусственная синусоида

Рисунок 1. Схема питания преобразователя.

Синусоидальная форма напряжения, вырабатываемая промышленными генераторами, создается вращением полюсов магнитного поля. Работа электродвигателей основана на создании электроэнергией вращающегося магнитного поля для воздействия на ротор. При форме напряжения, отличающейся от синусоиды, вращение ротора будет происходить неравномерно, с ускорением или замедлением, что отразится на техническом состоянии двигателя и рабочей части.

Использование напряжения искаженной формы пока не прошло достаточных испытаний на практике, поэтому использовать его для питания дорогостоящего оборудования без гарантий производителя нежелательно. Большинство ИБП предназначено для поддержания основных жизненно необходимых функций.

Сетевое напряжение не всегда имеет идеальную форму. Повышающие и понижающие трансформаторные станции, различные виды потребляющего оборудования создают определенные изменения в форму сетевого напряжения. Преобладающее использование индуктивных нагрузок без компенсационных конденсаторных установок создает в сети определенный сдвиг фаз, влияющий на форму синусоиды. Массовое подключение импульсных блоков питания также вносит свою долю искажений, несмотря на наличие фильтров.

Рисунок 2. Установка на выходе фильтра.

Получить чистый синус при использовании радиоэлектронных компонентов довольно сложно. Решение вроде бы лежит на поверхности. Прямоугольный импульс в упрощенном представлении состоит из гармонического ряда синусоид, первая из которых соответствует частоте импульсов. Требуется всего лишь установить на выходе соответствующий фильтр.

Эффективность эксплуатации такого устройства довольно низкая. Значительная часть энергии задержится на элементах фильтра и преобразуется в тепло. Вес и габаритные размеры преобразователя значительно возрастут. Выделить и использовать отфильтрованную энергию для зарядки также довольно сложно. Схема значительно усложнится, возрастет ее стоимость, снизится надежность.

Большинство экспериментаторов сходится во мнении, что модифицированная синусоида вполне приемлема для большинства бытовых и промышленных устройств, приборов.

Схема инвертора с чистым синусом

Питание преобразователя (рис.1) может быть от источника со сложной формой напряжения или постоянного тока. При использовании аккумулятора фильтр Ф и диодный мост М можно не устанавливать. Для работы низковольтной части схемы используется мост М1, собранный на маломощных диодах. Изготовить такую схему своими руками довольно сложно. У исполнителя должен быть определенный опыт выполнения подобных работ.

Рисунок 3. Подгонка катушек под напряжением 220 В.

Схема работает следующим образом. Задающий генератор на микросхеме D5 создает синусоидальный сигнал с частотой 50 Гц. Его схема представляет собой модифицированный вариант генератора Вина. Изменения внесены для увеличения надежности схемы и уменьшения потребления энергии. Контроллеры D1, D2 модулируют синусоидальный сигнал. Для модуляции на микросхемах используются различные входы: прямой и инвертирующий. Поэтому одна сторона запускается при положительной волне, вторая — при отрицательной. С контроллеров выходной сигнал поступает на микросхемы D3, D4, формирующие сигнал для управления транзисторами.

Силовая часть собрана по принципу мостовой схемы. Нагрузка подключается в одну диагональ моста, питающее напряжение — в другую. При прохождении одного из полупериодов ток проходит от минусовой клеммы через VT4, обмотку L1, нагрузку, VT1, плюсовую клемму источника питания. При другом полупериоде работают транзисторы VT2, VT3.

Защита по превышению максимально допустимого тока собрана на резисторах R17-19, R22 и диодах VD11,12. При превышении падения напряжения на резисторах в силовой цепи разница поступает на соответствующие контакты D1, D2, и схема прекращает работу.

Дополнительный фильтр

Схема чистой синусоиды.

Имеющийся в наличии преобразователь с прямоугольным импульсным напряжением можно модернизировать, установив на выходе фильтр (рис.2), отсеивающий высшие гармоники. Точный расчет и тщательное изготовление деталей помогут снизить потери на фильтре до минимума.

При изготовлении следует учитывать, что устройство используется для силовых цепей. Все элементы и комплектующие должны выдерживать максимально допустимый ток.

В состав входят два LC контура с резонансной частотой 50 Гц. В одном из них емкость с индуктивностью подключены последовательно, во втором — параллельно. Дроссели для контуров рассчитываются и изготавливаются идентично, конденсаторы также должны иметь одинаковые параметры. Оптимальная емкость для конденсаторов 100 мкФ, допустимое напряжение не меньше 300 В. Электролитические полярные конденсаторы использовать нельзя.

Сердечники для катушек индуктивности должны быть из трансформаторного железа. Для точной подгонки дросселя в железе нужно вырезать зазор. Необходимое количество витков можно рассчитать, используя соотношения для расчета резонансной частоты контура. Для намотки желательно использовать гибкий медный провод. Минимальное сечение должно быть не менее 2,5 мм 2 .

Смотрите так же:  Отличие узо f и fh

Общую площадь намотки необходимо сравнить с размерами окна в сердечнике. После сборки необходимо выполнить подгонку катушек, подключив сетевое напряжение 220 В (рис.3). Сопротивление нагрузки представляет собой лампу накаливания, измерительный прибор можно использовать любого типа с необходимым диапазоном. Правильная настройка определяется по максимальному напряжению. В зазор нужно уложить прокладки несколько больше расчетной величины. Затем следует убавлять толщину прокладок, контролируя напряжение по вольтметру. Значение должно увеличиваться при изменении толщины зазора, затем снижаться. Зазор при максимальном напряжении является самым оптимальным вариантом. При наладке необходимо стягивать железо сердечника до плотного контакта с прокладочным материалом. После подгонки следует собрать и подключить фильтр.

При наличии осциллографа можно проверить форму напряжения до и после фильтра. При наличии всех необходимых деталей и определенного опыта устройство вполне доступно для изготовления своими руками.

Инвертор, преобразователь, чистая синусоида, синус

Как получить чистую синусоиду 220 вольт от автомобильного аккумулятора, чтобы запитать бытовые и специальные электроприборы. Применяем инвертор и оригинальную схему фильтра. (10+)

Получаем синусоиду от инвертора

Предлагаю Вашему вниманию устройство, позволяющее получить синусоидальное напряжение 220 вольт приемлемого качества, от автомобильной системы электропитания 12 вольт. Максимальная нагрузка 1.5 кВт. В устройстве используется инвертор промышленного производства на 1.5 кВт с выходным напряжением в форме прямоугольных импульсов. Такие инверторы сейчас достаточно распространены. Далее к инвертору подключен фильтр, об изготовлении которого настоящая статья.

Внимание. Перед подключением фильтра необходимо убедиться, что Ваш инвертор рассчитан на подключение индуктивной и емкостной нагрузки, выдает напряжение частотой 50 Гц. Некоторые инверторы работают на частоте 60 Гц. Большинству устройств это безразлично, но контура тогда надо настраивать на эту частоту, что довольно сложно, так как в нашей местности отсутствуют мощные источники такого синусоидального напряжения, которое нам понадобится для наладки фильтра.

Внимание. Во время сборки и наладки фильтра Вам предстоит контакт с высоким напряжением, опасным для жизни и здоровья. Убедитесь, что Вы располагаете достаточными знаниями и навыками, которые обеспечат Вашу безопасность и безопасность людей, которые впоследствии будут эксплуатировать устройство.

Вашему вниманию подборка материалов:

Практика проектирования электронных схем Искусство разработки устройств. Элементная база. Типовые схемы. Примеры готовых устройств. Подробные описания. Онлайн расчет. Возможность задать вопрос авторам

Также одному из читателей был нужен выход 40 кГц 220 В 1 кВт. Здесь можно прочитать о том, как указанная конструкция была адаптирована под данные требования (прежде всего частоту). Опыт повторения резонансного фильтра для получения мощной синусоиды 40 кГц.

Потребность в синусоидальном напряжении от инвертора

Мы провели эксперимент, запитав разные устройства, которые находились в нашем распоряжении, от инвертора промышленного изготовления, на выходе которого формируется напряжение прямоугольной формы с нулевыми паузами между импульсами. Большинство инверторов выдает в нагрузку именно такой ток.

Устройства с импульсными блоками питания, на входе которых стоит выпрямитель, такие как телевизор, спутниковая связь, компьютер. Эти устройства некоторое время работали, но в их блоках питания слышался посторонний шум и наблюдался нагрев входных фильтров до опасных температур.

Электродвигатели (холодильник, циркуляционный насос) вращались, но возникали сильные вибрации, которые могли разрушить устройство, или в любом случае сокращали срок его службы.

Горелка отопителя, медицинское оборудование не включались. Загоралась лампочка аварийной остановки.

Осветительные энергосберегающие лампочки работали, но с посторонним шумом.

Нормально работал только электроинструмент с коллекторно — щеточными электродвигателями, такой, как дрель, болгарка, электрокоса.

Стало ясно, что если мы хотим использовать двенадцати-вольтовую сеть автомобиля для резервного питания бытовых и специальных потребителей, а именно такая задача перед нами стояла, то нам придется сделать преобразователь выходного напряжения инвертора в синусоидальное приемлемого качества. При этом нам хотелось, чтобы преобразователь был устойчив к перегрузкам и не создавал импульсных помех, к которым чувствительны наши потребители.

К сожалению в статьях периодически встречаются ошибки, они исправляются, статьи дополняются, развиваются, готовятся новые. Подпишитесь, на новости, чтобы быть в курсе.

1.Спасибо за статью. 2.У меня проблема с бензогенератором, который покупался для аварийного питания газового котла. Генератор однофазный, щеточный, 0.9/1.1квт. Одно время он даже работал с котлом, я имею ввиду систему проверки пламени. Но потом котел перестал распознавать горение. 5 циркуляционных насосов по звуку работают нормально. Осциллографа у меня нет, поэтому точно при Читать ответ.

Здравствуйте! Скажите, пожалуйста, можно ли использовать Ваш силовой резонансный фильтр для инвертора, у которого на выходе переменный прямоугольный сигнал (меандр) напряжением 12 Вольт? Если да, то как его правильно рассчитать. С уважением, Леонид Григорьевич. Читать ответ.

Делаю резонансный фильтр, 400 Вт для котла, на сердечниках от трансформатора ТСА-180, конденсаторы 25х450в. Можно ли сделать обмотку как на трансформаторе состоящую из двух обмоток? По расчету для последовательного контура мне нужно 1436 витков, соответственно 1436/2=718 витков на каждую катушку и соединить их последовательно. Читать ответ.

Здравствуйте. Спасибо большое за нужную мне информацию.Вопрос таков : вы писали :’Чтобы получить нужный нам дроссель, в сердечнике придется сделать зазор’ . Если есть подходящая индуктивность в виде трансформатора, обязательно ли делать зазор если контур можно настроить подбором конденсатора? Спасибо. Читать ответ.

Касательно расчетов. В исходных данных вводится сечение одного магнитопровода, в результате расчета онлайн имеем параметры для двух дросселей, для меня непонятна логика расчета. Что принимать за исходный параметр: сечение одного из магнитопроводов, если их два, могут ли быть не одинаковыми, если да, то что вводить, меньшее, большее, среднеарифметическое, суммарное. Читать ответ.

Я собрал киловаттный фильтр (последовательный контур) на базе дросселя Днат400, расчеты и экспериментальные данные могу предоставить. Хочу проконсультироваться у Вас по вопросу параллельного контура. Если я правильно понял, то ток через дроссель и емкость параллельного контура ограничивается сопротивлением дросселя (полным). Можно использовать первичную обмотку трансформат Читать ответ.

Бесперебойник своими руками. ИБП, UPS сделать самому. Синус, синусоида.
Как сделать бесперебойник самому? Чисто синусоидальное напряжение на выходе, при.

устройство для резервного, аварийного, запасного питания котла, циркул.
У меня установлен газовый отопительный турбо котел, требующий электропитания. Кр.

Защита силового ключа от перенапряжения. Сброс скачков напряжения на т.
Как защитить силовой транзистор от пробоя броском высокого напряжения. Описание .

Полумостовой импульсный стабилизированный преобразователь напряжения, .
Полумостовой преобразователь напряжения сети. Схема, онлайн расчет. Форма для вы.

Проверка дросселя, катушки индуктивности, трансформатора, обмотки, эле.
Как проверить дроссель, обмотки трансформатора, катушки индуктивности, электрома.

Серийное производство силовой электроники

Различные типы инверторов для сети переменного напряжения 220В и анализ их работы с разными видами электроприборов.

г. Новосибирск
20 июля 2009 года
Инновационная компания «A-electronica.ru»

( При копировании любой части нашего первоисточника ссылка на сайт www.a-electronica.ru обязательна! )

1. Вступление. Описание рассматриваемых типов инверторов: трансформаторный, с вч преобразованием, с синусоидальной формой напряжения.
2. Виды электроприборов с активным характером нагрузки и особенности работы различных типов инверторов с данным видом нагрузки.
3. Виды электроприборов с индуктивным характером нагрузки и особенности работы различных типов инверторов с данным видом нагрузки.
4. Виды электроприборов с емкостным характером нагрузки и особенности работы различных типов инверторов с данным видом нагрузки.
5. Виды электроприборов с выпрямителем на входе и особенности работы различных типов инверторов с данным видом нагрузки.
6. Сводная таблица отличий в работе различных типов инверторов с различными типами нагрузок. Заключение.
1. Вступление. Описание рассматриваемых типов инверторов: трансформаторный, модифицированный синус, чистый синус.

Инвертор- прибор преобразующий постоянное напряжение в переменное. Потребность в инверторах существует для решения задачи питания устройств для бытовой сети 220В 50Гц от источников постоянного напряжения, например аккумуляторов. С развитием электроники эта задача решалась все более сложными методами, дающими более качественные параметры выходной электроэнергии. Однако на практике применяются как современные, так и более архаичные приборы, поэтому рассмотрим основные типы инверторов в историческом порядке.
Первыми появились инверторы на основе трансформаторов работающих на частоте сети 50Гц. Блок-схема инвертора приведена на рис. №1.


Рис. №1. Блок-схема трансформаторного инвертора.

Источник энергии постоянного тока, в самом распространенном случае аккумулятор 12В, подключается к трансформатору через трехпозиционный коммутатор. Коммутатор представляет собой набор электронных ключей, обеспечивающий 3 состояния: к первичной обмотке трансформатора подключен источник питания положительной полярностью, к первичной обмотке трансформатора подключен источник питания отрицательной полярностью и состояние когда первичная обмотка закорочена. Последовательно переключая эти состояния, на первичной обмотке формируется переменное напряжение частотой 50Гц и амплитудой 12В. На вторичной обмотке трансформатора при этом формируется напряжение с той же частотой и формой, однако эффективное напряжение составляет 220В. Графики напряжения на трансформаторе приведены на рис. №2. Выходное напряжение снимается с вторичной обмотки, поэтому имеет такие же параметры.


Рис. №2. Графики напряжения на трансформаторе

Данная форма напряжения называется «модифицированная синусоида» и широко применяется в инверторах для сети 50Гц, поэтому параметры, описывающие ее, рассмотрены более подробно. Вообще параметры, задающие форму модифицированной синусоиды, это амплитуда выходного напряжения и коэффициент заполнения, показывающий отношение длительности импульса к периоду сигнала. Эти параметры задаются при конструировании инверторов. Из соображений того, что инвертор должен заменять сеть 220В 50Гц, обычно выбирается амплитудное значение напряжения модифицированной синусоиды такое же, как и в сети, то есть 311В. При этом, чтобы обеспечить эффективное напряжение 220в, такое же как и в сети, коэффициент заполнения получается 0.5. Однако в инверторе этого типа амплитуда выходного напряжения получается зависящей прямо пропорционально от напряжения источника. Если в качестве источника энергии используется аккумулятор, а это самый распространенный случай, то его напряжение при разряде понижается, и амплитуда модифицированной синусоиды на выходе преобразователя также понижается, соответственно понижается и эффективное значение напряжение на выходе преобразователя. Для того чтобы улучшить качество энергии на выходе преобразователя в этих условиях часто применяют схемы управления, которые изменяют коэффициент заполнения выходного напряжения таким образом, чтобы поддерживать эффективное напряжение неизменным. Например, инвертор, рассчитанный на напряжение источника 12В, работает от разряженного аккумулятора с напряжением 10В. При этом амплитудное напряжение на выходе снижается пропорционально до 259В. Схема управления изменяет коэффициент заполнения выходного напряжения до 0.72, при этом эффективное напряжение остается равным 220В. Однако форма напряжения и его амплитуда меняется, что может быть недопустимо для некоторых нагрузок, что будет показано далее.
Так как основным элементом инвертора этого типа является трансформатор 50Гц, возможности по миниатюризации, уменьшении материалоемкости и повышении эффективности работы инвертора весьма ограничены. Поэтому на основе современной элементной базы были разработаны инверторы с вч преобразованием. Блок-схема такого инвертора приведена на рис. №3.

Смотрите так же:  Коллекторный двигатель переменного тока почему не тянет


Рис. №3. Блок-схема инвертора с вч преобразованием.
Источник энергии постоянного тока подключается на вход высокочастотного преобразователя постоянного напряжения (dc\dc преобразователь). Данный блок преобразует входное напряжение в напряжение, соответствующее амплитуде сетевого напряжения, 311В. Это преобразование происходит с помощью трансформатора, работающего на повышенной (десятки и сотни килогерц) частоте, поэтому габариты и материалоемкость инвертора значительно уменьшились. Выходное напряжение преобразователя подается на коммутатор, аналогичный коммутатору в инверторе трансформаторного типа. График выходного напряжения коммутатора имеет такой же вид, как и напряжение на выходе коммутатора в трансформаторном инверторе, однако амплитуда напряжения достигает 311В. Выход коммутатора является выходом инвертора, и график выходного напряжения соответствует напряжению на вторичной обмотке трансформатора в трансформаторном инверторе (рис.2). Соображения насчет формы выходного напряжения, изложенные выше, справедливы и для данного типа инвертора. Изменение же формы выходного напряжения в зависимости от величины входного напряжения может происходить либо нет, это зависит от топологии dc\dc преобразователя. Если преобразователь стабилизированный, то при изменении входного напряжения выходное напряжение преобразователя не изменяется. При этом также форма и амплитуда выходного напряжения инвертора не изменяется. Однако существуют и более простые разновидности dc\dc преобразователей, которые не являются стабилизированными, и выходное напряжение которых пропорционально входному. Для инверторов, собранных на основе таких преобразователей, справедливы заключения насчет изменения выходного напряжения для трансформаторных инверторов.
С развитием электроники появилась возможность создать инверторы с синусоидальной формой напряжения на основе вч преобразования электрической энергии. С помощью данных инверторов возможно получение выходного напряжения, удовлетворяющего стандартам на качество электроэнергии в энергетике, что невозможно для преобразователей ранее рассмотренных типов. Блок-схема инвертора приведена на рис. №4.


Рис. №4. Блок-схема инвертора с синусоидальным выходным напряжением.

Источник энергии постоянного тока подключается на вход высокочастотного преобразователя постоянного напряжения, как и в инверторе с вч преобразованием, рассмотренном ранее. Выходное напряжение инвертора может быть различным в зависимости от конструкции, однако оно должно быть выше амплитудного напряжения сети, то есть выше 311В. Выходное напряжение преобразователя поступает на вч инвертор (dc/ac), представляющий собой управляемый понижающий импульсный преобразователь. Данный преобразователь может устанавливать на своем выходе напряжение по сигналу от схемы управления в диапазоне от нуля до напряжения питания, то есть до напряжения больше 311В. Вч инвертор обычно содержит два таких канала по мостовой схеме, таким образом, напряжение между их выходами может достигать от -311В до +311В, как и в сети 220В. Графики выходного напряжения по обоим выходным проводам и результирующее выходное напряжение инвертора представлены на рис. №5. Из графиков следует, что схема управления подает особый сигнал на каждый канал вч преобразователя, изменяющийся во времени таким образом, что выходное напряжение каждого канала вч преобразователя изменяется по синусоидальному закону с частотой 50Гц, и смещено по фазе на 180? между каналами. Напряжение же между выходами представляет собой синусоиду без постоянной составляющей амплитудой 311В. Изменение формы выходного напряжения в зависимости от величины входного напряжения не происходит вследствие того что либо dc/dc преобразователь либо вч инвертор исполняются стабилизированными, то есть выходное напряжение не зависит от входного.


Рис. №5. Графики напряжения на выходах инвертора.
2. Виды электроприборов с активным характером нагрузки и особенности работы различных типов инверторов с данным видом нагрузки.

Электрические приборы с активным характером сопротивления распространены повсеместно. К ним относятся различные виды нагревательных приборов, а также осветительные приборы на основе ламп накаливания. Также распространены комбинированные нагрузки, в которых кроме основного потребителя с активным характером сопротивления присутствуют другие потребители с различным характером сопротивления, однако мощность этих потребителей значительно ниже. Например, нагревательный элемент со схемой контроля температуры. Такие нагрузки также можно считать приближенными к активными, степень приближения определяется отношением мощностей основной активной нагрузки и дополнительной не активной. Вообще активная нагрузка является наиболее простым видом нагрузки для инвертора, потому что выходной ток инвертора в любой момент времени, то есть при любом мгновенном значении выходного напряжения, ограничен и определяется законом Ома. Поэтому допустима любая форма выходного напряжения инвертора, например модифицированная синусоида. Также весь выходной ток инвертора идет на создание выходной активной мощности, поэтому эффективность работы (величина коэффициента полезного действия) инверторов любого типа будет максимальна при данном типе нагрузки.
Для корректной работы активных нагрузок важно лишь среднеквадратичное значение напряжения, а все рассмотренные ранее типы инверторов способны выдавать такое же среднеквадратичное напряжение, как и сеть 220В. Однако потенциально важным моментом для работы с активной нагрузкой является способность инвертора выдавать постоянное среднеквадратичное напряжение при изменяющемся напряжении питания. Все рассмотренные ранее типы инверторов имеют такую возможность при соответствующих функциях системы управления, однако каждая конкретная модель инвертора может иметь или нет подобную функцию.
Также нагрузки с активным характером сопротивления могут быть линейными или нелинейными, то есть сопротивление нагрузки может быть постоянным или меняющимся во времени. Типичным примером нелинейной нагрузки является лампа накаливания, причем отличие в сопротивлении в горячем и холодном состоянии может достигать 10 раз. При работе инвертора с таким типом нагрузки может возникать кратковременное, но значительное увеличение тока нагрузки. В этом случае возможна потеря работоспособности инвертора из-за срабатывания защиты по максимальному выходному току. Однако работа схемы защиты не зависит от типа преобразователя, поэтому различия между работой различных моделей инверторов будут происходить из-за различия в системах защиты, а не из-за принципиального различия в типах инверторов.
Различие между типами инверторов с различной формой выходного напряжения можно оценить с помощью частотного анализа по гармоническому составу выходного напряжения. Инверторы с синусоидальной формой выходного напряжения содержат в спектре выходного напряжения только основную гармонику 50Гц. Инверторы же с выходным напряжением в виде модифицированной синусоиды содержат в спектре выходного напряжения также высшие нечетные гармоники значительной амплитуды. Так как форма выходного тока при активной нагрузке повторяет форму напряжения, то подобные заключения будут справедливы и про спектр выходного тока. Практически оценить различия в форме выходного тока можно по производимому им акустическому эффекту. Акустический эффект может иметь различную физическую природу, например сила Ампера, вынуждающая колебаться проводники с током, или магнитострикционный эффект в материалах, находящимся в магнитном поле, возбуждаемом током. Акустический эффект может возникать во всех участках последовательной выходной цепи, например в потребителе или соединительных проводах, или в самом инверторе. Человек способен на слух различать гармонический состав производимого акустического эффекта. Так, звук от инвертора с синусоидальной формой выходного напряжения ощущается как однотонный гудящий (низкочастотный) шум. А звук от инвертора с формой выходного напряжения в виде модифицированной синусоиды более тембрально окрашен, с выраженными обертонами, более походящий на стук.
3. Виды электроприборов с индуктивным характером нагрузки и особенности работы различных типов инверторов с данным видом нагрузки.


Ток в нагрузке. Красный график при источнике напряжения в виде чистой синусоиды, синий — при источнике напряжения в виде модифицированной синусоиды


Активная энергия, выделяющаяся в нагрузке. Красный график при источнике напряжения в виде чистой синусоиды, синий — при источнике напряжения в виде модифицированной синусоиды

Рис. №6. Графики тока и потребления активной энергии при индуктивной нагрузке.

Из графиков следует, что активная энергия более эффективно потребляется при синусоидальном источнике напряжения, причем разница составляет 16%. Такая же разница будет и в активной мощности. То есть, если подключить нагрузку, предназначенную для работы от сети 220В к инвертору с формой выходного напряжения в виде модифицированной синусоиды, то потребляемая активная мощность снизится на 16% . Эффективный ток при этом снизится на 9% . Для функционирования нагрузок данное понижение активной мощности будет иметь негативные последствия: электровибрационные приборы понизят механическую мощность, осветительные приборы будут светить тусклее.
4. Виды электроприборов с емкостным характером нагрузки и особенности работы различных типов инверторов с данным видом нагрузки.

Электрические приборы с емкостным характером сопротивления редко применяются как законченный блок, однако часто встречаются как часть других электроприборов, например емкостные компенсаторы реактивной мощности или фазосдвигающие емкостные цепи для электродвигателей. Так как остальные виды нагрузок рассматриваются в других разделах, имеет смысл рассмотреть отдельно работу инверторов различных типов на реальную емкость. Модель реальной емкости учитывает потери энергии в сопротивлении выводов применяемых конденсаторов и представляет собой последовательно включенные идеальный конденсатор и эмулирующий сопротивление выводов резистор.
Сначала рассмотрим работу инвертора с формой выходного напряжения в виде чистой синусоиды на реальную емкость. Процессы, протекающие в этой цепи аналогичны процессам при работе такой же нагрузки от сети 220В. Как известно, конденсатор в цепи переменного тока представляет собой реактивную нагрузку, то есть полная мощность нагрузки большей частью состоит из циркулирующей от нагрузки к сети и обратно реактивной мощности и лишь небольшая часть полной мощности представляет собой активную мощность потерь. При этом полезный эффект нагрузки создает именно реактивная мощность, а активная мощность представляет собой паразитный эффект, нагревающий как саму нагрузку так и инвертор. Величина активной мощности, выделяющейся в инверторе, пропорциональна выходному сопротивлению инвертора.
Теперь же рассмотрим работу на такую же нагрузку инвертора с формой выходного напряжения в виде модифицированной синусоиды. Для получения наглядных результатов использовалось моделирование в среде micro-cap. Модель инвертора с формой выходного напряжения в виде модифицированной синусоиды представляет собой источник напряжения с формой модифицированной синусоиды и последовательно включенного сопротивления потерь Rг. Для сравнения использовалось моделирование схемы с той же самой нагрузкой, но работающей от источника переменного напряжения 220В 50Гц с таким же выходным сопротивлением. Схемы для моделирования представлены на рис. №7. Номиналы элементов типичны для обычных применений и составляют: Сн=10мкФ, Rн=Rг=1Ом.

Смотрите так же:  Зачем паять провода


Рис. №7. Схемы для моделирования в среде micro-cap
Результаты моделирования представлены на рис. №8. Из графиков тока нагрузки видно, что форма и амплитуда токов весьма различны. Ток нагрузки с синусоидальным источником напряжения имеет также синусоидальную форму и амплитуду 977мА, а ток нагрузки с источником напряжения в виде модифицированной синусоиды имеет вид экспоненциальных импульсов с амплитудой 152А и весьма короткой (десятки микросекунд) длительностью. Такие различия обусловлены тем, что в случае с источником напряжения в виде модифицированной синусоиды конденсатор заряжается от импульсного источника напряжения с высокой скоростью изменения напряжения, для которого конденсатор имеет низкое сопротивление. Поэтому напряжения на сопротивлениях потерь Rг и Rн в импульсе заряда велики и соответственно велики потери. Исходя из графика выделения энергии на сопротивлении потерь, общая мощность потерь составляет для синусоидального источника напряжения 0.95Вт, а для источника напряжения в виде модифицированной синусоиды 98Вт, то есть отличается в сто раз.


Ток в нагрузке. Красный график при источнике напряжения в виде чистой синусоиды, синий — при источнике напряжения в виде модифицированной синусоиды


Энергия, выделяющаяся в сопротивлении потерь. Красный график при источнике напряжения в виде чистой синусоиды, синий — при источнике напряжения в виде модифицированной синусоиды
Рис. №8. Графики тока и энергии потерь для различных видов источников напряжения.

Можно показать, что мощность потерь при источнике напряжения в виде модифицированной синусоиды не зависит от сопротивления потерь, а только от величины конденсатора. Однако распределение потерь между инвертором и конденсатором пропорционально их внутренним сопротивлениям. Но в любом случае, такой высокий уровень пиковых токов и мощности потерь нежелателен как для инвертора, так и для нагрузки. Немногие типы конденсаторов для сети 220В способны работать с внутренними потерями в 100 раз большими, чем номинальные.
Также высокий уровень токов при источнике напряжения в виде модифицированной синусоиды создает повышенный акустический эффект при работе инвертора. Спектральный состав выходного тока инвертора с формой выходного напряжения в виде модифицированной синусоиды при работе на емкость весьма широкополосен, а амплитуда тока весьма велика, поэтому звуковой эффект производимый этим током весьма громкий и неприятный на слух.
5. Виды электроприборов с выпрямителем на входе и особенности работы различных типов инверторов с данным видом нагрузки.

Электрические приборы с выпрямителем на входе повсеместно встречаются в технике и в быту. К этим приборам относится бытовая электроника с трансформаторным или импульсным блоком питания. Эквивалентная схема подключения такой нагрузки представлена на рис №9. Источник питающего напряжения, в данном случае инвертор, представлен в виде генератора напряжения Vг с сопротивлением потерь Rг. Сам электрический прибор питается выпрямленным напряжением и представлен сопротивлением Rн. Блок питания электроприбора состоит из мостового выпрямителя и фильтрующего конденсатора Сн. Неидеальность конденсатора моделируется последовательным сопротивлением Rк. Сопротивление выпрямителя, входных проводников и трансформатора питания (в случае трансформаторного блока питания) моделируется последовательным сопротивлением Rп.


Рис. №9. Эквивалентная схема подключения электроприбора с выпрямителем на входе.

Работа такой нагрузки сильно отличается при использовании инверторов с различными видами выходного напряжения. Причина этого такая же, как и для емкостной нагрузки и заключается в том, что фильтрующий конденсатор Сн заряжается от входного источника напряжения. Если скорость изменения напряжения велика, как при работе от источника с формой напряжения в виде модифицированной синусоиды, то потери в элементах цепи увеличиваются многократно. Можно аналитически показать, что при работе от источника с формой напряжения в виде модифицированной синусоиды общие потери энергии будут зависеть лишь от амплитуды переменной составляющей напряжения на конденсаторе Сн и величины емкости этого конденсатора, и не зависеть от величины сопротивлений Rг, Rп и Rк. От величины этих сопротивлений будет зависеть только распределение потерь среди элементов схемы.
Для получения наглядных результатов снова использовалось моделирование в среде micro-cap. Для сравнения использовалось моделирование схемы с одной и той же нагрузкой, но работающей от инвертора с синусоидальной формой напряжения 220В 50Гц и от инвертора с формой напряжения в виде модифицированной синусоиды. Номиналы элементов схемы для моделирования составляют: Rн=500Ом, Сн=47мкФ, Rг=Rп=Rк=1Ом. Такие номиналы типичны для блока питания бытовой электроники мощностью 150Вт, например телевизора. Результаты моделирования представлены на рис. №10. Из графиков выходного тока инвертора видно, что форма и амплитуда токов весьма различны для инверторов с различными видами выходного напряжения. Ток инвертора с синусоидальным источником напряжения имеет плавную форму и амплитуду 3.1А, а ток нагрузки с источником напряжения в виде модифицированной синусоиды имеет вид экспоненциальных импульсов с амплитудой 20.2А и весьма короткой (сотни микросекунд) длительностью. Исходя из графика выделения энергии на сопротивлении потерь, общая мощность потерь составляет для синусоидального источника напряжения 3.5Вт, а для источника напряжения в виде модифицированной синусоиды 9.4Вт. Таким образом, общая мощность потерь при работе нагрузки от инвертора с формой напряжения в виде модифицированной синусоиды почти в 3 раза больше чем при работе той же нагрузки от инвертора с синусоидальной формой напряжения. Так как сопротивления потерь включены последовательно, распределение мощности потерь на каждом конкретном элементе будет тоже сохраняться, поэтому например сам инвертор будет выделять мощности в 3 раза больше, конденсатор и трансформатор блока питания также будут греться в 3 раза больше. Элементы бытовых приборов могут не иметь трехкратного запаса по мощности и выйти из строя в результате питания от инверторов с формой напряжения в виде модифицированной синусоиды.


График тока в нагрузке. Зеленый график при источнике напряжения в виде чистой синусоиды, красный — при источнике напряжения в виде модифицированной синусоиды


Энергия, выделяющаяся в сопротивлении потерь. Зеленый график при источнике напряжения в виде чистой синусоиды, красный — при источнике напряжения в виде модифицированной синусоиды
Рис. №10. Графики выходного тока инвертора и энергии потерь для различных видов инверторов.

Как и для емкостной нагрузки, для нагрузки с выпрямителем на входе, высокий уровень токов при источнике напряжения в виде модифицированной синусоиды создает повышенный акустический эффект при работе инвертора. Спектральный состав выходного тока инвертора с формой выходного напряжения в виде модифицированной синусоиды при работе на нагрузку с выпрямителем на входе весьма широкополосен, а амплитуда тока весьма велика, поэтому звуковой эффект производимый этим током весьма громкий и неприятный на слух. При этом производить звуковой эффект может любой элемент схемы, через который протекает выходной ток инвертора, этот элемент может находиться в инверторе или в подключаемом электроприборе, или в соединительных проводах.
6. Сводная таблица отличий в работе различных типов инверторов с разными видами нагрузок. Заключение.

Для того чтобы систематизировать выявленные в предыдущих частях статьи отличия в работе различных типов инверторов с разными видами нагрузок была составлена табл. №1. Для сравнения акустического эффекта, тепловых потерь в нагрузке и эффективной мощности для одинаковых нагрузок в качестве отсчета была выбрана сеть переменного напряжения 220В 50Гц. Для сравнения потерь в инверторе разных типов, но с одинаковым выходным сопротивлением, в качестве отсчета был выбран инвертор с синусоидальной формой выходного напряжения.

Табл. №1. Сводная таблица отличий в работе различных типов инверторов с разными видами нагрузок.

Похожие статьи:

  • Опережение электронного зажигания схема Опережение электронного зажигания схема СХЕМА ЭЛЕКТРОННОГО КОРРЕКТОРА УГЛА ОПЕРЕЖЕНИЯ ЗАЖИГАНИЯ МОТОЦИКЛОВ «УРАЛ», «ДНЕПР» Предлагаем применить устройство, работающее с блоком электронного зажигания, схема которого приведена на рис. […]
  • Фонарь налобный 220 вольт Фонарь налобный METABO 657003000 Самовывоз (8) Рязань г, Яблочкова проезд д.6, пункт выдачи «220 Вольт», по предоплате Рязань г, Касимовское ш д.12, пункт выдачи «220 Вольт», по предоплате Пункт выдачи DPD, предоплата Почта […]
  • 220 вольт речной вокзал Список магазинов Новосибирск, Большевистская ул д.127 ,Магазин Пн-Пт 09:00-20:00, Сб-Вс 10:00-19:00 Как добраться до магазина На общественном транспорте: Автобусами: № 8, 9, 13, 21, 31, 32, 36, 54, 68, 84, 170 Маршрутное такси: №1, 6, 11, […]
  • Схема преобразователя с 54 220 Схема преобразователя с 54 220 Подскажите хорошую и не сложную схему. питание от прикуривателя или аккамулятора. а моща какая нужна? примерно 30 Ват Обмотку по толще и транзисторы по мощнее. Ещё кручее нужно собирать на 494 и […]
  • Заземление расстояние между заземлителями Форум проектировщиков электрических и слаботочных сетей Автор Тема: Расстояние между заземлителями (Прочитано 16426 раз) 0 Пользователей и 1 Гость просматривают эту тему. Быстрый ответ Предупреждение: в данной теме не было […]
  • Схема 220 в электрогенератора Схема 220 в электрогенератора СХЕМА ЭЛЕКТРОГЕНЕРАТОРА Бывает, что в походе или на рыбалке, возникает необходимость иметь высокое сетевое напряжение. Это нужно для зарядки мобильного телефона, посмотреть телевизор, подключить […]