Схема соединения нагрузки

Схема соединения треугольник

Соединение фаз источников и приемников электрической энергии в треугольник и звезду

Для уменьшения количества проводов, необходимых для соединения нагрузки с источником питания, или же для уменьшения количества пульсаций в выпрямителях. или же повышения передаваемой мощности без повышения напряжения сети используют разные схемы соединения обмоток, как нагрузки, так и источника. Наиболее распространенными схемами соединения являются треугольник и звезда.

Соединения звездой

При соединении звездой концы обмоток фаз соединяются вместе в одной точке (в нашем случае показаны как x,y,z), которая носит название нейтральной точки или нуля, и обозначается буквой N. Также нейтральная точка (нейтраль) или ноль может быть соединена с нейтралью источника, а может быть и не соединена. В случае, когда нейтрали источника и приемника электрической энергии соединены, такая система будет называться четырехпроводной, а в случае если не соединены – трехпроводной.

Соединение треугольником

А вот при соединении в треугольник концы обмоток не соединяются в общую точку, а соединяются с началом следующей обмотки. А именно, конец обмотки фазы А (на схеме указан х) соединяется с началом фазы В, а конец фазы (y) соединяется с началом фазы С, и, как вы наверно уже догадались, конец фаз С (z) с началом фазы А. Также следует помнить, что если при соединении в звезду система может быть как трехпроводной, так и четырехпроводной, то при соединении в треугольник система может быть только трехпроводной.

Может сложится впечатление, что при таком соединении в контурах может начать протекать электрический ток даже в случае когда будет отключена нагрузка. Однако это обманчивое впечатление, поскольку при симметричной системе ЭДС будет выполнятся равенство Еа + Еb + Ес = 0.

Фазные и линейные напряжения и токи

В трехфазных электрических сетях существуют два вида напряжений и токов — линейные и фазные.

Под фазным напряжением понимают напряжение между началом и концом отдельной фазы электроприемника, а под фазным током – ток, протекающий в одной из фаз электроприемника.

При использовании соединения в звезду (см. рисунки выше) фазными напряжениями будут U / a. U / b. U / c. и, соответственно токами Ia. Ib. Ic. При использовании соединения обмоток генератора или же нагрузки треугольником фазными напряжениями, соответственно, будут U / a. U / b. U / c. а токами Iac. Iba. Icb .

Линейными напряжениями будут напряжения между началами фаз или же между линейными проводами. Линейным током будет называться ток, который протекает в проводах линейных между источником питания и соответствующей нагрузкой.

При использовании соединении в звезду токи линейные будут с фазными равны, а линейные напряжения с таким типом соединения будут равны Uab. Ubc, Uca. При использовании соединения в треугольник ситуация противоположна – линейные и фазные напряжения равны, а токи линейные будут равны Ia. Ib. Ic .

При расчете и анализе трехфазных цепей не последнее значение имеет положительное направление ЭДС токов и напряжений, так как от направления этих ЭДС напрямую зависит знак в уравнениях, которые составляются по закону Кирхгофа, и, как следствие, соотношение на векторных диаграммах между векторами.

Post navigation

Соединение звездой и треугольником генераторных обмоток

Автор Человек March 6, 2016

При создании любого прибора важно не только подобрать необходимые детали, но и верно их все соединить. И в рамках данной статьи будет рассказано про соединение звездой и треугольником. Где это применяется? Как схематически данное действие выглядит? На эти, а также другие вопросы и будут даны ответы в рамках статьи.

Что собой представляет трёхфазная система электроснабжения?

Она является частным случаем многофазных систем построения электрических цепей для переменного тока. В них действуют созданные с помощью общего источника энергии синусоидальные ЭДС, обладающие одинаковой частотой. Но при этом они сдвинуты относительно друг друга на определённую величину фазового угла. В трехфазной системе он равняется 120 градусам. Шестипроводная (часто ещё называемая многопроводной) конструкция для переменного тока была изобретена в своё время Николой Теслой. Также значительный вклад в её развитие внёс Доливо-Добровольский, который первым предложил делать трёх- и четырепроводные системы. Также он обнаружил ряд преимуществ, которые имеют трехфазные конструкции. Что же собой представляют схемы включения?

Схема звезды

Так называют соединение, при котором концы фаз обмоток генератора соединяют в общую точку. Её называют нейтралью. Концы фаз обмоток потребителя также соединяются в одну общую точку. Теперь к проводам, которые их соединяют. Если он находится между началом фаз потребителя и генератора, его называют линейным. Провод, который соединяет нейтрали, обозначают как нейтральный. Также от него зависит название цепи. Если есть нейтральный, схема называется четырёхпроводной. В ином случае она будет трёхпроводной.

Треугольник

Это тип соединения, в котором начало (Н) и конец (К) схемы находятся в одной точке. Так, К первой фазы подсоединён у Н второй. Её К соединяется с Н третьей. А её конец соединён с началом первой. Такую схему можно было бы назвать кругом, если не особенность её монтирования, когда более эргономичным является размещение в виде треугольника. Чтобы узнать все особенности соединения, ознакомитесь с ниже приведёнными видами соединений. Но до этого ещё немного информации. Чем отличается соединение звездой и треугольником? Разница между ними заключается в том, что по-разному соединяются фазы. Также существуют определённые отличия в эргономичности.

Как можно понять из рисунков, существует довольно много вариантов реализации включения деталей. Сопротивления, которые возникают в таких случаях, называют фазами нагрузки. Выделяют пять видов соединений, по которым может быть подключен генератор к нагрузке. Это:

  1. Звезда–звезда. Вторая используется с нейтральным проводом.
  2. Звезда-звезда. Вторая используется без нейтрального провода.
  3. Треугольник-треугольник.
  4. Звезда-треугольник.
  5. Треугольник-звезда.

А что это за оговорки в первом и втором пунктах? Если вы уже успели задаться этим вопросом, прочитайте информацию, которая идёт к схеме звезды: там есть ответ. Но здесь хочется сделать небольшое дополнение: начала фаз генераторов обозначаются с применением заглавных букв, а нагрузки – прописными. Это относительно схематического изображения. Теперь по опыту использования: когда выбирают направление протекания тока, в линейных проводах делают так, чтобы он был направлен со стороны генератора к нагрузке. С нулевыми поступают полностью наоборот. Посмотрите, как выглядит схема соединения звезда-треугольник. Рисунки очень хорошо наглядно показывают, как и что должно быть. Схема соединения обмоток звезда/треугольник представлены в разных ракурсах, и проблем с их пониманием быть не должно.

Преимущества

Каждая ЭДС работает в определённой фазе периодического процесса. Для обозначения проводников используют латинские буквы A, B, C, L и цифры 1, 2, 3. Говоря про трехфазные системы, обычно выделяют такие их преимущества:

  1. Экономичность при передаче электричества на значительные расстояния, которое обеспечивает соединение звездой и треугольником.
  2. Малая материалоёмкость трехфазных трансформаторов.
  3. Уравновешенность системы. Данный пункт является одним из самых важных, поскольку позволяет избежать неравномерной механической нагрузки на электрогенерирующую установку. Из этого вытекает больший срок службы.
  4. Малой материалоёмкостью обладают силовые кабели. Благодаря этому при одинаковой потребляемой мощности в сравнении с однофазными цепями уменьшаются токи, которые необходимы, чтобы поддерживать соединение звездой и треугольником..
  5. Можно без значительных усилий получить круговое вращающееся магнитное поле, что необходимо для работоспособности электрического двигателя и целого ряда других электротехнических устройств, работающих по похожему принципу. Это достигается благодаря возможности создания более простой и одновременно эффективной конструкции, что, в свою очередь, вытекает из показателей экономичности. Это ещё один значительный плюс, который имеет соединение звездой и треугольником.
  6. В одной установке можно получить два рабочих напряжения – фазное и линейное. Также можно сделать два уровня мощности, когда присутствует соединение по принципу «треугольника» или «звезды».
  7. Можно резко уменьшать мерцание и стробоскопический эффект светильников, работающих на люминесцентных лампах, пойдя по пути размещения в нём устройств, питающихся от разных фаз.

Благодаря вышеуказанным семи преимуществам трехфазные системы сейчас являются наиболее распространёнными в современной электронике. Соединение обмоток трансформатора звезда/треугольник позволяет подобрать оптимальные возможности для каждого конкретного случая. К тому же неоценимой является возможность влиять на напряжение, передающееся по сетям к домам жителей.

Заключение

Данные системы соединения являются самыми популярными благодаря своей эффективности. Но следует помнить, что работа идёт с высоким напряжением, и необходимо соблюдать крайнюю осторожность.

Похожие статьи

Для увеличения мощности передачи без увеличения напряжения сети, снижения пульсаций напряжения в блоках питания, для уменьшения числа проводов при подключении нагрузки к питанию, применяют различные схемы соединения обмоток источников питания и потребителей.

Обмотки генераторов и приемников при работе с 3-фазными сетями могут соединяться с помощью двух схем: звезды и треугольника. Такие схемы имеют между собой несколько отличий, различаются также нагрузкой по току. Поэтому, перед подключением электрических машин необходимо выяснить разницу в этих двух схемах.

Схема звезды

Соединение различных обмоток по схеме звезды предполагает их подключение в одной точке, которая называется нулевой (нейтральной), и имеет обозначение на схемах «О», либо х, у, z. Нулевая точка может иметь соединение с нулевой точкой источника питания, но не во всех случаях такое соединение имеется. Если такое соединение есть, то такая система считается 4-проводной, а если нет такого соединения, то 3-проводной.

Схема треугольника

При такой схеме концы обмоток не объединяются в одну точку, а соединяются с другой обмоткой. То есть, получается схема, похожая по виду на треугольник, и соединение обмоток в ней идет последовательно друг с другом. Нужно отметить отличие от схемы звезды в том, что в схеме треугольника система бывает только 3-проводной, так как общая точка отсутствует.

Смотрите так же:  Пугв расшифровка провода

В схеме треугольника при отключенной нагрузке и симметричной ЭДС равно 0.

Фазные и линейные величины

В 3-фазных сетях питания имеется два вида тока и напряжения – это фазные и линейные. Фазное напряжение – это его величина между концом и началом фазы приемника. Фазный ток протекает в одной фазе приемника.

При применении схемы звезды фазными напряжениями являются Ua. Ub, Uc. а фазными токами являются I a. I b. I c. При применении схемы треугольника для обмоток нагрузки или генератора фазные напряжения — U. U. U. фазные токи – I ac. I . I .

Линейные значения напряжения измеряются между началами фаз или между линейных проводников. Линейный ток протекает в проводниках между источником питания и нагрузкой.

В случае схемы звезды линейные токи равны фазным, а линейные напряжения равны U ab. Ubc, U ca. В схеме треугольника получается все наоборот – фазные и линейные напряжения равны, а линейные токи равны I a. I b. I c .

Большое значение уделяется направлению ЭДС напряжений и токов при анализе и расчете 3-фазных цепей, так как его направление влияет на соотношение между векторами на диаграмме.

Особенности схем

Между этими схемами есть существенная разница. Давайте разберемся, для чего в различных электроустановках используют разные схемы, и в чем их особенности.

Во время пуска электрического мотора ток запуска имеет повышенную величину, которая больше его номинального значения в несколько раз. Если это механизм с низкой мощностью, то защита может и не сработать. При включении мощного электромотора защита обязательно сработает, отключит питание, что обусловит на некоторое время падение напряжения и перегорание предохранителей, или отключение электрических автоматов. Электродвигатель будет работать с малой скоростью, которая меньше номинальной.

Видно, что имеется немало проблем, возникающих из-за большого пускового тока. Необходимо каким-либо образом снижать его величину.

Для этого можно применить некоторые методы:

Подключить на запуск электродвигателя реостат . дроссель, либо трансформатор .

Изменить вид соединения обмоток ротора электродвигателя.

В промышленности в основном применяют второй способ, так как он наиболее простой и дает высокую эффективность. Здесь работает принцип переключения обмоток электромотора на такие схемы, как звезда и треугольник. То есть, при запуске мотора его обмотки имеют соединение «звезда», после набора эксплуатационных оборотов, схема соединения изменяется на «треугольник». Этот процесс переключения в промышленных условиях научились автоматизировать.

В электромоторах целесообразно применение сразу двух схем: звезда и треугольник. К нулевой точке необходимо подключить нейтраль источника питания, так как во время использования таких схем возникает повышенная вероятность перекоса фазных амплитуд. Нейтраль источника компенсирует эту асимметрию, которая возникает вследствие разных индуктивных сопротивлений обмоток статора.

Достоинства схем

Соединение по схеме звезды имеются важные преимущества:

  • Плавный пуск электрического мотора.
  • Позволяет функционировать электродвигателю с заявленной номинальной мощностью, соответствующей паспорту.
  • Электродвигатель будет иметь нормальный рабочий режим при различных ситуациях: при высоких кратковременных перегрузках, при длительных незначительных перегрузках.
  • При эксплуатации корпус электродвигателя не перегреется.

Основным достоинством схемы треугольника является получение от электродвигателя наибольшей возможной мощности работы. При этом целесообразно поддерживать режимы эксплуатации по паспорту двигателя. При исследовании электромоторов со схемой треугольника выяснилось, что его мощность повышается в 3 раза, по сравнению со схемой звезды.

При рассмотрении генераторов, схемы – звезда и треугольник по параметрам аналогичны при функционировании электродвигателей. Выходное напряжение генератора будет больше в схеме треугольника, чем в схеме звезды. Однако, при повышении напряжения снижается сила тока, так как по закону Ома эти параметры обратно пропорциональны друг другу.

Поэтому можно сделать вывод, что при разных соединениях концов обмоток генератора можно получить два разных номинала напряжения. В современных мощных электромоторах при запуске схемы – звезда и треугольник переключаются автоматически, так как это позволяет снизить нагрузку по току, возникающей при пуске мотора.

Процессы, происходящие при изменении схемы звезда и треугольник в разных случаях

Здесь, изменение схемы — имеется ввиду переключение на щитах и в клеммных коробках электрических устройств, при условии, что имеются выводы обмоток.

Обмотки генератора и трансформатора

При переходе со звезды в треугольник напряжение уменьшается с 380 до 220 вольт, мощность остается прежней, так как фазное напряжение не изменяется, хотя линейный ток увеличивается в 1,73 раза.

При обратном переключении возникают обратные явления: линейное напряжение увеличивается с 220 до 380 вольт, а фазные токи не изменяются, однако линейные токи снижаются в 1,73 раза. Поэтому можно сделать вывод, что если есть вывод всех концов обмоток, то вторичные обмотки трансформатора и генераторы можно применять на два типа напряжения, которые отличаются в 1,73 раза.

Лампы освещения

При переходе со звезды в треугольник лампы сгорят. Если переключение сделать обратное, при условии, что лампы при треугольнике горели нормально, то лампы будут гореть тусклым светом. Без нулевого провода лампы можно соединять звездой при условии, что их мощность одинакова, и распределяется равномерно между фазами. Такое подключение применяется в театральных люстрах.

Трехфазные цепи. Соединение нагрузки звездой

Лабораторная работа 8

СОЕДИНЕНИЕ НАГРУЗКИ ЗВЕЗДОЙ

Цель работы: изучить цепь трехфазного тока при соединении приемника звездой в симметричном и несимметричном режимах. Определить роль нейтрального (нулевого) провода.

ОСНОВНЫЕ ПОНЯТИЯ

Трехфазной системой переменных токов называется совокупность трех однофазных электрических цепей, в которых действуют синусоидальные ЭДС одинаковой частоты, сдвинутые по фазе на 1/3 периода и создаваемые общим источником электрической энергии. Трехфазная система была изобретена и разработана во всех деталях талантливым русским инженером -Добровольским в 1891 году.

Источником энергии в трехфазной системе служит трехфазный генератор. В пазах его статора размещены три электрически изолированные друг от друга обмотки (фазные обмотки или просто фазы) генератора. Если ротор генератора двухполюсный, то оси фазных обмоток генератора повернуты в пространстве относительно друг друга на угол 2p/3. При вращении ротора в фазных обмотках статора индуктируются синусоидальные фазные ЭДС. Вследствие симметрии конструкции генератора максимальные Em и действующие Е значения ЭДС во всех фазах одинаковы.

Соединение фаз (обмоток) генератора может осуществляться по схеме “звезда” или “треугольник”. Фазы трехфазного генератора принято обозначать первыми буквами латинского алфавита: A, B, C. Чередование фаз генератора строго определенное и определяется изменением во времени фазных ЭДС, т. е. в очередности максимумов ЭДС: сначала фазы А, затем через 1/3Т фазы В и через 2/3Т фазы С. Такая последовательность чередования называется прямой.

Мгновенные значения ЭДС трехфазных обмоток генератора равны:

eA=Emsinwt eB=Emsin(wt-2/3p) eC=Emsin(wt-4/3p) (1)

На рис.8.1 показаны графики мгновенных значений фазных ЭДС и три вектора соответствующих им действующих значений ЭДС.

Как видно из рис.8.1 сумма мгновенных значений ЭДС в любой момент времени равна нулю, следовательно, геометрическая сумма действующих значений фазных ЭДС генератора также равна нулю:

Согласно рис.8.1, выразим комплексные значения ЭДС трехфазного генератора через одинаковое для всех трех фаз действующее значение E, тогда

Для получения трехфазной системы необходимо определенным образом соединить также фазы приемника, обычно по схеме “звезда” или “треугольник”.

B настоящее время трехфазная система является основной для передачи и распределения энергии.

Фазные обмотки трехфазного генератора можно соединить с тремя приемниками по схеме “звезда”. “Звездой” называется такое соединение, при котором концы фаз соединены в одну общую точку N называемую нейтральной или нулевой, а к началам фаз А, B, C подведены линейные провода. В «звезду» соединяют и фазы нагрузки с нулевой точкой n и началами фаз a, b, c (Рис.8.2).

Провод, соединяющий точки N-n, называется нейтральным или нулевым. Провода, соединяющие точки А-а, В-в и С-с, называют линейными.

Приняв сопротивления всех проводов равным нулю, можно определить токи трех фаз приемника и генератора :

Токи IA, IB, IC, протекающие по линейным проводам, называют

линейными (IЛ). Токи протекающие в фазах генератора и в фазах нагрузки называются фазными токами (Iф). Для соединения “звездой” линейные токи равны фазным, то есть

Ток в нейтральном проводе по первому закону Кирхгофа равен:

Приемники с одинаковым сопротивлением всех трех фаз Za=Zb=Zc называются симметричными. При симметричном приемнике IA=IB=IC и ток в нейтральном проводе IN=0

Напряжение между началом и концом фазы генератора (или фазы нагрузки) или напряжение между линейным и нулевым проводом называется фазным напряжением. Для генератора и линии электропередачи фазные напряжения (их три) обозначаются так: UA, UB, UC или Uф. Фазные напряжения нагрузки обозначаются так: Ua, Ub, Uc .

Напряжения между двумя началами фаз генератора (или двумя началами фаз нагрузки) или между двумя линейными проводами называются линейными и обозначаются для генератора и линии электропередачи: UAB, UBC, UCA, или Uл, для нагрузки Uab, Ubc, Uca.

Рассматривая поочередно контуры abn, bcn, can (рис.8.2) по второму закону Кирхгофа линейные напряжения равны :

Пользуясь этим соотношением, построим векторную диаграмму (рис.8.3а) напряжений для симметричной нагрузки.

Из рис.8.3а видно, что “звезда” линейных напряжений опережает “звезду” фазных напряжений на 30°. Отсюда из Dnkb:

UBC/2UB=30° UBC=Ö3*UB, т. е. Uл=Ö3*UФ (8)

При наличии нейтрального провода условие (8) выполняется как при симметричном, так и при несимметричном приемнике. На Рис.8.3b приведены векторная диаграмма фазных напряжений и топографическая диаграмма линейных напряжений.

Фазные коэффициенты мощности равны:

cos φа=Ra/Za ; cos φв=Rb/Zb ; cos φс=Rc/Zc (9)

где φа, φв, φс углы сдвига фаз между фазными напряжениями и фазными токами.

При симметричной нагрузке :

cos φа= cos φв= cos φс=Rф/Zф

Ток в нейтральном проводе IN=0, поэтому для подключения трехфазных симметричных установок (нагревательных печей, сушильных установок, электродвигателей и других симметричных установок) применяется трехпроводная цепь. Для осветительной нагрузки наличие нейтрального провода обязательно, так как почти постоянно сохраняется несимметрия. В нейтральном проводе в четырехпроводной осветительной сети запрещена установка предохранителей или выключателей, так как при отключении нейтрального провода фазные напряжения могут стать неравными. В одних фазах напряжение будет больше номинального, в других – меньше номинального. В обоих случаях возможен выход приемника из строя. При этом нарушается цепь защитного зануления.

Смотрите так же:  Провода в стояках

Векторная диаграмма напряжений и токов при симметричной активно-индуктивной нагрузке приведена на рис.8.4

При несимметричном приемнике, например : Za¹Zb¹Zc соотношение IЛ=IФ сохраняется, а соотношение Uл=Ö3*UФ нарушается.

На рис.8.5 показана векторная диаграмма при увеличении нагрузки в фазе «а», то есть при Za Ibc=Ica. На рис.9.4 приведена векторная диаграмма этого случая.

При увеличении сопротивления фазы “bc” до бесконечности, что соответствует обрыву этой фазы, ток в ней Ibc=0 и уравнения (2) запишутся в виде:

Векторная диаграмма этого случая дана на рис.9.5

В случае обрыва одного из линейных проводов (например, провода А) цепь становится однофазной с двумя параллельными ветвями, находящимися под напряжением Ubc.

Векторная диаграмма для обрыва линейного провода фазы дана на рис.9.6

Ibc

Ic

Ib

Мощности приемников для соединения треугольником.

Активная мощность каждой фазы при соединении нагрузки треугольником, например, фазы ab, равна : Pab=Uab*Icb*cos φab

Активная, реактивная и полная мощности приемников трехфазной цепи при несимметричной нагрузке равны :

P=Pab+Pbc+Pca, Q= ±Qab±Qbc±Qca S =

При симметричной нагрузке активная и реактивная мощности приемников трехфазной цепи равны :

Полная мощность трехфазной цепи при симметричной нагрузке:

S=3SФ или S=Ö3*UЛ*IЛ

Полная мощность трехфазной цепи при несимметричной нагрузке:

S =

Описание работы стенда смотрите в данном разделе предыдущей работы (№ 8)

Обрыв фазы осуществляется отсоединением приемника в точке a, b или с. Измерение напряжения производится вольтметром V.

ТРЕБОВАНИЯ БЕЗОПАСНОСТИ ТРУДА.

Смотрите соответствующий раздел лабораторной работы (№ 8)

ПОРЯДОК ВЫПОЛНЕНИЯ РАБОТЫ.

Приборы и принадлежности :

Описание работы стенда дано в предыдущей лабораторной работе (№ 8).

A1, А2, А3 – амперметры для измерения линейных токов;

A4, А5, А6 – амперметры для измерения фазных токов;

V – вольтметр для измерения фазных и линейных напряжения;

1. Ознакомьтесь с лабораторным стендом, найдите сетевой выключатель, тумблеры включения – отключения дополнительных нагрузок

2. Соберите схему соединения нагрузки в треугольник. Монтажная схема приведена на стенде. Покажите схему для проверки преподавателю или лаборанту.

3. Запишите технические данные применяемых приборов.

4. Включите стенд и установите симметричную нагрузку фаз. Тумблеры SA1, SA2, SA3, по указанию преподавателя, должны быть отключены, либо включены. Тумблер SA4 в исходном состоянии должен быть включен.

По показаниям амперметров убедитесь в равенстве токов в фазах и линейных проводах. Данные измерений токов и напряжений всех опытов запишите в табл. 9.1. В графе “Режим нагрузки” укажите режим нагрузки (симметричная или несимметричная).

5. Выполните следующие опыты при несимметричной нагрузке:

— увеличение нагрузки в одной из фаз

— увеличение нагрузки в двух фазах

— обрыв фазного провода

— обрыв линейного провода

ОБРАБОТКА РЕЗУЛЬТАТОВ ЭКСПЕРИМЕНТА.

В работе обработка результатов эксперимента проводится в соответствии с соответствующим разделом предыдущей работы. Сделайте выводы по работе по форме приведенной в лабораторной работе №10 настоящего руководства.

ВОПРОСЫ ДЛЯ САМОПРОВЕРКИ.

1. Каковы цели работы и порядок ее выполнения? Ответ пояснить по схеме лабораторной работы.

2. Изобразить схему опыта с включением всех приборов. Указать назначение всех приборов.

3. Написать формулу связи линейных токов и напряжений с их фазными значениями при симметричной и несимметричной нагрузках при соединении нагрузки в треугольник. Как определяются фазные мощности, мощности всей трехфазной цепи?

4. Каков порядок построения векторной диаграммы напряжений и токов для активной нагрузки?

5. Изобразить векторную диаграмму напряжений и токов при увеличении нагрузки в одной из фаз.

6. Изобразить векторную диаграмму напряжений и токов при увеличении нагрузки в двух фазах.

7. Изобразить векторную диаграмму напряжений и токов при обрыве фазного провода.

8. Во сколько раз изменяется фазные и линейные токи и напряжения при переключении симметричной нагрузки со “звезды” на “треугольник”? Ответ пояснить на примере данных, полученных при исследовании нагрузки, соединенной в “звезду” по предыдущей лабораторной работе.

9. Во сколько раз изменятся мощности при переключении схемы нагрузки со “звезды” на “треугольник”? Ответ пояснить на примере данных, полученных в предыдущей лабораторной работе при

10. Построить векторную диаграмму токов и напряжений при обрыве линейного провода.

Литература

1. , Немцов . Учеб. для вузов.- М.: Высш. шк., 2000. – 542 с.

Время отведенное на лабораторную работу.

Подготовка к работе

Обработка результатов эксперимента и

Отчет по лабораторной работе

Лабораторная работа №10

ИЗУЧЕНИЕ ТРЕХФАЗНОЙ ЦЕПИ ПРИ СОЕДИНЕНИИ ФАЗ ПРИЕМНИКА ЗВЕЗДОЙ И ТРЕУГОЛЬНИКОМ

Цель работы: изучить цепь трёхфазного тока при соединении фаз приёмника сначала по схеме «звезда», затем по схеме «треугольник» в симметричном и несимметричном режимах.

Смотри соответствующие разделы лабораторных работ № 8 и № 9.

Лабораторная работа проводится на стенде, описание которого приводится на странице 9 данного руководства. Для выполнения работы, в учебной группе преподаватель формирует чётное число бригад (2,4 или 6). При этом нечётные бригады выполняют сначала работу № 8, а чётные — № 9. Затем бригады обмениваются местами, и уже на собранных стендах выполняют работу соответственно: нечетные № 9, четные — № 8. Порядок постановки опытов в лабораторной работе №10 такой же, как и лабораторных работах № 8 и № 9, но по сокращенной схеме. Исследуются 3 трехфазных цепи:1.Четырехпроводная цепь при соединение фаз нагрузки звездой; 2. Трехпроводная цепь при соединении фаз нагрузки звездой. 3. Трехпроводная цепь при соединении фаз нагрузки в треугольник. Для каждой цепи выполняют 2 режима нагрузки : а) симметричная ; б)несимметричная (например увеличение нагрузки в одной из фаз). Таким образом, выполняется 6 опытов. Требования безопасности труда такие же, как в соответствующем разделе лабораторной работы № 8.

Порядок выполнения работы :

1. Ознакомьтесь с лабораторным стендом. Найдите сетевой выключатель, тумблеры включения дополнительных нагрузок (ламп накаливания) SA1….SA3, которые должны быть отключены, тумблер отключения

фазы SA4, который должен быть включен. Амперметры А1, А2, А3,

предназначены для измерения линейных токов при соединении фаз приемника в треугольник. Амперметр А4- для измерения тока в нулевом проводе четырехпроходной цепи. Амперметры А5, А6, А7.- для измерения фазовых токов как при соединении фаз нагрузки по схеме «звезда», так по схеме «треугольник». Для измерения фазных и линейных напряжений на схеме имеется вольтметр на 50 вольт. Для измерения напряжения между нейтралями генератора и нагрузки на стенде имеется вольтметр на 15 вольт.

2.Соберите схему опыта. Нечетные бригады собирают схему, по которой фазы приемника соединяется по схеме «звезда» а четные по схеме «треугольник». Монтажные схемы, приведены на стендах.

3. Нечетные бригады выполняют работу в следующем порядке :

А. исследуется 4-х проводная цепь по схеме «звезда»

Опыт 1: симметричная нагрузка. В табл.1 лабораторной работы № 8 записываются показания амперметров и измеренные линейные и фазные напряжения.

По результатам измерения токов и напряжений делается вывод, форма которого приведена в конце данного раздела.

Опыт 2. Несимметричная нагрузка. Для этого по указанию преподавателя включается один из тумблеров SA1…..SA3 и вновь в таблицу данных записывается показания амперметров и вольтметров и в выводы записываются результаты наблюдений.

Б. Исследуется 3-х проводная цепь при соединении фаз приемника в «звезду»

Опыт 3. Симметричная нагрузка. Для этого выключить тумблер, который был включен в опыте 2 и отключить автоматический выключатель QF4, отключив тем самым нулевой провод. Записать показания приборов в таблицу, а в выводах записать результаты наблюдений.

Опыт 4. Несимметричная нагрузка. Включается тот же тумблер, что и в опыте 2. В таблицу записываются показания всех приборов, а в выводах записываются результаты наблюдений.

В. Далее нечетные бригады переходят к стендам, где собрана схема соединения фаз приемника в «треугольник».

Опыт 5. Симметричная нагрузка. Тумблеры SА1. . ……..SA3 отключены, тумблер SA4 включен.

Включив сетевой выключатель SA, записывают показания амперметров и вольтметра в табл. 9.1 (стр.15 настоящего руководства ) и заполняют выводы.

Опыт 6. Несимметричная нагрузка. Тоже, что и в опыте 2.

После этого записывается технические характеристики всех применяемых приборов.

Четные бригады проводят опыты в следующем порядке: Опыт 5; Опыт 6; Опыт 1; Опыт 2; Опыт 3; Опыт 4.

В соответствии с полученными данными провести расчеты и результаты расчетов записать в таблицу в графы «вычислено».

Для всех опытов построить векторные диаграммы напряжений и токов в масштабе на миллиметровой бумаге или бумаге в клетку.

Выводы по работе.

1. Соединение фаз приемника в «звезду».

А. 3-х фазная, 4-х проводная цепь ( с нулевым проводом).

Опыт 1. При симметричной нагрузке 3-х фазной, 4-х проводной цепи, при соединении фаз приёмника в «звезду» нами установлено:

напряжения на фазах приёмника __________между собой, лампы горят с___________яркостью

(равны или не равны ) ( одинаковой или разной)

линейные напряжения ____________ фазных в _________ раз,

(больше, меньше) (число)

что отличается от теорететич. на________%

Опыт 2. При несимметричной нагрузке в 3-х фазной, 4-х проводной цепи, при соединении фаз в «звезду» из опыта получили:

— напряжения на фазах приёмника ________________________________________

(изменились или нет, равны или не равны между собой)

— лампы горят _____________________________ яркостью

(с одинаковой или разной яркостью)

— линейные напряжения _______________________ фазных в _______ раз

(больше, меньше) (число)

Таким образом, наличие 4-го провода обеспечивает ________________фазных напряжений

и позволяет включать в такую сеть ___________________________________________

( а) симметричную, б) несимметричную, в) и симметр. и несимметр. нагрузку)

Б. 3-х фазная, 3-х проводная цепь. Соединение фаз приёмника в «звезду».

Опыт 3. Симметричная нагрузка.

фазные напряжения на нагрузке _____________лампы горят с____________яркостью

(изменились или нет) ( одинаковой или разной)

— нулевой провод при симметричной нагрузке_____________________________

(обязателен или необязателен)

Опыт 4. Несимметричная нагрузка.

При несимметричной нагрузке в 3-х фазной, 3-х проводной цепи, при соединении фаз в «звезду».

— фазные напряжения на нагрузке ___________________яркость ламп_________________

Смотрите так же:  Как подключить розетку под напряжением

(одинаковые или различные) (одинаковая или различная)

— несимметричную нагрузку в 3-х фазную, 3-х проводную цепь включать __________________

2. Соединение фаз приемника в треугольник.

Опыт 5.Симметричная нагрузка.

При соединении фаз приемника по схеме «треугольник» из опыта установлено:

Фазные напряжения______________по сравнению с таким же режимом по схеме «звезда»

лампы горят ______________яркостью и ___________________ по сравнению со схемой «звезда»

( с одинаковой или разной ) ( ярче или слабее)

Линейные токи__________фазных в ______раз, что отличается от теоретического на ____%

(больше или меньше)

Опыт 6. Несимметричная нагрузка.

Напряжения на фазах нагрузки ____________________________________________

(уменьшились, увеличились, не изменились)

Таким образом, по схеме «треугольник» можно включать

( а) симметричную, б) несимметричную, в) и симметричную и несимметричную)

Обработка результатов эксперимента см. соответствующий раздел лаб. раб.№ 8.

Вопросы для самопроверки см. соответствующие разделы лаб. раб.№ 8 и № 9 .

Схемы соединений трансформаторов тока и цепей тока реле токовых защит

Для токовых защит используются схемы с ТТ, установленными во всех трёх фазах (трёхфазные) или в двух фазах (двухфазные). При этом вторичные обмотки ТТ могут соединяться в полную или неполную звезду, а также в полный или неполный треугольник.

Подключение пусковых реле тока к трансформаторам тока в схемах токовых защит может осуществляться по различным схемам:

соединение ТТ и обмоток реле в полную звезду;

соединение ТТ и обмоток реле в неполную звезду;

соединение ТТ в треугольник, а обмоток реле в звезду;

соединение двух ТТ и одного реле в схему на разность токов 2-х фаз;

соединение ТТ в фильтр токов нулевой последовательности.

Поведение и работа реле в каждой из этих схем зависят от характера распределения токов в ее вто­ричных цепях в нормальных и аварийных условиях. При анализе различных схем сначала определяются положительные направления действующих величин первичных токов ТТ при различных видах к.з., а затем определяются пути замыкания вторичных токов каждого ТТ. Результирующий ток в проводах и обмотках реле тока определяется геометрическим сложением или вычитанием соответствующих векторов фазных токов.

Для каждой схемы определяется отношение тока в реле Iр к току в фазе Iф, которое называется коэффициентом схемы:

;

Коэффициент схемы необходимо учитывать при расчёте уставок и оценке чувствительности токовой защиты.

Векторные диаграммы первичных токов при различных к.з. представлены на рисунке 23.

Схема соединения трансформаторов тока и обмоток реле в полную звезду

Трансформаторы тока устанавливаются во всех фазах. Вторич­ные обмотки трансформаторов тока и обмотки реле соединяются в звезду и их нулевые точки связываются одним проводом, назы­ваемым нулевым. В нулевую точку объединяются одноименные зажимы обмоток трансформаторов тока.

Рисунок 22 – Соединение трансформаторов тока и реле по схеме полной звезды

При нормальном режиме и трехфазном к.з. в реле I, II и III проходят токи фаз:

; ;,

а в нулевом проводе — их гео­метрическая сумма, ,которая при симметричных режимах равна нулю (как при наличии, так и отсутствии заземления, рисунок 23, а).

Рисунок 23 – Векторная диаграмма токов.

а — при трехфазном к. з.; б — при двухфазном к. з.; е — при однофазном коротком замы­кании; г — при двухфазном к. з. на землю; д — при двойном замыкании на землю в раз­ных точках.

При двухфазных к.з. ток к.з. проходит только в двух поврежденных фазах и соответственно в реле, подключенных к трансформаторам тока поврежденных фаз (рисунок 23, б), ток в неповрежденной фазе отсутствует. Согласно закону Кирхгофа сумма токов в узле равна нулю, следовательно, = 0, отсюда .

С учетом этого на векторной диаграмме (рисунок 23, б) токи IB и IС показаны сдвинутыми по фазе на 180°.

Ток в нулевом проводе схемы равен сумме токов двух повре­жденных фаз, но так как последние равны и противоположны по фазе, то ток в нулевом проводе также отсутствует.

Т.е. реле, включенное в нулевой провод схемы трансформаторов тока, соединённых в полную звезду, не будет реагировать на междуфазные к.з.

Однако, из-за неидентичности характеристик и погрешностей ТТ сумма вторичных токов при нагрузочном режиме и при 3-х и 2-х фазных к.з. отличается от нуля и в нулевом проводе проходит ток, называемый током небаланса.

При однофазных к. з. первичный ток к.з. проходит только по одной поврежденной фазе (рисунок 23, в). Соответствующий ему вторичный ток проходит также только через одно реле и замы­кается по нулевому проводу.

При двухфазных к.з. на землю токи проходят в двух повреждённых фазах и соответственно в двух реле, а в нулевом проводе проходит ток, равный геометрической сумме токов повреждённых фаз, всегда отличный от нуля.

При двойном замыкании на землю в различных точках, например фаз В и С, на участке между точками замыкания на землю режим аналогичен 1ф. к.з. фазы В, а между источником питания и ближайшему к нему месту замыкания фазы С – соответствует режиму 2-х фазного к.з. фаз В и С.

Нулевой провод схемы звезды является фильтром токов нулевой последовательности. Токи прямой и обратной последовательностей в нулевом проводе не проходят, так как векторы каждой из этих систем дают в сумме нуль. Токи же нулевой последовательности совпадают по фазе, поэтому в нулевом проводе проходит утроенное значение этого тока.

Ток в реле равен току в фазе, поэтому коэффициент схемы равен единице: КСХ = 1.

Схема полной звезды реагирует на все виды замыканий.

Схема применяется для включения защиты от всех видов однофазных и междуфазных к.з.

Схема отличается надежностью, так как при любом замыкании срабатывают по крайней мере два реле.

Схема соединения трансформаторов тока и обмоток реле в неполную звезду

ТТ устанавливаются в двух фазах (обычно А и С), вторичные обмотки и обмотки реле соединяются аналогично схемы полной звезды.

Рисунок 24 – Схема соединения транс­форматоров тока и обмоток реле в неполную звезду.

В нормальном режиме и при трёхфазном к.з. в реле I и III проходят токи соответствующих фаз:

; ,

В нулевом проводе ток равен их геометрической сумме: Фактически ток в нулевом проводе соответствует току фазы В, отсутствующей во вторичной цепи.

В случае двухфазного к.з. токи появляются в одном или двух реле (I или III) в зависимости от того, какие фазы по­вреждены.

Ток в обратном проводе при двухфазных к.з. между фазами А и С, в которых установлены трансформаторы тока, равен нулю, т.к. IA = — IC, а при замыка­ниях между фазами AB и ВC он соответственно равен IН.П = — Iа и IН.П = — IС.

В случае однофазного к.з. фаз (А или С), в кото­рых установлены трансформаторы тока, во вторичной обмотке трансформатора тока и обратном проводе проходит ток к.з. При замыкании на землю фазы В, в которой трансформатор тока не установлен, токи в схеме защиты не появляются; следовательно, схема неполной звезды реагирует не на все случаи однофазного к.з. и поэтому применяется только для защит, действующих при между фазных повреждениях. Рассмотрев поведение защиты при различных видах замыканий, нетрудно заметить, что при трехфазном замыкании работают три реле, при двухфазном — два; при замыкании фазы В на землю защита не работает.

1. Схема неполной звезды реагирует на все виды междуфазных замыканий.

2. Схема достаточно надежна, т.к. при любом междуфазном замыкании срабатывают, по крайней мере, два реле.

3. Для ликвидации однофазных замыканий требуется дополнительная защита.

4. используется для подключения защиты от междуфазных к.з.

Схема соединения ТТ в треугольник, а обмоток реле в звезду

Вторичные обмотки трансформаторов тока, соединенные после­довательно разноименными выводами, образуют тре­угольник. Реле, соединенные в звезду, подключаются к вершинам этого треугольника. Из токораспределения на рисунке 25, а) видно, что в каждом реле проходит ток, равный геометрической разности токов двух фаз:

; ;.

Рисунок 25 – Схема соединения ТТ в треугольник, а обмоток реле в звезду – а), векторная диаграмма токов – б).

При симметричной нагрузке и трехфаз­ном к.з. в каждом реле проходит линейный ток, в раз больший фазных токов и сдвинутый относи­тельно последних по фазе на 30°

В таблице 3 приведены значения токов при других видах к.з. в предположении, что коэффициент трансформации трансформа­торов тока равен единице (КТ = 1).

Таблица 3 – Значения токов при различных видах к.з.

Похожие статьи:

  • Провода на свечи бмв е34 БМВ 5 (Е34). Свечи зажигания Свеча зажигания состоит из центрального электрода, изолятора, корпуса и бокового электрода (электрода массы). Центральный электрод герметично закреплен в изоляторе, а изолятор жестко связан с корпусом. Между […]
  • Белый и черный провода где плюс какого цвета провод плюс и минус? в зарядном устройстве 2 провода черный и белый . где плюс где минус? какого цвета провод плюс и минус? в зарядном устройстве 2 провода черный и белый . где плюс где минус? можно определить с помощью […]
  • Электрические схемы микроволновых печей самсунг Электрические схемы микроволновых печей Микроволновые печи с электромеханическим управлением обычно имеют стандартную электрическую схему. Отличия между различными моделями незначительны и не носят принципиального характера. Силовая часть […]
  • Отличие провода пунп от ввг Чем отличается ВВГ от ПУНП? Чем отличается ВВГ от ПУНП? Вроде сечение одинаковое, изоляция двойная. Можно ли проводку делать ПУНПом, если она заштукатуривается? Сырьём для ПВХ, методикой испытаний. Этот кабель выпускается по ГОСТ, а […]
  • Физик заземление Физика для Детей: З - значит Заземление (6 выпуск) 8 комментариев это скорее для даунов, чтоле -_- смотреть вообще не приятно Чувырла уж прям вполне отталкивающая Глупо как-то рассказано. Да и татух у ведущей нет и в носу без кольца. А […]
  • Гибкие провода гост ПВС 4х4 провод гибкий ГОСТ ПВС-это гибкий провод с медными многопроволочными скрученными жилами в ПВХ изоляции и ПВХ оболочке. ПО последней букве в маркировке "С"-что обозначает соединительный, ясно что кабель в основном используется для […]